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Abstract It is well known that subspaces of the Hardy space over the unit disk which
are invariant under the backward shift occur as the image of an observability opera-
tor associated with a discrete-time linear system with stable state-dynamics, as well as
the functional-model space for a Hilbert space contraction operator. We discuss two
multivariable extensions of this structure, where the classical Hardy space is replaced
by (1) the Fock space of formal power series in a collection of d noncommuting inde-
terminates with norm-square-summable vector coefficients, and (2) the reproducing
kernel Hilbert space (often now called the Arveson space) over the unit ball in C

d

with reproducing kernel k(λ, ζ ) = 1/(1 − 〈λ, ζ 〉) (λ, ζ ∈ C
d with ‖λ‖, ‖ζ‖ < 1). In the

first case, the associated linear system is of noncommutative Fornasini–Marchesini
type with evolution along a free semigroup with d generators, while in the second
case the linear system is a standard (commutative) Fornasini–Marchesini-type system
with evolution along the integer lattice Z

d. An abelianization map (or symmetrization
of the Fock space) links the first case with the second. The second case has special
features depending on whether the operator-tuple defining the state dynamics is com-
mutative or not. The paper focuses on multidimensional state-output linear systems
and the associated observability operators; followup papers Ball, Bollotnikov, and
Fang (2007a, 2007b) use the results here to extend the analysis to represent observ-
ability-operator ranges as reproducing kernel Hilbert spaces with reproducing kernels
constructed from the transfer function of a conservative multidimensional (noncom-
mutative or commutative) input-state-output linear system.
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1 Introduction

For U and Y any pair of Hilbert spaces, we use the notation L(U , Y) to denote the space
of bounded, linear operators from U to Y . For X a single Hilbert space, we shorten
the notation L(X , X ) to L(X ). Let X , U , and Y be Hilbert spaces, let A ∈ L(X ),
B ∈ L(U , X ), C ∈ L(X , Y), and D ∈ L(U , Y) be bounded linear operators, and let us
consider the associated discrete-time linear time-invariant system

x(n + 1) = Ax(n) + Bu(n),

y(n) = Cx(n) + Du(n) (1.1)

with x(n) taking values in the state space X , u(n) taking values in the input-space U
and y(n) taking values in the output-space Y . If we let the system evolve on the non-
negative integers n ∈ Z+, then the whole trajectory {u(n), x(n), y(n)}n∈Z+ is deter-
mined from the input signal {u(n)}n∈Z+ and the initial state x(0) according to the
formulas

x(n) = Anx(0) +
n−1∑

k=0

An−1−kBu(k),

y(n) = CAnx(0) +
n−1∑

k=0

CAn−1−kBu(k) + Du(n)

= [OC, Ax(0)]n +
n−1∑

k=0

CAn−1−kBu(k) + Du(n), (1.2)

where OC, A denotes the so-called observability operator

OC, A: x �→ {
CAnx

}
n∈Z+ .

If we introduce the Z-transform

{f (n)}n∈Z+ �→ f̂ (λ) =
∞∑

n=0

f (n)λn (1.3)

the Z-transformed version of the system-trajectory formulas (1.2) become

x̂(λ) = (I − λA)−1x(0) + λ(I − λA)−1Bû(λ),

ŷ(λ) = C(I − λA)−1x(0) + [D + λC(I − λA)−1B]̂u(λ)

= ÔC, Ax(0) + T�(z)̂u(λ), (1.4)

where

ÔC, A: x �→
∞∑

n=0

(CAnx) λn = C(I − λA)−1x (1.5)
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is the Z-transformed version of the observability operator and where

T�(λ) = D + λC(I − λA)−1B

is the transfer function of the system � given by (1.1). In particular, if the input signal
{u(n)}n∈Z+ is taken to be zero, the resulting output {y(n)}n∈Z+ is given by y = OC, Ax(0).
In case OC, A is bounded as an operator from X into �2

Y := �2 ⊗Y (here �2 is the space
of square-summable complex sequences indexed by the non-negative integers Z+),
we say that the pair (C, A) is output-stable. It is convenient to represent OC, A in the
output-stable case in the matrix form

OC, A = coln∈Z+
[
CAn] : X → �2

Y .

Since the Z-transform (1.3) maps �2
Y unitarily onto H2

Y := H2 ⊗ Y , where H2, the
image of �2 under the Z-transform, is the space of analytic functions on the unit disk
with modulus-square-summable sequence of Taylor coefficients:

H2 =
{

f (λ) =
∞∑

n=0

fnλn :
∞∑

n=0

|fn|2 < ∞
}

the output stability of (C, A) is equivalent to the Z-transformed version of the observ-
ability operator (1.5) being bounded as an operator from X into H2

Y . It is readily seen

that ÔC, Ax = ÔC, Ax.
If (C, A) is output-stable, then the observability gramian

GC,A := (OC,A)∗OC,A = (ÔC, A)∗ÔC, A

is bounded on X and can be represented via the series

GC,A =
∞∑

n=0

A∗nC∗CAn (1.6)

converging in the strong operator topology. The following result gives a summary of
well-known connections between output stability, observability gramians and solu-
tions of associated Stein equations and inequalities.

Theorem 1.1 Let (C, A) be a pair of operators with C: X → Y and A: X → X . Then:

(1) The pair (C, A) is output-stable if and only if the Stein inequality

H − A∗HA ≥ C∗C (1.7)

has a positive semidefinite solution H ∈ L(X ).
(2) If (C, A) is output-stable, then the observability gramian GC,A satisfies the Stein

equality
H − A∗HA = C∗C (1.8)

and is the minimal positive semidefinite solution of the Stein inequality (1.7).
(3) There is a unique positive semidefinite solution of the Stein equality (1.8) if A is

strongly stable, i.e., powers An of A tend to zero in the strong operator topology of
L(X ). If A is a contraction operator, then the positive semidefinite solution of the
Stein equation (1.8) is unique if and only if A is strongly stable.
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A pair (C, A) is called observable if the operator OC, A (equivalently, ÔC, A, GC,A)
is injective. This property means that a state space vector x ∈ X is uniquely recovered
from the output string {y(n)}∞n=0 generated by running the system (1.1) with the zero
input string and the initial condition x(0) = x. A pair (C, A) is called exactly observable
if OC, A (equivalently, GC,A) is bounded and bounded from below.

Associated with an output-stable pair (C, A) is the range of the observability
operator

Ran ÔC, A = {C(I − zA)−1x : x ∈ X }.
The following theorem summarizes the connections between such ranges and
backward-shift-invariant subspaces of H2

Y .

Theorem 1.2 Suppose that (C, A) is an output-stable pair. Then:

(1) The linear manifold Ran ÔC, A is invariant under the backward shift operator

S∗: f (λ) → f (λ) − f (0)

λ
. (1.9)

(2) Let H ≥ 0 be a solution of the Stein inequality (1.7) and let X ′ be the completion of
X with inner product ‖[x]‖2

X ′ = 〈Hx, x〉X (where [x] denotes the equivalence class
modulo Ker H generated by x). Then A and C extend to define bounded operators
A′: X ′ → X ′ and C′: X ′ → Y and the observability operator ÔC, A extends to
define a contraction operator ÔC′,A′ from X ′ into H2

Y . Moreover, ÔC′,A′: X ′ → H2
Y

is an isometry if and only if H satisfies the Stein equation (1.8) and A′ is strongly
stable, i.e.,

〈HAnx, Anx〉 → 0 for all x ∈ X .

(3) If the linear manifold M := Ran ÔC, A is given the lifted norm

‖ÔC, Ax‖2
M = inf

y∈X : OC, Ay=OC,Ax
〈Hy, y〉X ,

then
(a) M can be completed to M′ = Ran OC′,A′ with contractive inclusion in H2

Y :

‖f‖2
H2

Y
≤ ‖f‖2

M′ for all f ∈ M′.

Furthermore, M′ is isometrically equal to the reproducing kernel Hilbert space
with reproducing kernel KC,A;H given by

KC,A;H(λ, ζ ) = C(I − λA)−1H(I − ζA∗)−1C∗. (1.10)

(b) The following difference-quotient inequality is satisfied

‖S∗f‖2
M ≤ ‖f‖2

M − ‖f (0)‖2
Y for all f ∈ M (1.11)

and moreover, if the Stein equality (1.8) holds, then (1.11) holds with equality.

(4) Conversely, if M is a Hilbert space contractively included in H2
Y which is invariant

under S∗ and for which the difference-quotient inequality (1.11) holds, then there is
a contractive pair (C, A) (i.e., (1.7) holds with H = IX ) such that M = H(KC,A;I) =
Ran OC, A isometrically. In case (1.11) holds with equality, then (C, A) can be taken
to be isometric.
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Results of the type in Theorem 1.1 are the basis for the Lyapunov-function approach
to stability analysis in system theory; there are far-reaching generalizations to non-
linear and time-varying settings which are far afield from our main interests here.
The goal of characterizing subspaces of H2 of the form H(KC,A;H) (especially in a
finite-dimensional context) was a key feature in the approach to Nevanlinna–Pick
interpolation developed by Dym (1989).

In this paper, we present the analogues of Theorems 1.1 and 1.2 for the two related
multivariable settings: (1) the case where the Hardy space H2 on the unit disk is
replaced by the Fock space H2

Y (Fd), and (2) the case where H2 is replaced by the
vector-valued Arveson reproducing kernel Hilbert space HY (kd).

To define the Fock space, we let Fd denote the free semigroup on the set {1, . . . , d}
of the first d natural numbers and then let H2

Y (Fd) consist of the space of all formal
power series

∑
v∈Fd

fvzv in d noncommuting indeterminates z = (z1, . . . , zd) with
coefficients fv in a coefficient Hilbert space Y which are square-summable in norm:∑

v∈Fd
‖fv‖2

Y < ∞. Here we write zv = ziN ziN−1 . . . zi1 if v = iNiN−1 . . . i1 ∈ Fd.
The shift operator S: f (λ) �→ λf (λ) acting on the Hardy space H2 is replaced by the
noncommuting d-tuple S = (S1, . . . , Sd) on H2

Y (Fd) given by

Sj : f (z) �→ f (z)zj for j = 1, . . . , d. (1.12)

The system (1.1) is replaced by a noncommutative multidimensional input-state-
output system of the form

x(1v) = A1x(v) + B1u(v),
...

...
...

x(dv) = Adx(v) + Bdu(v),
y(v) = Cx(v) + Du(v).

(1.13)

Here the system evolves along the free semigroup Fd, and, for each v ∈ Fd, the state
vector x(v), input signal u(v) and output signal y(v) take values in the state space X ,
input space U , and output space Y , and the system matrix U has the form

U =
[

A B
C D

]
=

⎡

⎢⎢⎢⎣

A1 B1
...

...
Ad Bd
C D

⎤

⎥⎥⎥⎦ :
[X
U
]

→

⎡

⎢⎢⎢⎣

X
...
X
Y

⎤

⎥⎥⎥⎦ . (1.14)

Such systems were introduced in Ball and Vinnikov (2005) and with further
elaboration in Ball, Groenewald, and Malakorn (2005, 2006), following Ball,
Groenewald, and Malakorn (2005), we call this type of system a noncommutative
Fornasini–Marchesini linear system. The observability operator associated with an
output map C : X → Y and a d-tuple A = (A1, . . . , Ad) of not necessarily commuting
operators on a Hilbert space X , expressed in “frequency-domain” coordinates, takes
the form

ÔC,A: x �→ C(I − z1A1 − · · · − zdAd)−1x.

For the particular case where A is a row contraction and

C = (I − A∗
1A1 − · · · − A∗

dAd)1/2
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with Y taken to be equal to the closure of the range of C, this operator appears already
in work of Popescu (1999) under the term “Poisson kernel” and as the adjoint of the
key operator L used in many constructions in the paper of Arveson (2000). Repro-
ducing kernel Hilbert spaces consisting of formal power series were developed in a
systematic way in Ball and Vinnikov (2003). Such spaces already appear (although
not quite in our notation) in the Sz.-Nagy–Foiaş model theory for row contractions
developed by Popescu (1989a–c). We shall see that Theorems 1.1 and 1.2 extend in a
natural way to this setting, where the observability gramian (1.6) in the statement of
Theorem 1.1 is replaced with the multivariable observability gramian

GC,A = Ô∗
C,AÔC,A =

∑

v∈Fd

Av∗C∗CAv (1.15)

(here we set Av = AiN . . . Ai1 if v = iN . . . i1 ∈ Fd), where the backward shift S∗ (1.9)
in the statement of Theorem 1.2 is replaced by the d-tuple S∗ = (S∗

1, . . . , S∗
d) of adjoints

of the shift operators Sj in (1.12), and where the positive kernel (1.10) becomes the
kernel

KC,A,H(z, w) = C(I − z1A1 − · · · − zdAd)−1H(I − w1A∗
1 − · · · − wdA∗

d)−1C∗ (1.16)

in two sets z = (z1, . . . , zd) and w = (w1, . . . , wd) of noncommuting indeterminates
(see Theorems 2.2 and 2.8 below).

In the second Arveson-space setting, the Hardy space H2 over the unit disk is
replaced by the so-called Arveson space, the reproducing kernel Hilbert space H(kd)

over the unit ball B
d in complex d-dimensional space C

d based on the reproducing
kernel function

kd(λ, ζ ) = 1
1 − 〈λ, ζ 〉

Cd
for λ, ζ ∈ B

d

and the classical Hardy-space shift f (λ) �→ λ·f (λ) is replaced by the d-tuple of Arveson
shift operators Mλ = (Mλ1 , . . . , Mλd) where

Mλj : f (λ) �→ λjf (λ) for f ∈ H(kd) (1.17)

(Arveson, 2000; Drury, 1978). In this case the underlying system evolves along the
integer lattice Z

d+ = {n = (n1, . . . , nd) : nj ∈ Z+} and has the form of what we call a
(commutative) Fornasini–Marchesini system

x(n) = A1x(n − e1) + · · · + Adx(n − ed)

+B1u(n − e1) + · · · + Bdu(n − ed),
y(n) = Cx(n) + Du(n).

(1.18)

Here and in what follows, ej denotes the element in Z
d+ having the jth partial index

equal to one and all other partial indices equal to zero:

ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ Z
d+. (1.19)

Thus, the system matrix U has the same form (1.14) as for the noncommutative
setting but the domain for all the signals and the system evolution is the integer lattice
Z

d+ rather than the free semigroup Fd and the associated “frequency-domain” objects
are functions or formal power series in the commuting variables λ = (λ1, . . . , λd)

rather than in the noncommuting indeterminates z = (z1, . . . , zd). In Sect. 3, we show
how the Arveson space H(kd) ⊗ Y and this Fornasini–Marchesini linear system can
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be derived as an abelianization (sometimes also called symmetrization) of the non-
commutative Fock space H2

Y (Fd) and of the noncommutative Fornasini–Marchesini
linear system, respectively; while it is well known that the Arveson space is a symme-
trization of the Fock space and that the multiplier algebra on the Arveson space is
the image under a completely positive map acting on the noncommutative multiplier
algebra on the Fock space (Arias & Popescu, 2000; Arveson, 1998; Davidson & Pitts,
1998; Davidson, 2001, and Popescu (2006; to appear in Proc. Amer. Math. Soc.) for
a recent, more general systematic framework), our extension of these ideas to the
underlying system theory appears to be new. The observability operator, as in the
noncommutative setting, is associated with a so-called output pair (C, A) but now has
the form

Ôa
C,A : x �→ C(I − λ1A1 − · · · − λdAd)−1x,

where the variables λ1, . . . , λd commute and the abelianized observability gramian
Ga

C,A = (Ôa
C,A)∗Ôa

C,A has an infinite-series representation more complicated than
the second expression in (1.15) (see Eq. 3.10 below). In case the operator d-tuple
A = (A1, . . . , Ad) is commutative (so AiAj = AjAi for all 1 ≤ i, j ≤ d), Ga

C,A = GC,A

(see Proposition 3.3 below), and Theorem 1.2 has a natural analogue for this set-
ting, with the abelianized multivariable observability gramian Ga

C,A = GC,A play-
ing the role of the observability gramian in Theorem 1.1, with the operator d-tuple
M∗

λ = (M∗
λ1

, . . . , M∗
λd

) in place of the backward shift S∗ (1.9) in Theorem 1.2, and with
kernel (1.10) now taken to be the multivariable positive kernel

Ka
C,A;H(λ, ζ ) = C(I − λ1A1 − · · · − λdAd)−1H(I − ζ1A∗

1 − · · · − ζdA∗
d)−1C∗ (1.20)

(see Theorems 3.14–3.16 below). In the general case where the operator d-tuple
A = (A1, . . . , Ad) is not assumed to be commutative, there is no characterization of
the abelianized observability gramian as a minimal solution of a generalized Stein
equation analogous to the classical case given in Theorem 1.1, but there still is a some-
what more implicit analogue of Theorem 1.2, where the backward shift S∗ (1.9) in
Theorem 1.2 is replaced by a solution of the so-called Gleason problem (see Theorems
3.20 and 3.21 below). The Gleason problem originates in the work of Gleason (1964)
and Henkin (1971) and has been studied in the context of the Arveson space (with
various formulas for the solution) in Alpay and Dubi (2005) with an application to
realization questions in Alpay, Dijksma, and Rovnyak (2003). Our analogue of Theo-
rem 1.2 for the Arveson space for the case of commutative d-tuple A has already been
given in Bolotnikov and Rodman (2002) (with a more general power-series setting
worked out in Bolotnikov & Rodman, 2004) for the finite-dimensional case.

We also give various numerical examples (constructed with the aid of the soft-
ware program MATHEMATICA) to illustrate how ÔC,A and Ôa

C,A can have divergent
properties when A is not commutative (see Examples 3.4, 3.9, and 3.11 below).

Backward-shift-invariant subspaces for the classical setting have been used for
some time in the operator-theory literature as the model space for a more general
(abstractly defined) Hilbert-space contraction operator (de Branges & Rovnyak, 1966;
Sz.-Nagy & Foiaş, 1970); connections of this work with linear system theory were only
realized later (see, e.g., Helton, 1972/1973, 1974). Our results develop the structure of
such model spaces for the case of operator-tuples and therefore are of interest from
the point of view of multivariable operator theory. We find it satisfying that these
model spaces in turn tie in with the theory of multidimensional linear systems in much
the same way (but with some surprises) as in the classical case.
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As applications of the ideas, we obtain new system-theoretic derivations of the
Beurling–Lax representation theorem for shift invariant subspaces in both the non-
commutative and commutative settings; the result for the noncommutative setting is
due originally to Popescu (1989d) and for the commutative setting to Arveson (1998)
and McCullough and Trent (2000). We also indicate connections with dilation theory
and the von Neumann inequality for these settings (see Arveson, (1998); Drury, 1978;
Popescu, 1991,1999).

Closely related to the kernels KC,A(z, w) and Ka
C,A(λ, ζ ) (given by (1.16) and (1.20)

with H normalized to be the identity operator) are kernels of de Branges–Rovnyak
type (see de Branges & Rovnyak, 1966 for the classical case)

KS(z, w) = kSz(z, w) − S(z)kSz(z, w)S(w)∗, Ka
S(λ, ζ ) = I − S(λ)S(ζ )∗

1 − 〈λ, ζ 〉
(where z = (z1, . . . , zd) and w = (w1, . . . , wd) are two sets of noncommuting inde-
terminates with kSz(z, w) = ∑

v∈Fd
zvwv

equal to the noncommutative Szegö kernel
while λ = (λ1, . . . , λd) and ζ = (ζ1, . . . , ζd) are two sets of commuting variables)
for respective reproducing kernel Hilbert spaces H(KS), H(Ka

S) in the respective
noncommutative and commutative settings. In this situation (where KS and Ka

S are
positive kernels in noncommuting and commuting variables, respectively), the respec-
tive power series

S(z) =
∑

v∈Fd

Svzv, S(λ) =
∑

n∈Z
d+

Snλn

are contractive multipliers, i.e., the respective multiplication operators

MS: f (z) �→ S(z) · f (z), MS: f (λ) �→ S(λ) · f (λ)

are bounded from H2
U (Fd) into H2

Y (Fd) and from HU (kd) into HY (kd), respectively,
with norm at most 1. A particular issue is the construction of operators

Bj: U → X , for j = 1, . . . , d and D: U → Y
for some input space U so that

S(z) = D + C(I − z1A1 − · · · − zdAd)−1(z1B1 + · · · + zdBd),

S(λ) = D + C(I − λ1A1 − · · · − λdAd)−1(λ1B1 + · · · + λdBd)

satisfy
KC,A(z, w) = KS(z, w), Ka

C,A(λ, ζ ) = Ka
S(λ, ζ ).

With the resolution of this issue, then the results here lead directly to representa-
tions of backward-shift-invariant subspaces as reproducing kernel Hilbert spaces of
the form H(KS) and H(Ka

S) for a Schur multiplier S in both the noncommutative
and commutative settings as well as linear-fractional realizations for Beurling–Lax
representers of shift-invariant subspaces for both the noncommutative (see Popescu,
(1989d)) and commutative (see McCullough & Trent, (2000)) settings. We work out
these issues for the commutative setting and for the noncommutative setting in Ball,
Bolotnikov, and Fang (2007a) and Ball, Bolotnikov, and Fang (2007b) respectively.

The paper is organized as follows. After the present Introduction, Sect. 2 focuses
on the noncommutative Fock space setting while Sect. 3 focuses on the Arveson-
space setting. Section 2 is divided into Sect. 2.1 dealing with the connections between
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solutions of generalized Stein equations and strong stability of the state dynamics for
noncommutative Fornasini–Marchesini systems and Sect. 2.2 dealing with character-
izing ranges of observability operators as backward-shift-invariant subspaces of the
Fock space with a certain reproducing-kernel-Hilbert-space structure. The first sub-
section (Sect. 3.1) of Sect. 3 deals with the less tractable issues parallel to the material
in Sect. 2.1 of generalized Stein equations and stability for commutative Fornasini–
Marchesini systems and also presents the abelianization map giving the connection
between noncommutative and commutative Fornasini–Marchesini systems. The sec-
ond subsection (Sect. 3.2) of Sect. 3, parallel to Sect. 2.2, discusses characterizations
of observability-operator ranges for the case of a commutative Fornasini–Marchesini
state-output system. The results are the most satisfying in case the operator-tuple A
giving the state dynamics is commutative—these are collected in Sect. 3.2.1. The more
implicit results for the case of noncommutative A are given in Sect. 3.2.2.

2 The Fock-space setting

2.1 Output stability and Stein equations: the noncommutative case

For d a positive integer, let Fd be the free semigroup Fd generated by the set of d let-
ters {1, . . . , d}. Elements of Fd are words of the form iN . . . i1 where i� ∈ {1, . . . , d} for
each � = 1, . . . , N with multiplication given by concatenation. We also use ∅ to denote
the empty word; this serves as the unit element for Fd. For v = iNiN−1 . . . i1 ∈ Fd, we
let |v| denote the number N of letters in v and we let v := i1 . . . iN−1iN denote the
transpose of v. We let z = (z1, . . . , zd) to be a collection of d formal noncommuting
variables and let Y〈〈z〉〉 denote the set of formal noncommutative series

∑
v∈Fd

fvzv

where fv ∈ Y and where

zv = ziN ziN−1 . . . zi1 , if v = iNiN−1 . . . i1. (2.1)

The Fock space �2
Y (Fd) is defined as

�2
Y (Fd) :=

⎧
⎨

⎩{fv}v∈Fd :
∑

v∈Fd

‖fv‖2
Y < ∞

⎫
⎬

⎭ . (2.2)

If we let χv be the characteristic function of the word v, so

χv = {χv(v′)}v′∈Fd , where χv(v′) =
{

1, if v′ = v,
0, otherwise

and we let BY be an orthonormal basis for Y , then {χvyi : v ∈ Fd, yi ∈ BY } is an ortho-
normal basis for �2

Y (Fd). The space �2
Y (Fd) can be identified as the tensor product

�2(Fd) ⊗ Y and is mapped unitarily onto the space

H2
Y (Fd) =

⎧
⎨

⎩
∑

v∈Fd

fvzv ∈ Y〈〈z〉〉 :
∑

v∈Fd

‖fv‖2
Y < ∞

⎫
⎬

⎭ (2.3)

by the noncommutative Z-transform

{fv}v∈Fd �→ f ∧(z) =
∑

v∈Fd

fvzv (2.4)
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with the monomials zv playing the role of the basis vectors χv.
The noncommutative multidimensional analogue of the system (1.1) is the system

with evolution along the free semigroup Fd given by (1.13). Upon running the system
(1.13) with the zero input string u(v) = 0 for v ∈ Fd and a fixed initial condition
x(∅) = x ∈ X we get

y(v) = CAvx +
∑

v′′,v′∈Fd,j∈{1,...,d} : v′′jv′=v

CAv′′
Bju(v′). (2.5)

Here we extend the noncommutative functional calculus (2.1) from noncommuting
indeterminates z = (z1, . . . , zd) to a d-tuple of operators A = (A1, . . . , Ad); we use
the notation

Av = AiN AiN−1 . . . Ai1 , if v = iNiN−1 . . . i1 ∈ Fd,

where the multiplication is now operator composition. Application of the formal
noncommutative Z-transform (2.4) then gives

ŷ(z) = C(I − Z(z)A)−1x(∅) + T�(z)̂u(z), (2.6)

where the formal power series T�(z) (by definition equal to the transfer function of
the system (1.13)) is given by

T�(z) = D + C(I − Z(z)A)−1Z(z)B,

where we have set

Z(z) = [
z1 · · · zd

] ⊗ IX , A =
⎡

⎢⎣
A1
...

Ad

⎤

⎥⎦ , B =
⎡

⎢⎣
B1
...

Bd

⎤

⎥⎦ . (2.7)

For details see Ball and Vinnikov (2005) or, for a more general setting of structured
noncommutative multidimensional systems, see Ball, Sadosky, and Vinnikov (2005).

In analogy to the classical case, the system (1.13) is called output-stable (and in this
case we will say that the pair (C, A) is output-stable) if the output string {y(v)}v∈Fd ,
defined as in (2.5) but with the input string {u(v)}v∈Fd assumed to be equal to 0,
belongs to �2

Y (Fd) for every x ∈ X and the observability operator

OC,A: x �→ {
CAvx

}
v∈Fd

(2.8)

is bounded as an operator from X into �2
Y (Fd). The Z-transformed version of OC,A is

ÔC,A: x �→
∑

v∈Fd

(CAvx) zv ∈ Y〈〈z〉〉

and the following realization formula for ÔC,A is immediate:

ÔC,Ax = C(I − Z(z)A)−1x.

If (C, A) is output-stable, then ÔC,A maps X into H2
Y (Fd) and is bounded. In this case

it makes sense to introduce the observability gramian

GC,A := (OC,A)∗OC,A = (ÔC,A)∗ÔC,A (2.9)
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and its representation in terms of strongly converging series

GC,A =
∑

v∈Fd

A∗v
C∗CAv (2.10)

follows immediately by definition (2.8) of OC,A and the formula (2.2) for the norm
in �2

Y (Fd). The second equality in (2.9) follows by definition of ÔC,A and the formula
(2.3) for the norm in H2

Y (Fd).

Definition 2.1 A pair (C, A) is called observable if GC,A is positive definite and exactly
observable if GC,A is strictly positive definite. We say that the d-tuple of operators
A = (A1, . . . , Ad) is strongly stable if

lim
N→∞

∑

v∈Fd : |v|=N

‖Avx‖2 → 0 for all x ∈ X . (2.11)

We mention that the term pure rather than strongly stable has been used in this
context (see Arveson, 2000), but we prefer the present terminology so as to avoid
confusion with the use of the term pure in the context of contractive operator-valued
functions (see Sz.-Nagy & Foiaş, 1970).

In analogy with the classical case one can introduce the unobservable subspace

Ker GC,A = Ker OC,A =
⋂

v∈Fd

Ker CAv. (2.12)

Thus, observability of (C, A) means that Ker GC,A is the zero subspace or that

CAvx = 0 (∀v ∈ Fd) �⇒ x = 0. (2.13)

The following is the noncommutative Fock-space counterpart to Theorem 1.1.

Theorem 2.2 Let A = (A1, . . . , Ad) ∈ L(X )d and let C ∈ L(X , Y). Then the pair (C, A)

is output-stable if and only if the (generalized) Stein inequality

H − A∗
1HA1 − · · · − A∗

dHAd ≥ C∗C (2.14)

has a positive semidefinite solution H ∈ L(X ). In this case,

(1) The observability gramian GC,A satisfies the generalized Stein equation

H − A∗
1HA1 − · · · − A∗

dHAd = C∗C (2.15)

and is the minimal positive semidefinite solution of the generalized Stein inequality
(2.14).

(2) The positive semidefinite solution of the Stein equation (2.15) is unique if A is
strongly stable, i.e., (2.11) holds. Moreover, in case A is contractive in the sense that

A∗
1A1 + · · · + A∗

dAd ≤ IX , (2.16)

then the solution of the Stein equation (2.15) is unique if and only if A is strongly
stable.

Proof Suppose first that (C, A) is output-stable. Then for each x ∈ X ,

{CAvx}v∈Fd ∈ �2
Y (Fd), i.e.,

∑

v∈Fd

‖CAvx‖2
Y < ∞.
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This has the consequence that the infinite series

∞∑

N=0

∑

v∈Fd : |v|=N

Av∗C∗CAv

converges in the strong operator topology to an operator H ∈ L(X ) (in fact, H = GC,A
is the observability gramian). From this infinite-series representation for GC,A it is eas-
ily verified that GC,A is positive semidefinite and satisfies the Stein equation (2.15) and
hence also the Stein inequality (2.14).

Conversely, suppose that the Stein inequality (2.15) has a positive semidefinite
solution H. We first claim that

H ≥
∑

v∈Fd : |v|≤N

A∗v
C∗CAv +

∑

v∈Fd : |v|=N+1

A∗v
HAv (2.17)

for each N ∈ Z+. For N = 0, (2.17) collapses to (2.14) which is given. Inductively
assume that

H ≥
∑

v∈Fd : |v|<N

A∗v
C∗CAv +

∑

v∈Fd : |v|=N

A∗v
HAv.

Use the Stein inequality (2.14) to replace H on the right side by its lower bound
C∗C + A∗

1HA1 + · · · + A∗
dHAd to get from this

H ≥
∑

v∈Fd : |v|<N

A∗v
C∗CAv +

∑

v∈Fd : |v|=N+1

A∗v
HAv +

∑

v∈Fd : |v|=N

A∗v
C∗CAv,

which then simplifies to (2.17) as wanted.
We rewrite (2.17) in the form

∑

v∈Fd : |v|<N

A∗v
C∗CAv ≤ H −

∑

v∈Fd : |v|=N

A∗v
HAv ≤ H. (2.18)

By letting N → ∞ in (2.18), we conclude that the left hand side sum converges
(weakly and therefore, since all the terms are positive semidefinite, strongly) to a
bounded positive semidefinite operator. By (2.10),

lim
N→∞

∑

v∈Fd : |v|<N

A∗v
C∗CAv =

∑

v∈Fd

A∗v
C∗CAv = GC,A

and passing to the limit in (2.18) as N → ∞ gives GC,A ≤ H. In particular the operator
GC,A is bounded (since H is) and therefore the pair (C, A) is output-stable. ��
Proof of (1) As observed in the proof of the first part of the theorem, from the infi-
nite-series representation (2.10) it follows that GC,A satisfies the Stein equation (2.15).
If H is any solution of the Stein inequality, the computation leading to (2.18) shows
that H satisfies (2.18). By taking the limit as N → ∞ we conclude that GC,A ≤ H as
asserted. ��
Proof of (2) Suppose that A is strongly stable and that H solves the Stein equation
(2.15). Then the proof of (2.17) shows that in this case (2.17) holds with equality:

H =
∑

v∈Fd : |v|≤N

A∗v
C∗CAv +

∑

v∈Fd : |v|=N+1

A∗v
HAv (2.19)
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for each N = 0, 1, 2, . . . Taking the limit as N → ∞ and using the stability assumption
(2.11) we conclude that H = GC,A.

For the converse direction we assume in addition that A is contractive (i.e., (2.16)
holds). We prove the contrapositive: if A does not satisfy the stability condition (2.11),
then the solution of the Stein equation (2.15) is not unique. Assume therefore that A is
not stable. By the assumption (2.16), the sequence of operators

�N =
∑

v∈Fd : |v|=N

A∗v
Av, N = 1, 2, . . .

is decreasing and bounded below and therefore has a strong limit �. Since A is
assumed not to be stable, this limit � is not zero. However it is easily verified that

A∗
1�NA1 + · · · + A∗

d�NAd = �N+1. (2.20)

Taking limits in (2.20) gives that � = limN→∞ �N satisfies the homogeneous Stein
equation

� − A∗
1�A1 − · · · − A∗

d�Ad = 0.

We conclude that the solution of the Stein equation (2.15) cannot be unique. ��
Particular cases of output pairs (C, A) are the cases where (C,A) is contractive

(i.e., the Stein inequality (2.14) holds with H = IX ) and where (C,A) is isometric
(i.e., the Stein equality (2.15) holds with H = IX ). For these cases some additional
observations can be made along the lines of Theorem 2.2.

Proposition 2.3

(1) Suppose that (C, A) is a contractive pair. Then (C,A) is output-stable with GC,A ≤
IX and the observability gramian GC,A is the unique positive semidefinite solution
of the Stein equation (2.15) if and only if A is strongly stable.

(2) Suppose that (C, A) is an isometric pair. Then (C,A) is output-stable. Moreover
H = IX is the unique solution of the Stein equation (2.15) if and only if A is
strongly stable. In this case OC,A is isometric and hence also (C,A) is exactly
observable.

Proof Statement (1) immediately follows from statements in Theorem 2.2 combined
with the observation that (C,A) being a contractive pair implies that A is contractive.

The first two assertions in statement (2) follow in a similar way. As for the last asser-
tion, for the case where (C, A) is isometric, IX is a solution of the Stein equation (2.15);
for the situation where A is strongly stable, uniqueness implies that the observability
gramian GC,A = IX , i.e., that OC,A is isometric. Then also (C, A) is exactly observable
by definition. ��
Remark 2.4 The converse of the last part of Proposition 2.3 does not hold even for
the case d = 1. More precisely, there exists an isometric pair of operators (C, A) such
that (C, A) is observable but A is not strongly stable.

An example necessarily requires that dim X = ∞. In the terminology of Sz.-Nagy
and Foiaş (1970), it suffices to produce a completely nonisometric (c.n.i.) contraction
operator A on a nontrivial Hilbert space X (so dim X > 0 and there is no non-
zero-invariant subspace M for A such that A|M is an isometry) in the class C1· (so
Anx → 0 in X for some x ∈ X implies that x = 0). Indeed, if A is such an operator, set
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C = (I − A∗A)1/2 considered as an operator from X into Y := Ran(I − A∗A)1/2 (the
closure of the range of (I −A∗A)1/2). Such an A is not strongly stable by the definition
of the class C1·, the definition of C makes the pair (C, A) isometric, and the condition
that A is c.n.i. implies that (C, A) is observable.

To construct such an operator A, let θ be a Schur-class outer function such that
log(1 − |θ |2) is not integrable (with respect to arc-length Lebesgue measure) over the
unit circle T. Furthermore, let K(θ) be the associated Sz.-Nagy–Foiaş model space

K(θ) =
[

H2(D)

L2(T)

]
�

[
θ(λ)

(1 − |θ(ζ )|2)1/2

]
H2(D), where λ ∈ D and ζ ∈ T

and let S(θ) be the Sz.-Nagy–Foiaş model operator

T = PK(θ)

[
Mλ 0
0 Mζ

]∣∣∣∣
K(θ)

,

where Mλ and Mζ are the operators of multiplication by λ and by ζ , respectively. Now
we let A := S(θ)∗ and note that A is in the class C1· by Proposition 3.5 in Sz.-Nagy and
Foiaş (1970) (since θ is outer) and A is c.n.i. by Theorem 5 in Ball and Kriete (1987)
(since the nonlog-integrability property of 1−|θ |2 implies that there is no H∞-function
a(z) for which |a(ζ )|2 ≤ 1 − |θ(ζ )|2 for ζ ∈ T). This completes the construction.

Let us say that the pair (C, A) is similar to the pair (C̃, Ã) if there is an invertible
operator S on X so that

C̃ = CS−1, Ãj = SAjS−1 for j = 1, . . . , d.

Then we have the following characterization of pairs (C, A) which are similar to a
contractive or to an isometric pair.

Proposition 2.5

(1) The pair (C, A) is similar to a contractive pair (C̃, Ã) if and only if there exists a
bounded, strictly positive-definite solution H to the Stein inequality (2.14).

(2) The pair (C, A) is similar to an isometric pair if and only if there exists a bounded,
strictly positive-definite solution H of the Stein equation (2.15).

Proof Suppose that H is a strictly positive-definite solution of (2.14). Factor H as
H = S∗S with S invertible and set

C̃ = CS−1, Ãk = SAkS−1 for k = 1, . . . , d. (2.21)

Multiplying (2.14) on the left by S∗−1 and on the right by S−1 then leads us to

I − Ã∗
1Ã1 − · · · − Ã∗

dÃd ≥ C̃∗C̃,

i.e., (C̃, Ã) is a contractive pair which is similar to the original pair (C, A). Conversely,
if (C̃, Ã) given by (2.21) is contractive, then H = S∗S is bounded and positive-defi-
nite and satisfies the Stein inequality (2.14). This verifies the first statement of the
Proposition. The second statement follows in a similar way. ��

As a consequence of the observations in Proposition 2.5, Proposition 2.3 can be
formulated more generally as follows.
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Proposition 2.6

(1) If the pair (C, A) is such that the Stein inequality (2.14) has a strictly positive-defi-
nite solution H, then (C, A) is output-stable. Moreover, the observability gramian
GC,A is the unique positive semidefinite solution of the Stein equation (2.15) if and
only if A is strongly stable.

(2) If the pair (C, A) is such that the Stein equation (2.15) has a strictly positive-definite
solution H, then (C, A) is output-stable and the observability gramian GC,A is the
unique positive semidefinite solution of the Stein equation (2.15) if and only if A is
strongly stable. In this case (C, A) is moreover exactly observable.

The last part of Proposition 2.6 has a converse.

Proposition 2.7 Suppose that the pair (C, A) is output-stable and exactly observable.
Then A is strongly stable, i.e., (2.11) holds.

Proof If (C, A) is output-stable and exactly observable, then the observability gra-
mian GC,A is a strictly positive-definite solution of the Stein equation (2.15). Hence
(2.19) holds with H = GC,A:

〈GC,Ax, x〉 =
∑

v∈Fd : |v|≤N

〈A∗v
C∗CAvx, x〉 +

∑

v∈Fd : |v|=N+1

〈GC,AAvx, Avx〉. (2.22)

From the infinite-series representation (2.10) for GC,A, taking limits in (2.22) gives

lim
N→∞

∑

v∈Fd : |v|=N+1

〈GC,AAvx, Avx〉 = 0. (2.23)

The strict positive-definiteness of GC,A tells us that there is an ε > 0 so that

ε‖x‖2 ≤ 〈GC,Ax, x〉 for all x ∈ X . (2.24)

In particular, from (2.24) with Avx in place of x combined with (2.23) we get

ε
∑

v∈Fd : |v|=N+1

‖Avx‖2 ≤
∑

v∈Fd : |v|=N+1

〈GC,AAvx, Avx〉 → 0

for all x ∈ X , and we conclude that A is strongly stable as asserted. ��
2.2 Observability-operator range spaces and reproducing kernel Hilbert

spaces: the noncommutative-variable case

To develop the noncommutative analogue of Theorem 1.2, we first introduce the right
noncommutative shift operators SR

1 , . . . , SR
d on H2

Y (Fd) as follows:

SR
j :

∑

v∈Fd

fvzv �→
∑

v∈Fd

fvzvzj =
∑

v∈Fd

fvzvj (j = 1, . . . , d). (2.25)

It is readily seen that their adjoints (backward shifts) are given by

(SR
j )∗ :

∑

v∈Fd

fvzv �→
∑

v∈Fd

fvjzv (j = 1, . . . , d). (2.26)

Their left counterparts SL
1 , . . . , SL

d , also on H2
Y (Fd), are given by

SL
j :

∑

v∈Fd

fvzv �→
∑

v∈Fd

fvzjzv =
∑

v∈Fd

fvzjv (2.27)
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with adjoints given by
(SL

j )∗ :
∑

v∈Fd

fvzv �→
∑

v∈Fd

fjvzv. (2.28)

Let τ denote the unitary involution on H2
Y (Fd) given by

τ :
∑

v∈Fd

fvzv →
∑

v∈Fd

fvzv. (2.29)

In addition to the unitary property τ ∗ = τ−1 of τ , note also that τ intertwines the left
shifts with the right shifts:

(SR
j )∗τ = τ(SL

j )∗, SR
j τ = τSL

j for j = 1, . . . , d. (2.30)

Then we have the following Fock-space analogue of Theorem 1.2.

Theorem 2.8 Suppose that (C, A) is an output-stable pair. Then:

(1) The intertwining relation

(SR
j )∗ÔC,Ax = ÔC,AAjx (x ∈ X ) (2.31)

holds for every backward-shift operator (SR
j )∗ defined in (2.26) and hence Ran ÔC,A

is (SR
j )∗-invariant for j = 1, . . . , d.

(2) Let H ≥ 0 be a solution of the Stein inequality (2.14) and let X ′ be the completion
of X with H-inner product ‖[x]‖2

X ′ = 〈Hx, x〉X . Then Aj and C extend to define
bounded operators A′

j : X ′ → X ′ for j = 1, . . . , d and C′ : X ′ → Y and the observ-

ability operator ÔC,A extends to define a contraction operator ÔC′,A′ from X ′ into
H2

Y (Fd). Moreover, ÔC′,A′ : X ′ → H2
Y (Fd) is an isometry if and only if H satisfies

the Stein equation (2.15) and A′ = (A′
1, . . . , A′

d) is strongly stable, i.e.,
∑

v∈Fd : |v|=N

〈HAvx, Avx〉 → 0 for all x ∈ X . (2.32)

(3) If H ≥ 0 is a solution of the Stein inequality (2.14) and the linear manifold M :=
Ran ÔC,A is given the lifted norm

‖ÔC,Ax‖2
M = inf

y∈X : ÔC,Ay=ÔC,Ax
〈Hy, y〉X , (2.33)

then
(a) M can be completed to M′ = Ran ÔC′,A′ (with (C′, A′) as in #2 above) with

contractive inclusion in H2
Y (Fd):

‖f‖2
H2

Y (Fd)
≤ ‖f‖2

M′ for all f ∈ M′.

Furthermore, M′ is isometrically equal to the formal noncommutative repro-
ducing kernel Hilbert space with reproducing kernel KC,A;H given by (1.16).

(b) The following difference-quotient inequality is valid

d∑

j=1

‖(SR
j )∗f‖2

H(KC,A;H) ≤ ‖f‖2
H(KC,A;H) − ‖f∅‖2

Y (2.34)

for every f ∈ M′ = H(KC,A;H) with equality holding in (2.34) if and only if
(2.15) holds.
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(4) Conversely, if M is a Hilbert space included in H2
Y (Fd) which is invariant under

(SR
j )∗ for j = 1, . . . , d such that the difference-quotient inequality

d∑

j=1

‖(SR
j )∗f‖2

M ≤ ‖f‖2
M − ‖f∅‖2

Y (2.35)

holds for every f ∈ M, then M is contractively included in H2
Y (Fd) and there exists

a contractive pair (C, A) (so H = I positive definite solution of the Stein inequality
(2.14)) such that

M = H(KC,A;I) = Ran ÔC,A

isometrically. In case (2.35) holds with equality, then (C, A) can be taken to be an
isometric pair. An explicit (C, A) meeting these conditions is given as follows. Take
X to be the Hilbert space X = τ(M) (where τ is the involution given by (2.29))
with ‖τ(f )‖X = ‖f‖M and define C : X → Y and A = (A1, . . . , Ad) on X by

Aj = (SL
j )∗|X for j = 1, . . . , d; C = E|X : X → Y , H = IX , (2.36)

where E: H2
Y (Fd) → Y is given by

E :
∑

v∈Fd

fvzv �→ f∅. (2.37)

Proof of (1) Applying (SR
j )∗ to a typical element from Ran ÔC,A (with notation as in

(2.7)), we get

(SR
j )∗(C(I − Z(z)A)−1x) = (SR

j )∗(
∑

v∈Fd

(CAvx)zv)

=
∑

v∈Fd

(CAvjx)zv

= C(I − Z(z)A)−1Ajx ∈ Ran ÔC,A. (2.38)

The latter equality shows that Ran ÔC,A is invariant under (SR
j )∗ for all j = 1, . . . , d

(backward-shift-invariant) and (2.31) follows. ��
Proof of (2) The Stein inequality (2.14) amounts to the statement that (C, A) is con-
tractive and well-defined on the dense subset [X ] of X ′ (where [x] is the equivalence
class containing x) and hence extends to a contractive pair (C′, A′) on all of X ′ and
moreover the inequality (2.17) holds for all N = 1, 2, . . . From this we see that ÔC,A
is contractive from X with the H-inner product to H2

Y (Fd), and hence also ÔC′,A′ is
contractive from X ′ to H2

Y (Fd). The inequality (2.17) is actually a chain of inequalities
WN ≥ WN+1 for N = 1, 2, . . . , where

WN =
∑

v∈Fd : |v|≤N−1

A∗v
C∗CAv +

∑

v∈Fd : |v|=N

A∗v
HAv.

Note that
s-limN→∞ WN = GC,A + �H,A,

where
�H,A = s-limN→∞

∑

|v|=N

A∗v
HA.
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In particular it follows from (2.16) that

H ≥ C∗C +
d∑

j=1

A∗
j HAj ≥ WN for all N ≥ 2

and hence, by taking the strong limit on the right hand side, we get

H ≥ C∗C +
d∑

j=1

A∗
j HAj ≥ GC,A + �H,A. (2.39)

By definition, ÔC′,A′ : X ′ → H2
Y (Fd) being an isometry means that GC,A = H in which

case (2.39) becomes

H ≥ C∗C +
d∑

j=1

A∗
j HAj ≥ H + �H,A, (2.40)

which in turn forces �H,A = 0 and equalities throughout (2.40). The condition �H,A =
0 just means that A′ is strongly stable. From equality holding in (2.40) we see that
the Stein inequality (2.14) holds with equality, i.e., the Stein equation (2.15) holds.
Conversely, by reversing the steps of the argument, we see that A′ being strongly sta-
ble and the Stein equality holding leads to GC,A = H, i.e., to ÔC′,A′ being an isometry
from X ′ into H2

Y (Fd). ��
Proof of (3a) Statement (3a) follows from general principles laid out in Ball and
Vinnikov (2003).

Proof of (3b) For f of the form f (z) = C(I − Z(z)A)−1x, we have

‖f‖2
H(KC,A;H) = 〈Hx, x〉.

We see that then

‖S∗
j f‖2

H(KC,A;H) = 〈HAjx, Ajx〉 for j = 1, . . . , d (from (2.38)), f∅ = Cx.

With these substitutions, we see that (2.34) is equivalent to

d∑

j=1

〈HAjx, Ajx〉X ≤ 〈Hx, x〉X − ‖Cx‖2
Y

or, in operator-theoretic form,

A∗
1HA1 + · · · + A∗

dHAd ≤ H − C∗C (2.41)

with equality in (2.34) equivalent to equality in (2.41). This completes the verification
of part (3b) of Theorem 2.8. ��

Before commencing the proof of part (4) of Theorem 2.8, we collect some useful
facts concerning H2

Y (Fd) itself.

Proposition 2.9 Let S = (S1, . . . , Sd) denote either the right shift SR or the left shift SL

SR = (SR
1 , . . . , SR

d ), SL = (SL
1 , . . . , SL

d )

defined as in (2.25) and (2.27) and let the operator E: H2
Y (Fd), → Y be defined as in

(2.37). Then:
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(1) The operator-tuple S∗ = (S∗
1, . . . , S∗

d) is strongly stable, i.e.,

lim
N→∞

∑

v∈Fd : |v|=N

‖S∗vf‖2 = 0 for each f ∈ H2
Y (Fd). (2.42)

(2) The operator ⎡

⎢⎢⎢⎣

S∗
1
...

S∗
d

E

⎤

⎥⎥⎥⎦ : H2
Y (Fd) → (H2

Y (Fd))d ⊕ Y

is unitary, i.e.,

EE∗ = IY , ESi = 0, S∗
j Si = δijI for i, j = 1, . . . , d (2.43)

(where δij stands for the Kronecker symbol), and

I − S1S∗
1 − · · · − SdS∗

d = E∗E. (2.44)

(3) X = I is the unique solution of the Stein equation

X − S1XS∗
1 − · · · − SdXS∗

d = E∗E. (2.45)

(4) For every f ∈ H2
Y (Fd),

f (z) − f∅ =
d∑

j=1

(SjS∗
j f )(z) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d∑

j=1

((SR
j )∗f )(z) · zj, if S = SR,

d∑

j=1

zj · ((SL
j )∗f )(z), if S = SL.

(2.46)

(5) The observability operator ÔE,SR∗ is equal to the operator τ defined in (2.29) and
hence is unitary.

Proof If f (z) = ∑
v∈Fd

fvzv, then

(SR∗v′
f )(z) =

∑

v∈Fd

fvv′zv, (SL∗v′
f )(z) =

∑

v∈Fd

fv′vzv

and hence, in either the left or the right case, we have

ES∗vf = fv . (2.47)

Therefore,
∑

v∈Fd : |v|=N

‖S∗vf‖2 =
∑

v∈Fd : |v|≥N

‖fv‖2 → 0 as N → ∞,

and (2.42) follows. Equalities (2.43) and (2.44) follow from (2.25)–(2.28), (2.37) and
the fact that E∗ is the inclusion map of Y into H2

Y (Fd). Applying the operator identity
(2.44) to an f ∈ H2

Y (Fd), we get (2.46). Finally, from (2.47) we see that, for both the
left and the right case,

ÔE,S∗ f =
∑

v∈Fd

(ES∗vf )zv =
∑

v∈Fd

fvzv = τ f
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for all f ∈ H2
Y (Fd). That X = I is the unique solution of the Stein equation (2.45) is

now a consequence of (2.42) combined with the last part of Theorem 2.2. ��
Proof of (4) in Theorem 2.8 Suppose that M is a Hilbert space contractively included
in H2

Y (Fd) which is invariant under (SR
j )∗ for each j = 1, . . . , d such that the difference-

quotient inequality (2.34) holds. Set X = τ(M) with norm inherited from M. From
the intertwining relations (2.30) we see that X is invariant under the left backward
shifts (SL

1 )∗, . . . , (SL
d )∗. Define operators Aj: X → X for j = 1, . . . , d and C: X → Y

by (2.36). From the difference-quotient inequality (2.35) together with the definition
of the X -norm and the intertwining relations (2.30), we have

d∑

j=1

‖(SL
j )∗(τ f )‖2

X =
d∑

j=1

‖τ(SR
j )∗f )‖2

X =
d∑

j=1

‖(SR
j )∗f‖2

M

≤ ‖f‖2
M − ‖f∅‖2

Y = ‖τ(f )‖2
X − ‖(τ f )∅‖2

Y

and hence H = IX satisfies the Stein inequality (2.14). From Proposition 2.9 we see
that

ÔC,A = ÔE,SL∗ |X = τ |X=τ(M)

and hence ÔC,Aτ |M = IM. Therefore, for each f ∈ M we have

‖f‖H(KC,A;I) = ‖ÔC,Aτ f‖H(KC,A) = ‖τ f‖X = ‖f‖M

and thus M = H(KC,A) isometrically. It then follows from part (3a) of the theorem
that in fact M is contractively included in HY (Fd). ��

As explained by part (4) of Theorem 2.8, for purposes of study of contractively
included, backward-shift-invariant subspaces of H2

Y (Fd) which satisfy the difference-
quotient-inequality (2.34), without loss of generality we may suppose at the start that
we are working with X ′ as the original state space X and with the solution H of the
Stein inequality (2.14) to be normalized to H = IX . Then certain simplifications occur
in parts (1)-(4) of Theorem 2.8 as explained in the next result.

Theorem 2.10 Suppose that (C, A) is a contractive pair with state space X and output
space Y . Then:

(1) (C, A) is output-stable and the intertwining relation (2.31) holds. Hence Ran ÔC,A
is invariant under the backward shifts (SR

j )∗ for j = 1, . . . , d.

(2) The observability operator ÔC,A is a contraction from X into H2
Y (Fd). Moreover

ÔC,A is isometric if and only if (C, A) is an isometric pair and A is strongly stable.
(3) If the linear manifold M := Ran ÔC,A is given the lifted norm

‖ÔC,Ax‖M = ‖Qx‖X , (2.48)

where Q is the orthogonal projection of X onto (Ker ÔC,A)⊥, then ÔC,A is a cois-
ometry of X onto M. Moreover, M is contained contractively in H2

Y (Fd) and
is isometrically equal to the formal noncommutative reproducing kernel Hilbert
space H(KC,A) with reproducing kernel KC,A(z, w) given by

KC,A(z, w) = C(I − Z(z)A)−1(I − A∗Z(w)∗)−1C∗.



Multidim Syst Sign Process (2007) 18:191–248 211

(4) If OC,A is given the lifted norm ‖ · ‖H(KC,A) as in (2.48), then the difference-quotient
inequality

d∑

j=1

‖(SR
j )∗f‖2

H(KC,A) ≤ ‖f‖2
H(KC,A) − ‖f∅‖2

Y (2.49)

holds for all f ∈ H(KC,A). Moreover, (2.49) holds with equality if and only the
orthogonal projection Q of X onto (Ker OC,A)⊥ satisfies the Stein equation

Q −
d∑

j=1

A∗
j QAj = C∗C. (2.50)

In particular, if (C, A) is observable, then (2.49) holds with equality if and only if
(C, A) is an isometric pair.

Proof Statements (1)–(3) and all but the last part of statement (4) are direct special-
izations to the case H = IX of the corresponding results in Theorem 2.8. It remains
only to analyze the conditions for equality in (2.49).

From the intertwining relation (2.31), we see that equality in (2.49) for a generic
element f = ÔC,Ax ∈ H(KC,A) means that

d∑

j=1

‖ÔC,AAjx‖2
H(KC,A) = ‖ÔC,Ax‖2

H(KC,A) − ‖Cx‖2
Y

for all x ∈ X . Using the definition (2.48) of the H(KC,A)-norm, we rewrite this last
equality as

d∑

j=1

‖QAjx‖2
X = ‖Qx‖2

X − ‖Cx‖2
Y .

This holding for all x ∈ X is finally equivalent to the Stein equation (2.50). ��
Remark 2.11 In Theorems 2.8 and 2.10, we could equally well have interchanged the
roles of left versus right. For a given output pair (C, A), define the associated left
observability operator OL

C,A : X → H2
Y (Fd) by

OL
C,Ax =

∑

v∈Fd

CAv
zv.

Then the linear manifold Ran OL
C,A is invariant under the left backward shifts

(SL
1 )∗, . . . , (SL

d )∗) as verified by the intertwining relation

(SL
j )∗OL

C,A = OL
C,AAj.

We leave the precise statements and proofs to the interested reader.

The characterization (2.50) of the difference-quotient inequality holding with
equality for a space H(KC,A) in Theorem 2.10 can be made more explicit as follows.

Proposition 2.12 Suppose that (C, A) is a contractive pair as in Theorem 2.10 and let
Q be the orthogonal projection onto (Ker ÔC,A)⊥. Then Q satisfies the Stein inequality

Q − A∗
1QA1 − · · · A∗

dQAd ≥ C∗C (2.51)
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and we have the inequalities
GC,A ≤ Q ≤ IX . (2.52)

If we write C, Aj, Q in 2 × 2-block matrix form with respect to the decomposition
X = Ker ÔC,A ⊕ (Ker ÔC,A)⊥ as

C = [
0 C0

]
, Aj =

[
Aj1 Aj2
0 A0

j

]
, Q =

[
0 0
0 I

]
(2.53)

for j = 1, . . . , d, then Q satisfies the Stein equation (2.50) if and only if the pair (C0, A0)

is an isometric pair, in which case we also have that Aj2 = 0 (so (Ker ÔC,A)⊥ is invariant
for Aj) for j = 1, . . . , d.

Proof First note that Ker ÔC,A is invariant for each Aj and that Ker ÔC,A ⊂ Ker C.
Therefore, the matrix decompositions of C, Aj, Q with respect to the decomposition
X = Ker ÔC,A ⊕ (Ker ÔC,A)⊥ have the form as given in (2.53). Next note that the
contractive property of the pair (C, A) means that

[
0 0
0 C0∗C0

]
+

d∑

j=1

[
A∗

j1Aj1 A∗
j1Aj2

A∗
j2Aj1 A∗

j2Aj2 + A0∗
j A0∗

j

]
≤

[
I 0
0 I

]
. (2.54)

On the other hand, the Stein inequality (2.51) works out to be

[
0 0
0 C0∗C0

]
+

d∑

j=1

[
A∗

j1Aj1 A∗
j1Aj2

A∗
j2Aj1 A0∗

j A0∗
j

]
≤

[
I 0
0 I

]
. (2.55)

As the left hand side of (2.55) is dominated by the left hand side of (2.54), it is clear
that (2.55) follows from (2.54), and hence (2.51) holds as asserted. Since GC,A is the
minimal positive semidefinite solution of the Stein inequality (2.14) (by part (2) of
Theorem 2.2) and we now know that Q is one such solution, it follows that GC,A ≤ Q.
As Q is an orthogonal projection on X , we also have Q ≤ IX and (2.52) now follows.

From the (2, 2) entry of (2.54), we read off

C0∗C0 +
d∑

j=1

A∗
j2Aj2 +

d∑

j=1

A0∗
j A0

j ≤ I(Ker ÔC,A)⊥ . (2.56)

In particular

C0∗C0 +
d∑

j=1

A0∗
j A0

j ≤ I(Ker ÔC,A)⊥ ,

i.e., Q satisfies (2.51). On the other hand, the validity of (2.50) reduces to

[
0 0
0 C0∗C0

]
+

d∑

j=1

[
0 0
0 A0∗

j A0
j

]
=

[
0 0
0 I

]

or simply to

C0∗C0 +
d∑

j=1

A0∗
j A0

j = I(Ker ÔC,A)⊥ . (2.57)
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Thus, the validity of (2.50) is equivalent to (C0, A0) being an isometric pair, in which
case we also have that Aj2 = 0. ��

Finally, we have the following uniqueness result.

Theorem 2.13 Suppose that (C, A) and (C̃, Ã) are two output-stable, observable pairs
realizing the same positive kernel

KC,A(z, w) := C(I − Z(z)A)−1(I − A∗Z(w)∗)−1C∗

= C̃(I − Z(z)Ã)−1(I − Ã∗Z(w)∗)−1C̃∗ =: KC̃,Ã(z, w). (2.58)

Then (C, A) and (C̃, Ã) are unitarily equivalent, i.e., there is a unitary operator U : X →
X̃ such that

C = C̃U and Aj = U−1ÃjU for j = 1, . . . , d.

Proof For any two words α, β ∈ Fd, equating coefficients of zαwβ
in (2.58) gives

CAαA∗βC∗ = C̃ÃαÃ∗βC̃∗.

Hence the operator U defined by

U: A∗βC∗y �→ Ã∗βC̃∗y (2.59)

extends by linearity and continuity to define an isometry from

DU = span{A∗βC∗y : β ∈ Fd, y ∈ Y}
onto

RU = span{Ã∗βC̃∗y : β ∈ Fd, y ∈ Y}.
The observability assumption implies that DU = X and RU = X̃ ; hence U: X → X̃ is
unitary. From (2.59) it is easily seen that

UC∗ = C̃∗ and UA∗
j = Ã∗

j U for j = 1, . . . , d.

Since U is unitary we then get

C̃U = C and ÃjU = UAj for j = 1, . . . , d

and we conclude that (C, A) and (C̃, Ã) are unitarily equivalent as desired.
��

2.3 Applications of observability operators: the noncommutative setting

As an application we give a proof of the Beurling-Lax theorem for the Fock-space
setting originally given by Popescu (1989d). We shall in fact prove a more general
version of the Beurling–Lax–Halmos theorem for contractively included (rather than
isometrically included) subspaces of H2

Y (Fd) due in the classical setting to de Branges
(see de Branges & Rovnyak, 1966). Our proof is similar to that in Popescu (1989d)
but highlights more explicitly the role of an associated observability operator. For this
purpose we say that a formal power series θ(z) = ∑

v∈Fd
θvzv ∈ L(U , Y)〈〈z〉〉 is a con-

tractive multiplier, also written as θ is in the d-variable, noncommutative Schur-class
Snc,d(U , Y), if the operator Mθ of multiplication by θ

Mθ: f (z) �→ θ(z) · f (z)
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defines a bounded linear operator from H2
U (Fd) to H2

Y (Fd) with operator norm at
most 1. Such a formal power series θ(z) is said to be inner if moreover the operator
Mθ from H2

U (Fd) to H2
Y (Fd) is an isometry.1

Theorem 2.14

(1) A Hilbert space M is such that
(a) M is contractively included in H2

Y (Fd),
(b) M is invariant under the right shift operators SR

1 , . . . , SR
d :

SR
j M ⊂ M,

(c) the d-tuple

SR
M = (SR

M,1, . . . , SR
M,d), where SR

M,j := SR
j |M for j = 1, . . . , d

is a row contraction

SR
M,1(S

R
M,1)

∗ + · · · + SR
M,d(SR

M,d)∗ ≤ IM

and
(d) (SR

M)∗ is strongly stable, i.e.,

lim
n→∞

∑

v∈Fd : |v|=n

‖(SR
M)∗vf‖2

M → 0 for all f ∈ M,

if and only if there is a coefficient Hilbert space U and a contractive multiplier
θ ∈ Snc,d(U , Y) so that

M = θ · H2
U (Fd)

with lifted norm
‖θ · f‖M = ‖Qf‖H2

U (Fd), (2.60)

where Q is the orthogonal projection onto (Ker Mθ )
⊥.

(2) The subspace M in part (1) above is isometrically included in H2
Y (Fd) if and only

if the associated contractive multiplier θ is inner.

Proof We first verify sufficiency in statement (1). Suppose that M has the form
M = θ · H2

U (Fd) for a contractive multiplier θ with M-norm given by (2.60). From
the fact that ‖Mθ‖ ≤ 1 it is easily verified that ‖θ · f‖H2

Y (Fd) ≤ ‖θ · f‖M, i.e. (a) holds.

From the intertwining property SR
j Mθ = Mθ SR

j (note that SR
j is multiplication by zj

on the right while Mθ is multiplication by θ on the left), property (b) follows.
If Q is the orthogonal projection onto (Ker Mθ )

⊥ ⊂ H2
U (Fd), then the intertwining

property SR
j Mθ = Mθ SR

j implies that

QSR
j = QSR

j Q and (SR
j )∗Q = Q(SR

j )∗Q for j = 1, . . . , d. (2.61)

1 We prefer to define inner to be isometric rather than partially isometric as in Popescu (1989d).
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Thus
∥∥∥∥∥∥∥

[
SR

M,1 · · · SR
M,d

]
⎡

⎢⎣
θ · f1

...
θ · fd

⎤

⎥⎦

∥∥∥∥∥∥∥

2

M

=

∥∥∥∥∥∥∥
θ
[
SR

1 · · · SR
d

]
⎡

⎢⎣
f1
...

fd

⎤

⎥⎦

∥∥∥∥∥∥∥

2

M

=

∥∥∥∥∥∥∥
Q

[
SR

1 · · · SR
d

]
⎡

⎢⎣
Qf1

...
Qfd

⎤

⎥⎦

∥∥∥∥∥∥∥

2

H2
U (Fd)

≤

∥∥∥∥∥∥∥

⎡

⎢⎣
Qf1

...
Qfd

⎤

⎥⎦

∥∥∥∥∥∥∥

2

H2
U (Fd)d

=

∥∥∥∥∥∥∥

⎡

⎢⎣
θ · f1

...
θ · fd

⎤

⎥⎦

∥∥∥∥∥∥∥

2

Md

and property (c) follows. Finally, a short computation shows that

(SR
M,j)

∗: θ · f �→ θ · SR∗
j Qf , (SR

M)∗v: θ · f �→ θ · SR∗vQf

and hence
∑

v∈Fd : |v|=n

‖(SR
M)∗vθ · f‖2

M =
∑

v∈Fd : |v|=n

‖SR∗vQf‖2
H2

U (Fd)
→ 0

as n → ∞, and property (d) follows as well. Moreover, if θ is inner and M = θ ·H2
U (Fd)

with the lifted norm (2.60), it is clear that M is contained in H2
Y (Fd) isometrically.

This completes the proof of sufficiency in Theorem 2.14.
Suppose now that the Hilbert space M satisfies conditions (a), (b), (c), (d) in

statement (1) of Theorem 2.14. Define a d-tuple of operators A = (A1, . . . , Ad) on
M by

Aj = (SR
M,j)

∗ for j = 1, . . . , d,

where we use hypothesis (b) to set SR
M,j := SR

j |M for j = 1, . . . , d, and choose the
coefficient Hilbert space U so that

dim U = rank(I − A∗
1A1 − · · · − A∗

dAd).

By hypothesis (c) we may then choose the operator C: M → U so that

C∗C = I − A∗
1A1 − · · · A∗

dAd.

Then (C, A) is an isometric pair and, by hypothesis (d), A∗ is strongly stable. Thus by
part (2) of Proposition 2.3 it follows that the observability operator

ÔC,A: f �→ C(I − Z(z)A)−1f

is an isometry from M into H2
U (Fd). As observed for the general case in part (1) of

Theorem 2.8, we have the intertwining condition

(SR
j )∗ÔC,A = ÔC,A(SR

M,j)
∗.

Taking adjoints then gives

(ÔC,A)∗SR
j = SR

M,j(ÔC,A)∗. (2.62)
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Let us set
 = ι ◦ (ÔC,A)∗: H2

U (Fd) → H2
Y (Fd),

where ι : M → H2
Y (Fd) is the inclusion map. From hypothesis (a) that ‖ι‖ ≤ 1, we see

that ‖‖ ≤ 1. From the intertwining relation (2.62) (together with hypothesis (b)) it
follows that

SR
j = SR

j 

and it follows (see, e.g., Popescu (1995)) that  is a multiplication operator, i.e.,
there is a contractive multiplier θ ∈ Snc,d(U , Y) so that  = Mθ . From the fact that
ÔC,A : M → H2

U (Fd) is an isometry, it follows that Ran(ÔC,A)∗ = M and also that
M = θ · H2

U (Fd) with M-norm given by (2.60). This completes the proof of necessity
in statement (1) of Theorem 2.14 for the general case.

We now consider statement (2). In case M is isometrically included in H2
Y (Fd), for

any f ∈ H2
U (Fd) we have

‖(ÔC,A)∗SR
j f‖M = ‖SR

j (ÔC,A)∗f‖H2
Y (Fd) = ‖(ÔC,A)∗f‖H2

U (Fd)

for j = 1, . . . , d, since SR
j is isometric on H2

Y (Fd). Since, as was observed above, ÔC,A

is isometric, it follows that

‖PRan ÔC,A
Sjf‖ = ‖f‖ for all f ∈ Ran ÔC,A

and hence Ran ÔC,A is invariant under SR
j for j = 1, . . . , d. As Ran ÔC,A is also invariant

under (SR
j )∗ for each j by (2.62), we conclude that Ran ÔC,A is reducing for SR. Since

Ran C is dense in U by construction, we are now able to conclude that Ran ÔC,A is all
of H2

U (Fd) and hence ÔC,A: M → H2
U (Fd) is actually unitary. It then follows finally

that  = ι ◦ (ÔC,A)∗ is isometric and hence θ is inner as asserted. This completes the
proof of Theorem 2.14. ��

A second application of these ideas is to operator model theory. For this applica-
tion we are given only an operator-tuple T = (T1, . . . , Td) ∈ L(H)d which is a row
contraction, so I − T1T∗

1 − · · · − TdT∗
d ≥ 0. Set

DT∗ := (I − T1T∗
1 − · · · − TdT∗

d)1/2 and Y := Ran DT∗ . (2.63)

We apply the ideas of the previous sections concerning the general pair (C, A) to a
pair of the special form (DT∗ , T∗). For simplicity we assume in addition that T∗ is
strongly stable, i.e.,

lim
N→∞

∑

v∈Fd : |v|=N

‖T∗vx‖2 = 0 for all x ∈ H.

Then we have the following dilation result.

Theorem 2.15 Suppose that T = (T1, . . . , Td) is a row contraction with T∗ strongly sta-
ble as above and define the defect operator DT∗ and the coefficient space Y as in (2.63).
Then there is a subspace M ⊂ H2

Y (Fd) invariant for the backward shift operator-tuple
SR∗ on H2

Y (Fd) so that T is unitarily equivalent to PMSR|M. In particular, T has a
row-shift dilation unitarily equivalent to SR on H2

Y (Fd).
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Proof By the same arguments as in the proof of Theorem 2.14, we see that

ÔDT∗ ,T∗ : H → H2
Y (Fd)

is isometric and satisfies the intertwining relations

(SR
j )∗ÔDT∗ ,T∗ = ÔDT∗ ,T∗T∗

j for j = 1, . . . , d.

If we then set
M := Ran ÔDT∗ ,T∗ ,

then ÔDT∗ ,T∗ implements the unitary equivalence between T and PMS|M as wanted.
��

Remark 2.16 In the classical case d = 1, the procedure for constructing the unitary
dilation of a contraction operator via the observability operator as in the proof of
Theorem 2.15 corresponds to the construction of Douglas (1974) (see also Sz.-Nagy
& Foiaş, 1970, Section I.10.1) which is an alternative to the more popular Schäffer-
matrix construction of the unitary dilation (see Sz.-Nagy & Foiaş, 1970,Section I.5).
Popescu (1989a, b) used an analogue of the Schäffer-matrix construction to construct
the row-unitary dilation of a row-contraction operator-tuple. From the existence of
this dilation, he went on to verify a von Neumann inequality (Popescu, 1991):

‖p(T1, . . . , Td)‖ ≤ ‖p(S1, . . . , Sd)‖
for any polynomial p ∈ C〈z〉 in the noncommuting variable z = (z1, . . . , zd). He
returned to this topic in Popescu (1999) to give another proof of the von Neumann
inequality (actually a more general version involving nonanalytic polynomials) based
on the Poisson transform: for T a strict row-contraction (one can reduce the gen-
eral case of a row-contraction to the case of a strict row-contraction via a limiting
procedure), one defines the Poisson transform P(T): L(H2

Y (Fd), H) → L(H) by

P(T)[X] = (ÔDT∗ ,T∗)∗XÔDT∗ ,T∗ . (2.64)

It is argued in Popescu (1999) (as well as in Chalendar (2003) in the context of the
classical case) that this is an elementary (i.e., dilation-free) proof of the von Neumann
inequality. Indeed, as argued in Chalendar (2003), this proof of the von Neumann
inequality goes back to the paper of Heinz (1952). However, we would argue that the
dilation is very near the surface in this proof as well, since the Poisson kernel, i.e., the
observability operator ÔDT∗ ,T∗ , provides the factorization of the Poisson transform
(2.64) and is also the operator embedding the state space H into the dilation space
H2

Y (Fd) in the Douglas approach to dilation theory.

3 The commutative-variable Arveson-space setting

3.1 Output stability and Stein equations: the commutative-variable case

To introduce the commutative multidimensional counterpart of the Hardy space
H2(D), we recall standard multivariable notations: for a multi-integer

n = (n1, . . . , nd) ∈ Z
d+
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and a point λ = (λ1, . . . , λd) ∈ C
d, we set |n| = n1 + n2 + · · · + nd, n! = n1!n2! . . . nd!

and
λn = λ

n1
1 λ

n2
2 . . . λ

nd
d . (3.1)

The space can be derived from the full Fock space by “letting the variables commute.”
For this purpose we introduce the abelianization map a: Fd → Z

d+ given by

a(iN · · · i1) = (n1, . . . , nd), where nk = #{� : i� = k} for k = 1, . . . , d.

A key combinatorial fact is that

#a−1(n) = |n|!
n! . (3.2)

We then consider the symmetric Fock space �2
Y (SFd) equal to the subspace of �2

Y (Fd)

spanned by the elements χny (n ∈ Z
d+ and y ∈ Y) where χn is given by

χn =
∑

v : a(v)=n

χv,

where χv is defined as just below (2.2). Note that

‖χn‖2
�2
C

(Fd)
=

∑

v∈Fd : a(v)=n

1 = |n|!
n!

and hence, if B is an orthonormal basis for Y , then an orthonormal basis for �2
Y (SFd)

is the set {√
n!
|n|!χny : n ∈ Z

d+, y ∈ B
}

.

It is then natural to identify �2
Y (SFd) with the weighted sequence space �2

w,Y (Zd+)

consisting of all Y-valued Z
d+-indexed sequences {fn}n∈Z

d+ for which the norm given by

‖{fn}n∈Z
d+‖

�2
w,Y (Zd+)

=
∑

n∈Z
d+

w(n)‖fn‖2, where w(n) = n!
|n|! ,

is finite. We abbreviate �2
w,C(Zd+) to �2

w(Zd+) and observe that

�2
w,Y (Zd+) = �2

w(Zd+) ⊗ Y . (3.3)

The commutative d-variable Z-transform

{fn}n∈Z
d+ �→ f̂ a(λ) =

∑

n∈Zd+

fnλn

maps �2
w(Zd+) unitarily onto the Arveson space

H(kd) :=

⎧
⎪⎨

⎪⎩
f (λ) =

∑

n∈Z
d+

fnλn : ‖f‖2 =
∑

n∈Z
d+

n!
|n|! · |fn|2 < ∞

⎫
⎪⎬

⎪⎭
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with inner product given by

〈f , g〉H(kd) =
∑

n∈Z
d+

n!
|n|! fngn

if
f (λ) =

∑

n∈Z
d+

fnλn and g(λ) =
∑

n∈Z
d+

gnλn.

Then it follows that the set {
√

|n|!
n! λn : n ∈ Z

d+} is an orthonormal basis for �2
w(Zd+). By

general principles concerning reproducing kernel Hilbert spaces we see that H(kd) is
a reproducing kernel Hilbert space of functions analytic on the unit ball

B
d =

⎧
⎨

⎩λ = (λ1, . . . , λd) ∈ C
d :

d∑

k=1

|λk|2 < 1

⎫
⎬

⎭

with reproducing kernel kd(λ, ζ ) given by

kd(λ, ζ ) =
∑

n∈Z
d+

|n|!
n! λnζ

n =
∞∑

n=0

(
λ1ζ1 + · · · + λdζd

)n = 1
1 − 〈λ, ζ 〉

(see, e.g., Arveson, (1998)). This justifies the notation H(kd) for the space. In analogy
to (3.3), we will use notation HY (kd) := H(kd) ⊗ Y for the tensor product Hilbert
space that is characterized by

HY (kd) =

⎧
⎪⎨

⎪⎩
f (λ) =

∑

n∈Z
d+

fnλn : ‖f‖2 =
∑

n∈Z
d+

n!
|n|! · ‖fn‖2

Y < ∞

⎫
⎪⎬

⎪⎭
.

If we define the map � by

�: {fv}v∈Fd �→
⎧
⎨

⎩
∑

v : a(v)=n

fv

⎫
⎬

⎭
n∈Z

d+

(3.4)

then each basis vector χv ∈ �2(Fd) (v ∈ Fd) is mapped via � to its abelianization
χn ∈ �2

w(Zd+) and then � is extended to the whole space �2(Fd) via linearity. The norm
on �2

w(Zd+) is arranged so as to make � a coisometry from �2
Y (Fd) onto �2

w,Y (Zd+) with
initial space equal to �2

Y (SFd) and with kernel equal to the subspace �2
Y (SFd)⊥ of

�2
Y (Fd) given by

�2
Y (SFd)⊥ =

⎧
⎨

⎩{fv}v∈Fd :
∑

v∈Fd : a(v)=n

fv = 0 for each n ∈ Z
d+

⎫
⎬

⎭ .

If we introduce the Z-transformed version �̂: H2(Fd) → H(kd) via

�̂ :
∑

v∈Fd

fvzv �→
∑

n∈Z
d+

⎡

⎣
∑

v∈Fd : a(v)=n

fv

⎤

⎦λn
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then similarly �̂ is a coisometry from H2(Fd) onto H(kd) with initial space equal to
the subspace

H2(SFd) :=

⎧
⎪⎨

⎪⎩

∑

v∈Fd

fa(v)zv :
∑

n∈Z
d+

|fn|2 < ∞

⎫
⎪⎬

⎪⎭

with kernel equal to

H2(SFd)⊥ =
⎧
⎨

⎩
∑

v∈Fd

fvzv ∈ H2(Fd) :
∑

v : a(v)=n

fv = 0 for each n ∈ Z
d+

⎫
⎬

⎭ .

This gives the natural link between the Fock-space norm on formal power series and
the Arveson-space norm on analytic functions on the unit ball and is the basis for
the application of noncommutative results to prove commutative results in Arias and
Popescu (2000), Davidson and Pitts (1998), and Popescu (1998).

By a commutative d-dimensional linear system we mean a linear system with evolu-
tion along the integer lattice Z

d+ rather than along the free semigroup Fd. A particular
type of such a system is a system of the Fornasini–Marchesini form given by (1.18). If
we specify an initial condition x(0) = x0 ∈ X along with an input sequence {u0(n)}n∈Z

d+
and impose the boundary conditions that x(n) = 0 whenever n is outside the positive
orthant Z

d+, then the system equations uniquely determine a full system trajectory
{u(n), x(n), y(n)} consistent with x(0) = x0 and u(n) = u0(n) for n ∈ Z

d+.
If � is the projection map introduced in (3.4) formally extended to be defined on

all Fd-indexed sequences to generate a Z
d+-indexed sequence

�: {u(v)}v∈Fd �→
⎧
⎨

⎩
∑

v : a(v)=n

u(v)

⎫
⎬

⎭
n∈Z

d+

,

�: {x(v)}v∈Fd �→
⎧
⎨

⎩
∑

v : a(v)=n

x(v)

⎫
⎬

⎭
n∈Z

d+

,

�: {y(v)}v∈Fd �→
⎧
⎨

⎩
∑

v : a(v)=n

y(v)

⎫
⎬

⎭
n∈Z

d+

then one can check the claim: {(�u)(n), (�x)(n), (�y)(n)}n∈Z
d+ satisfies the system

equations (1.18) whenever {u(v), x(v), y(v)}v∈Fd satisfies the system equations (1.13).
Indeed the first system equation in (1.13) can be rewritten in the form

x(v) =
d∑

k=1

Akx(k−1v) +
d∑

k=1

Bku(k−1v).

Here we use the convention that

k−1v =
{

v′, if v = kv′,
undefined, otherwise
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for v a word in Fd and k ∈ {1, . . . , d} a letter and that x(k−1v) is interpreted to be 0 if
k−1v is undefined. Summing over v ∈ Fd with a(v) = n then gives

(�x)(n) =
d∑

k=1

Ak

∑

v : a(v)=n

x(k−1v) +
d∑

k=1

Bk

∑

v : a(v)=n

u(k−1v).

Now observe that

{k−1v : a(v) = n} = {v′ ∈ Fd : a(v′) = n − ek}
and arrive at

(�x)(n) =
d∑

k=1

Ak(�x)(n − ek) +
d∑

k=1

Bk(�u)(n − ek).

We see that {(�u)(n), (�x)(n), (�y)(n)} satisfies the first of the system equations
(1.18). That {(�u)(n), (�x)(n), (�y)(n)} satisfies the second system equation in (1.18)
is a simple consequence of linearity. Conversely, given a trajectory
{u(n), x(n), y(n)}n∈Z

d+ of (1.18), let {u�(v)}v∈Fd be any U-valued Fd-indexed sequence
such that �u� = u and set x�(∅) = x(0). Then the noncommutative system equations
(1.13) recursively uniquely determine a full system trajectory {u�(v), x�(v), y�(v)}v∈Fd

of (1.13) with this pre-assigned input string and initial condition. By the claim verified
above, it follows that (�u�, �x�, �y�) is again a system trajectory. By the unique-
ness of solution of the initial-value problem for the system (1.18), it follows that
{(�u, �x, �y)} = {(u, x, y)}. Thus, any trajectory {u(n), x(n), y(n)}n∈Z

d+ can be lifted to

a trajectory {u�(v), x�(v), y�(v)}v∈Fd of (1.13), i.e., {u�(v), x�(v), y�(v)}v∈Fd is a trajec-
tory of (1.13) such that

{�u�, �x�, �y�} = {u, x, y}.
In this way, we view the Fornasini–Marchesini commutative system (1.18) as the
abelianization of the noncommutative Fornasini–Marchesini system (1.13).

Since the commutative Fornasini–Marchesini system (1.18) is just the abelianiza-
tion of the noncommutative Fornasini–Marchesini system (1.13) and we have al-
ready derived the formula (2.6) for the solution of the noncommutative initial-value
problem, we see that the solution of the initial-value problem for the commutative
Fornasini–Marchesini system (1.18) is simply the abelianization of the corresponding
formula for the noncommutative case:

(�̂ŷ)(λ) = C(I − Z(λ)A)−1x(0) + T�(λ) · (�̂û)(λ), (3.5)

where the transfer function T�(λ) for the commutative Fornasini–Marchesini system
is given by

T�(λ) = D + C(I − Z(λ)A)−1Z(λ)B.

This gives a derivation of the transfer function relationship (3.5) (via the connection
with noncommutative systems) which is an alternative to the usual direct approach via
commutative multivariable Z-transform (see, e.g., Ball, Sadosky, & Vinnikov, 2005).

The zero input string simplifies the system to

x(n) = A1x(n − e1) + · · · + Adx(n − ed),
y(n) = Cx(n).

(3.6)
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Given a pair (C, A), we have the option of considering (C, A) as coming from a non-
commutative or a commutative system. If we consider the associated noncommutative
system, the output string associated with initial state x(∅) = x (and zero input string)
is the Y-valued function on Fd given by

OC,Ax = {CAvx}v∈Fd

and (C, A) is considered output stable if this output string is in �2
Y (Fd) for all x ∈ H.

We say that the commutative system (3.6) is output stable (and in this case we will
say that the pair (C, A) is a-output stable) if �(OC,Ax) ∈ �2

w,Y (Zd+) for all x ∈ H, or
equivalently, if �̂ÔC,Ax is in the Arveson space HY (kd) for all choices of initial state
x ∈ X . We note that �̂ÔC,Ax can be computed explicitly as

(�̂ÔC,Ax)(λ) = C(I − Z(λ)A)−1x.

Thus another equivalent formulation of a-output stability is:

Definition 3.1 A pair (C, A) is a-output stable means that the function C(I−Z(λ)A)−1x
belongs to HY (kd) for every x ∈ H, or equivalently (by the closed graph theorem),
the operator Ôa

C,A from X to HY (kd) defined by

Ôa
C,A = �̂ÔC,A: x �→ C(I − Z(λ)A)−1x =

∑

n∈Z
d+

⎛

⎝
∑

v∈a−1(n)

CAvx

⎞

⎠ λn (3.7)

is bounded.

The inverse Z-transform sends the function

ŷa(λ) = C(I − Z(λ)A)−1x =
∑

n∈Z
d+

⎛

⎝
∑

v∈a−1(n)

CAvx

⎞

⎠λn

to the string {y(n)}n∈Z
d+ with

y(n) =
∑

v∈a−1(n)

CAvx, n ∈ Z
d+ (3.8)

and ŷa belongs to HY (kd) if and only if {y(n)}n∈Z
d+ ∈ �2

w,Y (Zd+). Thus, the operator

Ôa
C,A introduced in (3.7) is the Z-transformed version of the observability operator

Oa
C,A: x �→

⎧
⎨

⎩
∑

v∈a−1(n)

CAvx

⎫
⎬

⎭
n∈Z

d+

(3.9)

and a pair (C, A) is a-output stable if and only if Oa
C,A is bounded as an operator from

X into �2
w,Y (Zd+). In this case it makes sense to introduce the observability gramian

Ga
C,A := (Oa

C,A)∗Oa
C,A = (Ôa

C,A)∗Ôa
C,A

and its representation in terms of strongly converging series

Ga
C,A =

∑

n∈Z
d+

n!
|n|!

⎛

⎝
∑

v,u∈a−1(n)

A∗v
C∗CAu

⎞

⎠ (3.10)
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follows immediately by definitions (3.9), (3.7) and the formulas for the inner products
in �2

w,Y (Zd+) and HY (kd).

Definition 3.2 We say that the pair (C, A) is a-observable if Ga
C,A is positive-definite

and exactly a-observable if Ga
C,A is strictly positive definite.

By Theorem 2.2 (2) we know that the observability gramian GC,A satisfies the Stein
equation (2.15). It turns out that the abelianized observability gramian Ga

C,A satisfies
a reverse Stein inequality (the reverse of (2.14)).

Proposition 3.3 Let (C, A) be an a-output-stable pair and let Ga
C,A be the abelianized

observability gramian (3.10). Then Ga
C,A satisfies the reverse Stein inequality

Ga
C,A − A∗

1Ga
C,AA1 − · · · − A∗

dGa
C,AAd ≤ C∗C. (3.11)

Moreover, the following are equivalent:

(1) Equality holds in (3.11).
(2) A is C-abelian in the sense that

CAv = CAu, whenever v, u ∈ Fd and a(v) = a(u). (3.12)

(3) The observability gramian and the abelianized observability gramian are identical:

Ga
C,A = GC,A.

Proof It suffices to show that the operator Q given by

Q := C∗C − Ga
C,A +

d∑

j=1

A∗
j Ga

C,AAj (3.13)

is positive semidefinite. To this end, plug (3.10) into (3.13) to get

Q =
∞∑

N=1

QN , (3.14)

where QN is given by

QN =
d∑

j=1
A∗

j

⎡

⎣ ∑

m∈Z
d+ : |m|=N−1

m!
(N−1)!

∑

v,u∈a−1(m)

A∗v
C∗CAu

⎤

⎦Aj

− ∑

n∈Z
d+ : |n|=N

n!
N!

∑

v,u∈a−1(n)

A∗v
C∗CAu. (3.15)

We introduce the notation

W(n) =
∑

u∈a−1(n)

Au (n ∈ Z
d+) (3.16)

and extend the notation to the all of Z
d by

W(n) = 0 if n ∈ Z
d \ Z

d+. (3.17)
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With these definitions we have the equality

W(n) =
d∑

i=1

W(n − ei)Ai for every n = (n1, . . . , nd) ∈ Z
d+, (3.18)

where e1, . . . , ed ∈ Z
d+ are defined in (1.19). Write formula (3.15) in terms of (3.16) as

QN =
d∑

j=1

A∗
j

⎡

⎢⎣
∑

m∈Z
d+: |m|=N−1

m!
(N − 1)!W(m)∗C∗CW(m)

⎤

⎥⎦Aj

−
∑

n∈Z
d+: |n|=N

n!
N! · W(n)∗C∗CW(n). (3.19)

Upon rearranging the terms in the first series in (3.19) and substituting formula (3.18)
into the second series, we arrive at

QN =
∑

n∈Z
d+: |n|=N

d∑

j=1

(n − ej)!
(N − 1)!A∗

j W(n − ej)
∗C∗CW(n − ej)Aj

−
∑

n∈Z
d+: |n|=N

⎛

⎝
d∑

i,j=1

n!
N!A∗

i W(n − ei)
∗C∗CW(n − ej)Aj

⎞

⎠ . (3.20)

We now consider the terms in (3.20) that correspond to a fixed n = (n1, . . . , nd) ∈ Z
d+

(with |n| = N). Denoting the sum of these terms by Sn we have

Sn =
d∑

j=1

(n − ej)!
(N − 1)!A∗

j W(n − ej)
∗C∗CW(n − ej)Aj

− n!
N!

d∑

i,j=1

A∗
i W(n − ei)

∗C∗CW(n − ej)Aj

=
d∑

j=1

(n − ej)!
N! (N − nj)A∗

j W(n − ej)
∗C∗CW(n − ej)Aj

− n!
N!

∑

i,j∈{1,...,d} : i�=j

A∗
i W(n − ei)

∗C∗CW(n − ej)Aj. (3.21)

Note that by convention (3.17), the indices i and j in the latter summations vary on
the set

In = {� ∈ {1, . . . , d} : n� > 0}
rather than {1, . . . , d}. Furthermore, since

N − nj = |n| − nj =
∑

i∈In: i�=j

ni

and
(n − ej)! = (n − ej − ei)! ni (i �= j)
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one can rewrite the first sum on the right hand side in (3.21) as
∑

i,j∈In : i�=j

(n − ej)!
N! niA∗

j W(n − ej)
∗C∗CW(n − ej)Aj

=
∑

i,j∈In : i�=j

(n − ej − ei)!
N! n2

i A∗
j W(n − ej)

∗C∗CW(n − ej)Aj.

Plugging this into the right hand side in (3.21) leads us to

Sn =
∑

i,j∈In: i�=j

(n − ej − ei)!
N!

[
n2

i A∗
j W(n − ej)

∗C∗CW(n − ej)Aj

−ninjA∗
i W(n − ei)

∗C∗CW(n − ej)Aj
]

=
∑

i,j∈In: i�=j

1
2

(n − ej − ei)!
N! R∗

n,i,jRn,i,j, (3.22)

where
Rn,i,j = C

[
niW(n − ej)Aj − njW(n − ei)Ai

]
. (3.23)

Representation (3.22) implies that Sn is positive semidefinite and therefore QN ≥ 0
for every N ∈ N. By (3.14), the operator Q defined in (3.13) is positive semidefinite
which completes the proof of (3.11).

We now show the equivalence of (1), (2) and (3) in the second part of Proposition
3.3.

Proof of (1) �⇒ (2) Assume condition (1), i.e., that the reverse Stein inequality (3.11)
is satisfied with equality. Then representation (3.22) implies that Rn,i,j = 0 for all
n ∈ Z

d+. By (3.23), this means that

niCW(n − ej)Aj = njCW(n − ei)Ai (n ∈ Z
d+). (3.24)

Now we shall prove (3.12) by induction (on the length of words v, u ∈ Fd). The
basis of induction ( |v| = |u| = 0) is trivial. Assume that (3.12) holds true, whenever
|v| = |u| < N. Then in particular, we have for every m ∈ Z

d+ with |m| < N:

CW(m) =
∑

w∈a−1(m)

CAw = |m|!
m! CAw0 for every w0 ∈ a−1(m). (3.25)

Now take two words v, u ∈ Fd of the length N and let

a(v) = a(u) =: n = (n1, . . . , nd). (3.26)

If v = ṽi and u = ũi for some ṽ, ũ ∈ Fd and i ∈ {1, . . . , d}, then we have CAv = CAu

by the induction hypothesis and therefore,

CAv = CAvAi = CAuAi = CAu.

Let v = ṽi and u = ũj for some i, j ∈ {1, . . . , d} and i �= j. By (3.26), a(̃v) = n − ei and
a(̃u) = n − ej. By (3.25), we have

CW(n − ej) = (N − 1)!
(n − ej)! CAv, (3.27)

CW(n − ei) = (N − 1)!
(n − ei)! CAu. (3.28)
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Multiplying (3.27) and (3.28) on the right by niAj and njAi, respectively, we get

niCW(n − ej)Aj = ni
(N − 1)!
(n − ej)! CAvAj = ni

(N − 1)!
(n − ej)! CAvj = ninj

(N − 1)!
n! CAv

and

njCW(n − ei)Ai = nj
(N − 1)!
(n − ei)! CAvAi = nj

(N − 1)!
(n − ei)! CAui = njni

(N − 1)!
n! YAu.

By (3.24), the left hand side expressions in the two latter equalities are equal. Upon
comparing the right hand side expressions we get CAv = CAu , i.e., A is C-abelian as
wanted.

Proof of (2) �⇒ (3) Assume now that A is C-abelian, i.e., that (3.12) holds. Then the
identify Ga

C,A = GC,A is an immediate consequence of the series representations (3.10)
and (2.10) for Ga

C,A and GC,A respectively.

Proof of (3) �⇒ (1) We know from Theorem 2.8 (2) that GC,A satisfies the Stein
equation, i.e., GC,A satisfies the Stein inequality (3.11) with equality. Hence trivially
Ga

C,A satisfies (3.11) with equality whenever Ga
C,A = GC,A. This completes the proof of

Proposition 3.3. ��
Example 3.4 If (C, A) is an output-stable pair, then by Theorem 2.2 (2) GC,A satisfies
the Stein equation (2.15) and hence in particular

GC,A − A∗
1GC,AA1 − · · · − A∗

dGC,AAd ≥ 0.

We now show that, for the abelianized case, the inequality in the reverse Stein inequal-
ity satisfied by the abelianized observability gramian Ga

C,A can be strict in the strong
sense that the quantity Ga

C,A − A∗
1Ga

C,AA1 − · · · − A∗
dGa

C,AAd is not even positive semi-
definite. As an example, let

C = [
1 0 0

]
, A1 =

⎡

⎣
0 1

2 0
0 0 0

− 1
2 0 0

⎤

⎦ , A2 =
⎡

⎣
0 0 1

2
1
2 0 0
0 0 0

⎤

⎦ .

A straightforward calculation shows that

Ga
C,A − A∗

1Ga
C,AA1 − · · · − A∗

dGa
C,AAd =

⎡

⎢⎣

7
8

5
8

3
8

5
8 0 1

4
3
8

1
4 0

⎤

⎥⎦ ,

which is not positive semidefinite.

Condition (3.12) is worth a formal definition.

Definition 3.5 Let C ∈ L(X , Y). A d-tuple A = (A1, . . . , Ad) of bounded operators on
X will be called C-abelian if (3.12) holds.

One obvious way for a given operator d-tuple A to be C-abelian is for A itself to
be commutative, i.e., for AiAj = AjAi for all 1 ≤ i, j ≤ d. We next show that, under an
observability assumption, this is the only way.

Proposition 3.6 Suppose that the output-stable pair (C, A) is observable and that A is
C-abelian. Then the d-tuple A is commutative.
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Proof Since A is C-abelian, relations (3.12) hold. Fix i, j ∈ {1, . . . , d} and note that by
(3.12),

CAvAiAj = CAvij = CAvji = CAvAjAi for every v ∈ Fd,

since a(vij) = a(vji). Thus,

CAv(AiAj − AjAi)x = 0

for every v ∈ Fd and x ∈ X . Since the pair (C, A) is observable, we have by (2.13)

(AiAj − AjAi)x = 0

holding for every x ∈ X , which proves the commutativity relations

AiAj = AjAi for i, j = 1, . . . , d

and completes the proof. ��
Corollary 3.7 Suppose that (C, A) is an observable output-stable pair. Then the abeli-
anized observability gramian coincides with the observability gramian

Ga
C,A = GC,A

if and only if the operator d-tuple A is commutative.

Proof Combine (2) ⇐⇒ (3) in Proposition 3.3 with Proposition 3.6. ��
We next show that the observability gramian always dominates the abelianized

observability gramian.

Proposition 3.8 Let (C, A) be an output-stable pair. Then:

(1) (C, A) is also a-output-stable with

Ga
C,A ≤ GC,A. (3.29)

(2) Equality occurs in (3.29) if and only if A is C-abelian:

CAv = CAu, whenever u, v ∈ Fd with a(u) = a(v).

Proof Note that the second statement in Proposition 3.8 is just a restatement of
(2) ⇐⇒ (3) in Proposition 3.3. Thus it suffices only to prove the first statement.

By definition, output-stability of (C, A) simply means that GC,A is bounded, while
a-output stability means that Ga

C,A is bounded. The fact that a-output stability fol-
lows from output-stability therefore follows immediately from the general inequality
(3.29). Thus it suffices to prove (3.29). For this purpose, recall that

〈GC,Ax, x〉 = ∥∥OC,Ax
∥∥2

�2
Y (Fd)

=
∑

v∈Fd

‖CAvx‖2
Y

while

〈Ga
C,Ax, x〉 =

∥∥∥Oa
C,Ax

∥∥∥
2

�2
Y (Zd+)

=
∑

n∈Z
d+

n!
|n|!

∥∥∥∥∥∥

∑

v∈a−1(n)

CAvx

∥∥∥∥∥∥

2

Y

.
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By the Cauchy–Schwarz inequality we have
∥∥∥∥∥∥

∑

v∈a−1(n)

CAvx

∥∥∥∥∥∥

2

Y

≤
⎛

⎝
∑

v∈a−1(n)

‖CAvx‖Y

⎞

⎠
2

≤
∑

v∈a−1(n)

‖CAvx‖2
Y · |n|!

n! .

Therefore,

∥∥∥Oa
C,Ax

∥∥∥
2

�2
w,Y (Zd+)

=
∑

n∈Z
d+

n!
|n|!

∥∥∥∥∥∥

∑

v∈a−1(n)

CAvx

∥∥∥∥∥∥

2

Y

≤
∑

n∈Z
d+

∑

v∈a−1(n)

‖CAvx‖2
Y

=
∑

v∈Fd

‖CAvx‖2
Y = ‖OC,Ax‖2

and (3.29) follows as wanted. ��
Example 3.9 The converse of Proposition 3.8 part (1) can fail, i.e., there exists an
output pair (C, A) which is a-output-stable but not output-stable. For example take

C = [
1 0 0

]
, A1 =

⎡

⎣
0 2 0
0 0 0

−1 0 0

⎤

⎦ , A2 =
⎡

⎣
0 0 2
1 0 0
0 0 0

⎤

⎦ .

Then C(I − λ1A1 − λ2A2)
−1 = [

1 2λ1 2λ2
]
. Hence

Ôa
C,A: x → C(I − λ1A1 − λ2A2)

−1x

maps X = C
3 into H(k2) and thus (C, A) is a-output stable. To show that (C, A) is not

output stable, note that

(A1A2)
n =

⎡

⎣
2n 0 0
0 0 0
0 0 (−2)n

⎤

⎦

and therefore, C(A1A2)
n = [

2n 0 0
]
, so that for x = [

1 0 0
],

∑

v∈Fd

‖CAvx‖2
C

≥
∑

n≥0

2n = ∞

and therefore, the pair (C, A) is not output-stable. We conclude that a-output-stability
has no obvious characterization in terms of positive semidefiniteness of some solution
of a Stein inequality as in the noncommutative case (see Theorem 2.2 (2)).

As a corollary of the gramian inequality (3.29) in Proposition 3.8, we have the
following.

Corollary 3.10 Let (C, A) be an output-stable pair. Then:

(1) Ker GC,A ⊂ Ker Ga
C,A. Hence, if (C, A) is a-observable (respectively, exactly

a-observable), then (C, A) is also observable (respectively, exactly observable).
(2) The subspace Ker GC,A = Ker OC,A is invariant under the operator Aj for each

j = 1, . . . , d.
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(3) The subspace Ker Ga
C,A is invariant under Aj for each j = 1, . . . , d if and only if

Ker Ga
C,A = Ker GC,A.

Proof Statement (1) is an immediate consequence of the inequality (3.29). Statement
(2) is easily checked from the definition of OC,A. Sufficiency in statement (3) is then
a consequence of statement (2). It remains only to verify necessity in statement (3).

Assume therefore that Ker Ga
C,A is invariant under Aj for each j = 1, . . . , d. Let x

be a vector in Ker Ga
C,A. Then by the assumed invariance, Aux ∈ Ker Ga

C,A for every
u ∈ Fd. Then we have

Ker
∑

v∈a−1(n)

CAvux = 0 for every u ∈ Fd.

Then letting n = 0 we get CAux = 0 for every u ∈ Fd and therefore, x ∈ Ker GC,A.
Thus, Ker Ga

C,A ⊂ Ker GC,A and since the reverse inclusion holds by the first statement,
equality follows. ��
Example 3.11 We observed in part (1) of Corollary 3.10 that a-observability for an
output-stable pair (C, A) implies observability. We now give an example to show
that the converse can fail, i.e., there exists an output-stable observable pair which is
not a-observable. For this purpose, let d = 2, X = C

4, Y = C, C = [
0 0 0 1

]
and

A = (A1, A2), where

A1 =

⎡

⎢⎢⎣

− 1
16

1
16 0 0

− 1
16

1
16 − 1

16
1

16
0 0 0 0
0 0 − 1

16
1

16

⎤

⎥⎥⎦ , A2 =

⎡

⎢⎢⎣

1
16 0 0 − 1

16
− 1

16 − 1
16 − 1

16 − 1
16

1
16 − 1

16
1
16 − 1

16
− 1

16 0 0 − 1
16

⎤

⎥⎥⎦ .

Then the pair (C, A) is output stable. Now we show that (C, A) is observable but not
a-observable. Indeed, straightforward verifications give

CA1 = 1
16

[
0 0 −1 1

]
, CA2 = − 1

16

[
1 0 0 1

]
,

and

CA1A2 = − 1
256

[
2 −1 1 0

]
.

Now it is clear that Ker C ∩ Ker CA1 ∩ Ker CA2 ∩ Ker CA1A2 = 0 which implies that⋂
v∈Fd

Ker CAv = 0. Therefore, the pair (C, A) is observable. To show that (C, A) is
not a-observable we first compute

I − λ1A1 − λ2A2 =

⎡

⎢⎢⎢⎣

1 + λ1
16 − λ2

16 − λ1
16 0 λ2

16
λ1
16 + λ2

16 1 − λ1
16 + λ2

16
λ1
16 + λ2

16 − λ1
16 + λ2

16
− λ2

16
λ2
16 1 − λ2

16
λ2
16

λ2
16 0 λ1

16 1 − λ1
16 + λ2

16

⎤

⎥⎥⎥⎦ .

A straightforward calculation gives

d(λ1, λ2) := det (I − λ1A1 − λ2A2)

= 1 − λ1

16
+ λ1λ2

128
− λ2

1λ2

2048
− λ2

2

64
+ λ1λ

2
2

2048
− λ1λ

3
2

16384
+ λ4

2

16384
.
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Note that [
y1 y2 y3 y4

]
:= C(I − λ1A1 − λ2A2)

−1

is the bottom row of the matrix (I − λ1A1 + λ2A2)
−1 and we use the standard adjoint

formula for the inverse of a matrix to get

y2 = 1
d(λ1, λ2)

·

∣∣∣∣∣∣∣

1 + λ1
16 − λ2

16 − λ1
16 0

− λ2
16

λ2
16 1 − λ2

16
λ2
16 0 λ1

16

∣∣∣∣∣∣∣
≡ 0.

Then it follows that the nonzero vector x = [
0 1 0 0

] satisfies

C(I − λ1A1 − λ2A2)
−1x ≡ 0

and therefore, the pair (C, A) is not a-observable.

3.2 Observability-operator range spaces and reproducing kernel Hilbert spaces:
the commutative-variable case

We seek the analogue of Theorem 1.2 for the commuting multivariable case. We
extend multivariable power notation (3.1) to any d-tuple A = (A1, . . . , Ad) of com-
muting operators on a space X :

An := An1
1 An2

2 . . . And
d . (3.30)

Note the connection between the commutative powers An (with n ∈ Z
d+) and the

noncommutative powers Av (with v ∈ Fd) in case A is a commutative operator
d-tuple:

Av = An, where n = a(v),
∑

v∈Fd : |v|=N

Av
XAv =

∑

n∈Z
d+ : |n|=N

N!
n! A∗nXAn

for any operator X on X . In case (C, A) is an output stable pair with A a commuta-
tive operator d-tuple, the formulas (3.7), (2.10), and (3.10) for Ôa

C,A, GC,A, and Ga
C,A

collapse (in view of (3.2)) to

Ôa
C,A: x �→ C(I − Z(λ)A)−1x =

∑

n∈Z
d+

|n|!
n!

(
CAnx

)
λn (3.31)

and

GC,A = Ga
C,A =

∑

n∈Z
d+

|n|!
n! A∗nC∗CAn. (3.32)

We next observe that a natural commutative counterpart of operators Sj intro-
duced in (2.25) are the operators Mλj of multiplication by the coordinate functions
of C

d for j = 1, . . . , d acting as contractions on the Arveson space HY (kd). We will
call the commuting d-tuple Mλ := (Mλ1 , . . . , Mλd) the shift of HY (kd), whereas the
commuting d-tuple M∗

λ := (M∗
λ1

, . . . , M∗
λd

) consisting of the adjoints of Mλj ’s (in the
metric of HY (kd)) will be referred to as to the backward shift. Recall that monomials
λn form an orthogonal basis for H(kd). As we have seen,
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〈λn, λm〉H(kd) =
⎧
⎨

⎩

n!
|n|! , if n = m,

0, otherwise.
(3.33)

A simple calculation based on (3.33) gives

M∗
λj

λm = mj

|m|λ
m−ej (mj ≥ 1) and M∗

λj
λm = 0 (mj = 0), (3.34)

where m = (m1, . . . , md) and ej ∈ Z
d+ is defined in (1.19). More generally,

(
M∗

λ

)n
λm =

⎧
⎨

⎩

m!|m − n|!
|m|!(m − n)! λm−n, if mj ≥ nj for j = 1, . . . , d,

0, otherwise,
(3.35)

where according to (3.30)
(
M∗

λ

)n :=
(

M∗
λ1

)n1 (
M∗

λ2

)n2 · · ·
(

M∗
λd

)nd
.

The following proposition includes the analogue of Proposition 2.9 for the present
commutative setting.

Proposition 3.12 Let M∗
λ be the d-tuple of backward shifts on HY (kd) and let

G: HY (kd) → Y be the operator of evaluation at 0 ∈ B
d

G: f (λ) → f (0). (3.36)

Then:

(1) For every f ∈ HY (kd) and every λ ∈ B
d we have

f (λ) − f (0) =
d∑

j=1

λj(M∗
λj

f )(λ). (3.37)

(2) The pair (G, M∗
λ) is isometric:

I − Mλ1 M∗
λ1

− · · · − Mλd M∗
λd

= G∗G. (3.38)

(3) The abelianized observability operator associated with the pair (G, M∗
λ) is the iden-

tity operator:
Ôa

G,M∗
λ

= IHY (kd). (3.39)

(4) The d-tuple M∗
λ is strongly stable, that is,

lim
N→∞

∑

v∈Fd : |v|=N

‖(M∗
λ)

vf‖2
HY (kd) = lim

N→∞
∑

n∈Z
d+ : |n|=N

N!
n! ‖(M∗

λ)
nf‖2

HY (kd) = 0

(3.40)
for every f ∈ HY (kd).

Proof of (1) One can easily verify the identity (3.37) on monomials y ·λm (with y ∈ Y
and m ∈ Z

d+) using (3.34). Then the result follows for all f ∈ H2
Y (kd) by linearity and

continuity.

Proof of (2) Note that G∗: Y → HY (kd) is the identification of a vector y ∈ Y with
the constant function y ∈ HY (kd). We then see that (3.38) is simply the operator
expression of (3.37).



232 Multidim Syst Sign Process (2007) 18:191–248

Proof of (3) From (3.35) and (3.36) we see that

G
(
M∗

λ

)n f = n!
|n|! fn if f (λ) =

∑

m∈Z
d+

fmλm and n ∈ Z
d+

and therefore, according to definition (3.31),

Ôa
G,M∗

λ
f :=

∑

n∈Z
d+

|n|!
n!

(
G

(
M∗

λ

)n f
)

λn =
∑

n∈Z
d+

fnλn = f (λ).

Since the latter equality holds for every f ∈ HY (kd), (3.39) follows as asserted.

Proof of (4) This can be derived directly from (3.35) or via Proposition 2.7 since
Ôa

G,M∗
λ

= I and therefore, the pair (G, M∗
λ) is exactly observable. ��

Remark 3.13 Note that in contrast to the noncommutative case (Proposition 2.9), the
operator

R =

⎡

⎢⎢⎢⎣

M∗
λ1
...

M∗
λd

G

⎤

⎥⎥⎥⎦ : HY (kd) → (HY (kd))d ⊕ Y

is not unitary (just isometric). A simple calculation shows that

I − RR∗ =
[

P 0
0 0

]
:

[
(HY (kd))d

Y
]

→
[
(HY (kd))d

Y
]

,

where P is the orthogonal projection of (HY (kd))d onto the subspace
⎧
⎪⎨

⎪⎩
h =

⎡

⎢⎣
h1
...

hd

⎤

⎥⎦ ∈ (HY (kd))d :
d∑

j=1

λjhj(λ) ≡ 0

⎫
⎪⎬

⎪⎭
.

If a pair (C, A) is a-output stable, then the observability operator Ôa
C,A: X→HY (kd)

is bounded and its range

Ran Ôa
C,A := {C(I − Z(λ)A)−1x : x ∈ X } (3.41)

is a linear manifold in HY (kd). We have the following partial analogues of part (3) of
Theorem 2.8.

Theorem 3.14 Let (C, A) be an a-output stable pair. Then:

(1) Ran Ôa
C,A with the lifted norm

∥∥∥C(I − Z(λ)A)−1x
∥∥∥H(Ka

C,A)
= ‖Qax‖X , (3.42)

where Qa is the orthogonal projection of X onto (Ker Ga
C,A)⊥, is isometrically

equal to the reproducing kernel Hilbert space H(Ka
C,A) with reproducing kernel

Ka
C,A(λ, ζ ) given by

Ka
C,A(λ, ζ ) = C(I − Z(λ)A)−1(I − A∗Z(ζ )∗)−1C∗ (λ, ζ ∈ B

d).
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(2) Ran Ôa
C,A with norm inherited from HY (kd) is a reproducing kernel Hilbert space

H(Ka,−
C,A) with reproducing kernel Ka,−

C,A(λ, ζ ) given by

Ka,−(λ, ζ ) = C(I − Z(λ)A)−1(Ga
C,A)−1(I − A∗Z(ζ )∗)−1C∗ (λ, ζ ∈ B

d).

We next discuss separately the case where A is C-abelian and then the general
case.

3.2.1 H(Ka
C,A) for the case where A is C-abelian

In case (C, A) is an a-output-stable pair with A C-abelian, then we have the following
commutative analogue of Theorem 2.10.

Theorem 3.15 Let (C, A) be a contractive a-output-stable pair such that operator d-
tuple A is C-abelian. Then:

(1) The intertwining relations

M∗
λj

Ôa
C,A = Ôa

C,AAj for j = 1, . . . , d (3.43)

hold, and hence the linear submanifold Ran Ôa
C,A of HY (kd) is M∗

λ-invariant.
(2) The operator Ôa

C,A maps X contractively into HY (kd). This mapping is isometric
if and only if (C, A) is isometric and A is strongly stable.

(3) If M := Ran Oa
C,A is given the lifted norm (3.42) (so M is isometrically equal to

H(Ka
C,A) by Theorem 3.14 (1)), then the difference-quotient inequality

d∑

j=1

‖M∗
λj

f‖2
H(Ka

C,A) ≤ ‖f‖2
H(Ka

C,A) − ‖f (0)‖2
Y

holds for every f ∈ H(Ka
C,A). Moreover, the difference-quotient identity

d∑

j=1

‖M∗
λj

f‖2
H(Ka

C,A) = ‖f‖2
H(Ka

C,A) − ‖f (0)‖2
Y

holds for every f ∈ H(Ka
C,A) if and only if the subspace (Ker GC,A)⊥ is A-invariant

and the restriction (C0, A0) (defined in (2.53)) of (C, A) to the subspace (Ker GC,A)⊥
is isometric.

Proof By (3.31) and (3.34), we have for every x ∈ X ,
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(Mλj)
∗Ôa

C,Ax = (Mλj)
∗

⎛

⎜⎝
∑

n∈Z
d+

|n|!
n! CAnx · λn

⎞

⎟⎠

=
∑

n∈Z
d+

|n|!
n!

nj

|n|CAnx · λn−ej

=
∑

n∈Z
d+

|n − ej|!
(n − ej)!CAn−ej · λn−ej Ajx

=
⎛

⎜⎝
∑

n∈Z
d+

|n|!
n! CAnλn

⎞

⎟⎠ · Ajx

= Ôa
C,A · Ajx

and (3.43) follows. This completes the proof of statement (1) in the theorem.
Since the pair (C, A) is contractive and A is C-abelian, we have

Ga
C,A = GC,A ≤ Q = Qa ≤ I.

Therefore,

‖Ôa
C,Ax‖HY (kd) = 〈Ga

C,Ax, x〉
1
2
X ≤ ‖Qax‖X = ‖Ôa

C,Ax‖H(Ka
C,A) ≤ ‖x‖X . (3.44)

Now the arguments used in the proof of Theorem 2.10 can be used to prove the
remaining statements in the theorem. ��

For the converse direction we have the following result.

Theorem 3.16 Let M be a Hilbert space of Y-valued functions included into HY (kd)

and let us assume that M is M∗
λ-invariant.

(1) If the inequality
d∑

j=1

‖M∗
λj

f‖2
M ≤ ‖f‖2

M − ‖f (0)‖2
Y (3.45)

holds for every f ∈ M, then M = Ran Ôa
C,A for a contractive and exactly observable

(with respect to M) pair (C, A) with the commutative d-tuple A = (A1, . . . , Ad).
In particular, M is contractively included in HY (kd).

(2) If the equality
d∑

j=1

‖M∗
λj

f‖2
M = ‖f‖2

M − ‖f (0)‖2
Y (3.46)

holds for every f ∈ M, then M = Ran Ôa
C,A for an isometric and exactly observable

(with respect to M) pair (C, A) with the commutative d-tuple A. By part (1), M is
contractively included in HY (kd). Moreover, it is isometrically included in HY (kd)

if and only if the restriction of the backward shift M∗
λ to M is strongly stable, i.e.,

lim
N→∞

∑

n∈Z
d+ : |n|=N

N!
n! ‖(M∗

λ)
nf‖2

M = 0 for every f ∈ M. (3.47)
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Proof Define operators C: M → Y and A1, . . . , Ad: M → M by

C = G|M: f → f (0) and Aj = M∗
λj

|M (j = 1, . . . , d). (3.48)

Thus, the d-tuple A is the restriction of the backward-shift tuple M∗
λ to M. By part

(3) of Proposition 3.12, it follows that Ôa
C,A = IM and thus, the pair (C, A) is exactly

observable (with respect to M) and the range of the associated observability operator
Ôa

C,A coincides (algebraically) with M. Now we write (3.45) in terms of operators
(3.48) as

d∑

j=1

‖Ajf‖2
M ≤ ‖f‖2

M − ‖Cf‖2
Y (f ∈ M)

and conclude that the pair (C, A) is contractive. Similarly, assumption (3.46) means
that the chosen pair (C, A) is isometric. Furthermore, if M is included in HY (kd) iso-
metrically, relation (3.47) holds since M∗

λ is strongly stable (see part (4) of Proposition
3.12). Conversely, if (3.47) holds, that is, if the commutative d-tuple A = (A1, . . . , Ad)

is strongly stable on M, the Stein equation (2.15) has a unique positive semidefinite
solution. Since the pair (C, A) is isometric (recall that we are proving isometrical
inclusion under assumption (3.46)), this unique solution is the identity operator. On
the other hand the observability gramian Ga

C,A = GC,A defined by the convergent
series (3.32) satisfies the same Stein equation (as observed in part (2) of Theorem
2.2). Thus, Ga

C,A = GC,A = I. Note that the inequality (2.18) holds with H = GC,A = I,
i.e., ∑

v∈Fd : |v|<N

A∗v
C∗CAv ≤ I −

∑

v∈Fd : |v|=N+1

A∗v
Av.

Taking strong limits as N → ∞ and noting that I = GC,A = ∑
v∈Fd

A∗v
C∗CAv then

gives
I ≤ I − s-limN→∞

∑

v∈Fd : |v|=N

A∗v
Av

from which the strong-stability of A follows. Then M = Ran Ôa
C,A is isometrically

included in HY (kd) by statement (2) in Theorem 3.15. ��

We have the following analogue of Theorem 2.13 for the present commutative
situation.

Theorem 3.17 Suppose that (C, A) and (C̃, Ã) are two observable output-stable pairs
with both A and Ã commutative such that Ka

C,A(λ, ζ ) = Ka
C̃,Ã

(λ, ζ ) for all λ, ζ ∈ B
d.

Then there is a unitary operator U: X → X̃ such that

C = C̃U and Aj = U−1ÃjU for j = 1, . . . , d. (3.49)

Proof Suppose that (C, A) and (C̃, Ã) are as in the hypothesis of the theorem. The
identity of the kernels Ka

C,A and Ka
C̃,Ã

implies equality of the respective coefficients

of λnζm for each n, m ∈ Z
d+:

|n|!
n!

|m|!
m! CAnA∗mC∗ = |n|!

n!
|m|!
m! C̃ÃnÃ∗mC̃∗.
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If we define a mapping U by

U: A∗nC∗y �→ Ã∗nC̃∗y, (3.50)

it follows that U extends by linearity to an isometry from

D := span{A∗mC∗y : m ∈ Z
d+ and y ∈ Y}

onto
R := span{Ã∗mC̃∗y : m ∈ Z

d+ and y ∈ Y}
Since both (C, A) and (C̃, Ã) are observable, we see that D is dense in X and that R
is dense in X̃ . Hence U extends to a unitary operator from X onto X̃ by continuity.
From the defining equations (3.50) for U we see that

UC∗ = C̃∗ and UA∗
j = Ã∗

j U.

By taking adjoints and using that U is unitary, we arrive at the intertwining equations
(3.49) as wanted. ��

Theorem 3.17 can be adapted to give the following result concerning contain-
ment between two backward-shift-invariant subspaces rather than equality; the finite-
dimensional case appears as Proposition 1.2 in Bolotnikov and Rodman (2002).

Theorem 3.18 Let M and M̃ be two backward-shift-invariant subspaces of the Arve-
son space HY (kd) with realizations

M = Ran ÔC,A and M̃ = Ran ÔC̃,Ã, (3.51)

where the d-tuples A = (A1, . . . , Ad) ∈ X d and Ã = (Ã1, . . . , Ãd) ∈ X̃ d are commuta-
tive and strongly stable and the pairs (C, A) and (C̃, Ã) are isometric. Then M ⊆ M̃ if
and only if there exists an isometry V: X → X̃ such that

C = VC̃ and VAj = ÃjV (j = 1, . . . , d). (3.52)

Proof The necessity part is clear. For the sufficiency part, assume that M ⊆ M̃. By
Theorem 3.15, there exist unitary operators U: M → X and Ũ : M̃ → X̃ such that

U∗AjU = M∗
λj

|M, Ũ∗ÃjŨ = M∗
λj

|M (j = 1, . . . , d)

and
CU = G|M, C̃Ũ = G|M,

where the operator G : HY → Y is defined in (3.36). Let I : M → M̃ be the inclusion
operator. Clearly I is isometric. Then the operator V = U∗IŨ : X → X̃ is isometric
and satisfies (3.52). ��

3.2.2 H(Ka
C,A): The general case

In case the a-output-stable pair (C, A) is such that A is not C-abelian, it can hap-
pen that the associated reproducing kernel Hilbert space is not invariant under the
backward-shift tuple M∗

λ, as the following example shows.
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Example 3.19 Let

C =
[√

3
2 0

0
√

3
2

]
, A1 =

[
0 0
1
2 0

]
, A2 =

[
0 1

2
0 0

]
.

Then a straightforward calculation gives

Ka
C,A(λ, ζ ) = C(I − Z(λ)A)−1(I − A∗Z(ζ )∗)−1C∗

= 3

(4 − λ1λ2)(4 − ζ 1ζ 2)

[
2 λ2
λ1 2

] [
2 ζ 1
ζ 2 2

]
.

Thus, Ka
C,A(λ, w) is positive definite on B

2 × B
2 and the space H(Ka

C,A) is spanned by
the two rational functions

f1(λ) = 4
4 − λ1λ2

[
2
λ1

]
and f2(λ) = 4

4 − λ1λ2

[
λ2
2

]
.

Furthermore, since
M∗

λ1
(λ

n1
1 λ

n2
2 ) = n1

n1 + n2
λ

n1−1
1 λ

n2
2

and since
4λ1

4 − λ1λ2
=

∞∑

j=0

λ
j+1
1 λ

j
2

4j

it holds that

M∗
λ1

(
4λ1

4 − λ1λ2

)
=

∞∑

j=0

j + 1
2j + 1

(
λ1λ2

4

)j

.

The latter function is rational if and only if the single-variable function F(z) =∑∞
j=0

j+1
2j+1 zj is rational. By the well-known Kronecker theorem, F in turn is ratio-

nal if and only if the associated infinite Hankel matrix

H = [si+j]∞i,j=0, where sk = k + 1
2k + 1

has finite rank. However one can check that the finite Hankel matrices Hn = [si+j]n
i,j=0

have full rank for all n = 0, 1, 2, . . . and hence F(z) is not rational. Therefore, M∗
λ1

f1
does not belong to H(Ka

C,A) and hence H(Ka
C,A) is not invariant under M∗

λ1
.

For the general case, there is a simple replacement for M∗
λ|H(Ka

C,A). Specifically,
given an a-output-stable pair (C, A), we define an operator-tuple T = (T1, . . . , Td) on
Ran Ôa

C,A by

TjÔa
C,Ax = Ôa

C,AAjx for x ∈ (Ker Ga
C,A)⊥ and j = 1, . . . , d. (3.53)
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We then have

f (λ) − f (0) = C(I − Z(λ)A)−1x − Cx

= C(I − Z(λ)A)−1Z(λ)Ax

=
d∑

j=1

λjC(I − Z(λ)A)−1Ajx

=
d∑

j=1

λj · (Ôa
C,AAjx)(λ)

=
d∑

j=1

λj · (TjÔa
C,Ax)(λ) =

d∑

j=1

λj · (Tjf )(λ). (3.54)

We next give the following analogue of Theorem 3.15 for the general case.

Theorem 3.20 Let (C, A) be a contractive pair with C ∈ L(X , Y) and
A = (A1, . . . , Ad) ∈ L(X )d. Then:

(1) The Z-transformed observability operator Ôa
C,A is a contraction of X into the repro-

ducing kernel Hilbert space H(Ka
C,A). It is an isometry if and only if the the pair

(C, A) is a-observable.
(2) The space H(Ka

C,A) is contractively included in the Arveson space HY (kd); it is
isometrically included in HY (kd) if and only if Ôa

C,A (as an operator from X into
HY (kd)) is a partial isometry.

(3) For every function f ∈ H(Ka
C,A) it holds that

f (λ) − f (0) =
d∑

j=1

λj(Tjf )(λ) (λ ∈ B
d) (3.55)

and
d∑

j=1

‖Tjf‖2
H(Ka

C,A) ≤ ‖f‖2
H(Ka

C,A) − ‖f (0)‖2
Y (3.56)

where T1, . . . , Td ∈ L(H(Ka
C,A)) are the operators defined in (3.53).

(4) Equality holds in (3.56) for every f ∈ H(Ka
C,A) if and only if the subspace

(Ker GC,A)⊥ is A-invariant and the restriction (C0, A0) (defined in (2.53)) of (C, A)

to the subspace (Ker GC,A)⊥ is isometric.
(5) If H(Ka

C,A) is isometrically included in HY (kd), then Tj = M∗
λj

\H(Ka
C,A) for

j = 1, . . . , d and therefore, HY (kd) is M∗
λ-invariant.

Proof Since the pair (C, A) is contractive, the identity operator H = IX solves the
Stein inequality (2.14). Then Ga

C,A ≤ GC,A ≤ IX (by part (1) of Proposition 3.8 and
part (2) of Theorem 2.2). Thus,

Ga
C,A ≤ Qa ≤ IX ,

where Qa is the orthogonal projection of X onto (Ker Ga
C,A)⊥. Therefore it holds for

every x ∈ X that

‖Ôa
C,Ax‖HY (kd) = 〈Ga

C,Ax, x〉
1
2
X ≤ ‖Qax‖X = ‖Ôa

C,Ax‖H(Ka
C,A) ≤ ‖x‖X . (3.57)
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We have the equality instead of the first inequality in (3.57) if and only if Ga
C,A = Qa,

that is, if and only if Ôa
C,A is a partial isometry. Furthermore, the second inequality in

(3.57) can be replaced by equality if and only if Qa = IX , i.e., if and only if the pair
(C, A) is a-observable. This completes the proof of the two first assertions in the the-
orem. The multivariable difference-quotient relation (3.55) follows by the calculation
(3.54). Furthermore, for every x ∈ (Ker Ga

C,A)⊥,

‖Ôa
C,Ax‖H(Ka

C,A) = ‖Qax‖X = ‖x‖X

and thus, Ôa
C,A maps unitarily (Ker Ga

C,A)⊥ onto H(Ka
C,A). Therefore, by (3.53), Tj is

unitarily equivalent to the compression of Aj to (Ker Ga
C,A)⊥ and hence

‖Tj‖ ≤ ‖Aj‖ for j = 1, . . . , d.

In particular, Tj ∈ L(H(Ka
C,A)). For an element f = Ôa

C,Ax ∈ H(Ka
C,A), we have

d∑

j=1

‖Tjf‖2
H(Ka

C,A) =
d∑

j=1

‖TjÔa
C,Ax‖2

H(Ka
C,A)

=
d∑

j=1

‖Ôa
C,AAjx‖2

H(Ka
C,A)

=
d∑

j=1

‖QaAjx‖2
H(Ka

C,A)

≤
d∑

j=1

‖Ajx‖2
X

≤ ‖x‖2
X − ‖Cx‖2

Y = ‖f‖2
H(Ka

C,A) − ‖f (0)‖2
Y ,

where the first inequality holds since Qa ≤ I and the second since (C, A) is a con-
tractive pair. This proves inequality (3.56) and it is readily seen that equalities hold
throughout in the last calculation for every x ∈ (Ker Ga

C,A)⊥ if and only the subspace
(Ker Ga

C,A)⊥ is A-invariant and the restriction (C0, A0) (defined in (2.53)) of (C, A) to
the subspace (Ker Ga

C,A)⊥ is isometric.
Finally, suppose that H(Ka

C,A) is included isometrically in HY (kd). Then the assump-
tion (3.56) becomes

d∑

j=1

‖Tjf‖2
HY (kd) ≤ ‖f‖2

HY (kd) − ‖f (0)‖2
Y for every f ∈ H(Ka

C,A). (3.58)

Then we take the inner product of both parts in equality (3.54) with f :

〈f − f (0), f 〉HY (kd) = ‖f‖2
HY (kd) − ‖f (0)‖2

Y

and
d∑

j=1

〈Mλj Tjf , f 〉HY (kd) =
d∑

j=1

〈Tjf , M∗
λj

f 〉HY (kd).
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Thus,

‖f‖2
HY (kd) − ‖f (0)‖2

Y =
d∑

j=1

〈Tjf , M∗
λj

f 〉HY (kd). (3.59)

For any f in HY (kd), applying the identity (3.38) to f and then taking the inner product
with f gives us

‖f‖2
HY (kd) − ‖f (0)‖2

Y =
d∑

j=1

〈Mλj M
∗
λj

f , f 〉HY (kd) =
d∑

j=1

‖M∗
λj

f‖2
HY (kd). (3.60)

Now we conclude from (3.60), (3.59) and (3.58) that

‖f‖2
HY (kd) − ‖f (0)‖2

Y =
d∑

j=1

‖M∗
λj

f‖2
HY (kd)

=
d∑

j=1

〈Tjf , M∗
λj

f 〉HY (kd) ≥
d∑

j=1

‖Tjf‖2
HY (kd)

from which we get

0 =
d∑

j=1

‖M∗
λj

f‖2
HY (kd) −

d∑

j=1

〈Tjf , M∗
λj

f 〉HY (kd),

0 ≥ −
d∑

j=1

〈Tjf , M∗
λj

f 〉HY (kd) +
d∑

j=1

‖Tjf‖2
HY (kd).

Adding these inequalities and using that
d∑

j=1

〈Tjf , M∗
λj

f 〉 is real then gives

0 ≥
d∑

j=1

(
‖M∗

λj
f‖2 − 〈Tjf , M∗

λj
f 〉 − 〈M∗

λj
f , Tjf 〉 + ‖Tjf‖2

)

=
d∑

j=1

‖M∗
λj

f − Tjf‖2
HY (kd).

Therefore, M∗
λj

f = Tjf for j = 1, . . . , d and for every f ∈ H(Ka
C,A) as asserted. This

completes the proof of Theorem 3.20. ��
3.3 The Gleason problem: a uniqueness result

Let M be a Hilbert space of Y-valued functions. A tuple T = (T1, . . . , Td) of operators
Tj ∈ M is called a solution of the Gleason problem (Gleason, 1964; Henkin, 1971) if
relation (3.55) holds for every f ∈ M. Let us say that T is a contractive solution of the
Gleason problem if in addition

d∑

j=1

‖Tjf‖2
M ≤ ‖f‖2

M − ‖f (0)‖2
Y for every f ∈ M (3.61)
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or, equivalently, if the pair (T, G) is contractive where G : M → Y is defined by

G: f (λ) → f (0). (3.62)

We have the following analogue of Theorem 3.16 characterizing contractively included
subspaces M of HY (kd) of the form M = H(Ka

C,A); for the general case where M
is not M∗

λ-invariant, one simply replaces M∗
λ with some contractive solution T of the

Gleason problem on M.

Theorem 3.21 Let M be a Hilbert space of Y-valued functions and let us assume
that there exists a contractive solution T = (T1, . . . , Td) of the Gleason problem (i.e.,
Tj ∈ L(M) such that (3.55) and (3.61) hold for every f ∈ M). Then M is isometrically
equal to a reproducing kernel Hilbert space H(Ka

C,A) for a contractive pair (C, A).
Therefore, M is contractively included in the Arveson space HY (kd).

Proof Take C = G|M where G is given by (3.62), A = T on M. Then (3.61) says that
(C, A) is contractive. Iteration of (3.55) says that, for each f ∈ M,

f (λ) =
d∑

j1=1

λj1

⎡

⎣(Tj1 f )(0) +
d∑

j2=1

λj2

⎡

⎣(Tj2 Tj1 f )(0) +
d∑

j3=1

λj3
[
(Tj3 Tj2 Tj1 f (0)+

· · · +
d∑

jk=1

λjk

[
(Tjk · · · Tj2 Tj1 f )(0) + · · · ] · · · ]

⎤

⎦

⎤

⎦ .

This unravels to the tautology

f (λ) = C(I − Z(λ)A)−1f

so we recover M as M = Ran Ôa
C,A with ‖C(I − Z(·)A)−1f‖H(Ka

C,A) = ‖f‖M, i.e.,
M = H(Ka

C,A) isometrically. From the fact that (C, A) is contractive, we have seen
that Ga

C,A ≤ GC,A ≤ IM. Then

‖f‖2
H2

Y (kd)
= ‖C(I − Z(·)A)−1f‖2

H2
Y (kd)

= 〈Ga
C,Af , f 〉M ≤ ‖f‖2

M

and we also have the contractive inclusion property. ��
Combining Theorems 3.20 and 3.21 gives the following uniqueness result for con-

tractive solutions of the Gleason problem on a subspace M contained in HY (kd)

isometrically.

Theorem 3.22 Suppose that M is a subspace of Y-valued functions contained in
HY (kd) isometrically and that T = (T1, . . . , Td) is a contractive solution of the Gleason
problem on M. Then M is M∗

λ-invariant and T = M∗
λ.

Proof By Theorem 3.21, there is a contractive pair (C, A) so that M = H(Ka
C,A)

isometrically. As M is contained in HY (kd) isometrically, we conclude that H(Ka
C,A)

is contained in HY (kd) isometrically. Part (5) in Theorem 3.20 then asserts that the
subspace M = H(Ka

C,A) is M∗
λ-invariant and that Tj = M∗

λj
for j = 1, . . . , d. ��

We note that the proof of Theorem 2.13 is like the proof of the State-Space-
Isomorphism Theorem for structured noncommutative multidimensional linear sys-
tems in Ball et al. (2006). It is known that the State-Space-Isomorphism Theorem
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(and related Kalman reduction procedure) fails in general for commutative multi-
dimensional linear systems—see, e.g., Galkowski (2005) for a recent account of the
situation. The fact that uniqueness does hold in the special commutative situation in
Theorem 3.17 shows that the technique in the proof of the State-Space-Isomorphism
Theorem is salvageable in special commutative situations.

A uniqueness result for solutions of the Gleason problem somewhat different from
that in Theorem 3.22 was obtained in Alpay and Dubi (2005); rather than assuming
that T is a contractive solution of the Gleason problem on M = H(KC,A) contained
isometrically in HY (kd) as in Theorem 3.22, Alpay and Dubi (2005) assume instead
that T is a commutative solution of the Gleason problem and are then able to conclude
that necessarily T = M∗

λ|M. This latter result can be seen as an immediate consequence
of our Theorem 3.17 above since, by the construction in the proof of Theorem 3.21,
solutions (C, A) of Ka

C,A = K are in one-to-one correspondence with solutions T of
the Gleason problem. We illustrate the preceding analysis by two examples.

Example 3.23 Consider the subspace M = span{1, λ1, λ2} ⊂ H(k2) and define the
operators Ta,1 and Ta,2 on M by

Ta,1 : f �→ β + aαλ2, Ta,2 : f �→ γ − aαλ1 (3.63)

where f (λ) = α+βλ1+γ λ2 is the generic element in M and where a is a fixed complex
number. It is readily checked that

f (λ) − f (0) = βλ1 + γ λ2 = λ1(Ta,1f )(λ) + λ2(Ta,2f )(λ)

so the tuple (Ta,1, Ta,2) solves the Gleason problem on M. Let Aa,1 and Aa,2 be the
matrices of Ta,1 and Ta,2 with respect to the basis {1, λ1, λ2} of M and let C be the
matrix of the operator G : M → Y defined in (3.62):

C = [
1 0 0

]
, Aa,1 =

⎡

⎣
0 1 0
0 0 0
a 0 0

⎤

⎦ , Aa,2 =
⎡

⎣
0 0 1

−a 0 0
0 0 0

⎤

⎦ . (3.64)

A straightforward calculation shows that

C(I − λ1Aa,1 − λ2Aa,2)
−1 = [

1 λ1 λ2
]

,

which realizes M as the range of the observability operator of a pair (C, Aa). Different
choices of a in (3.64) lead to nonequivalent realizations of M. Note that Aa,1 and Aa,2
do not commute unless a = 0, in which case the operators T0,1 and T0,2 are equal to
backward shifts M∗

λ1
and M∗

λ2
, respectively; in other words, the matrices

C = [
1 0 0

]
, A0,1 =

⎡

⎣
0 1 0
0 0 0
0 0 0

⎤

⎦ , A0,2 =
⎡

⎣
0 0 1
0 0 0
0 0 0

⎤

⎦ (3.65)

provide a commutative realization of M which is unique (up to unitary equivalence)
by Theorem 3.17. Note also that the tuple (Ta,1, Ta,2) defined in (3.63) is never a
contractive solution of the Gleason problem unless a = 0.

Example 3.24 Consider the subspace

M = span
{

4
4 − λ1λ2

,
λ1

4 − λ1λ2
,

λ2

4 − λ1λ2

}
⊂ H(k2)
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and define the operators Ta,1 and Ta,2 on M by

Ta,1 : f �→ β + aαλ2

4 − λ1λ2
, Ta,2 : f �→ γ + (1 − a)αλ1

4 − λ1λ2
,

where a s a fixed complex number and where

f (λ) = 4α + βλ1 + γ λ2

4 − λ1λ2

is the generic element in M. Thus, f (0) = α and it is readily checked that

f (λ) − f (0) = αλ1λ2 + βλ1 + γ λ2

4 − λ1λ2
= λ1(Ta,1f )(λ) + λ2(Ta,2f )(λ)

so the tuple (Ta,1, Ta,2) solves the Gleason problem on M. As in the previous example,
take the matrices

C = [
1 0 0

]
, Aa,1 =

⎡

⎣
0 1

4 0
0 0 0
a 0 0

⎤

⎦, Aa,2 =
⎡

⎣
0 0 1

4
1 − a 0 0

0 0 0

⎤

⎦,

where Aa,1 and Aa,2 are the matrices of Ta,1 and Ta,2 with respect to the basis{
4

4−λ1λ2
, λ1

4−λ1λ2
, λ2

4−λ1λ2

}
of M and C is the matrix of the operator G : M → Y

defined in (3.62). For every choice of a,

C(I − λ1Aa,1 − λ2Aa,2)
−1 =

[
4

4−λ1λ2

λ1
4−λ1λ2

λ2
4−λ1λ2

]
,

which realizes M as the range of the observability operator of a pair (C, Aa). Different
choices of a in (3.64) lead to nonequivalent realizations of M. Note that Aa,1 and Aa,2
never commute which is not surprising since M is not backward-shift invariant as has
been established in Example 3.19.

3.4 Applications of observability operators: the commutative setting

In this subsection we discuss applications of observability operators for the commu-
tative setting. This subsection parallels Subsection 2.3.

For subspaces of HY (kd) invariant under the forward shift operator-tuple Mλ, we
have the following analogue of the Beurling–Lax–Halmos–de Branges theorem due
originally to Arveson (1998) and McCullough and Trent (2000) (for the case of iso-
metric inclusion); in fact, one can check that our proof, namely, the commutative
adaptation of the proof of Theorem 2.14, follows that of Arveson (2000) if one makes
the substitution L = (Ôa

DT∗ ,T∗)∗ (where L is the key operator appearing in Arveson,
2000). In general, an operator  between two Arveson spaces HU (kd) and HY (kd) is
said to be multiplier if  intertwines the respective coordinate-function multipliers:

θMλj f = Mλjθ f for all f ∈ HU (kd).

It is straightforward to see that a multiplier  necessarily has the form

 = Mθ: f (z) → θ(z) · f (z),

where θ(z) = ∑
n∈Z

d+ θnzn is a bounded, holomorphic L(U , Y)-valued function on B
d,

but not all bounded, holomorphic, operator-valued functions on B
d are multipliers
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(see, e.g., Agler & McCarthy, 2002). In case the multiplication operator has operator
norm at most 1, we say that θ is a contractive multiplier and belongs to the (commu-
tative) multivariable Schur-class Sd(U , Y). Unlike the convention in the classical case,
such a multiplier θ is said to be inner if in addition Mθ is a partial isometry.

Theorem 3.25

(1) A Hilbert space M is such that
(a) M is contractively contained in HY (kd),
(b) M is invariant under the Arveson-shift d-tuple Mλ,
(c) the d-tuple

MMλ = (MM,λ1 , . . . , MM,λd), where MM,λj := Mλj |M for j = 1, . . . , d

is a row contraction:

MM,λ1(MM,λ1)
∗ + · · · + MM,λd(MM,λd)

∗ ≤ IM,

and
(d) (MMλ)

∗ is strongly stable, i.e.,

∑

n∈Z
d+ : |n|=N

|n|!
n!

∥∥MM,λ)
∗nf

∥∥2
M → 0 as n → ∞ for all f ∈ M

if and only if there is a coefficient Hilbert space U and a contractive multiplier
θ ∈ Sd(U , Y) so that M = θ · HU (kd) with lifted norm

‖θ · f‖M = ‖Qf‖HU (kd)

where Q is the orthogonal projection onto (Ker Mθ )
⊥ ⊂ HU (kd).

(2) The subspace M in part (1) above is isometrically contained in HY (kd) if and only
if the corresponding contractive multiplier θ ∈ Sd(U , Y) can be taken to be inner.

Proof The proof is a straightforward commutative adaptation of the proof of Theo-
rem 2.14 and hence will be left to the reader. We remark that, for the case where M is
contained isometrically in HY (kd), we are unable to obtain a representer θ for which
Mθ is isometric but rather only a representer with Mθ partially isometric. Indeed, one
can check that the argument in the proof of Theorem 2.14 breaks down because, for
the case here, Mλj is only contractive rather than isometric. ��
Remark 3.26 As observed in Arveson (2002), from the function-theory point of view
Theorem 3.25 is not a true analogue of the classical Beurling–Lax theorem since the
characterization of θ is purely operator-theoretic with no information on the bound-
ary behavior of the associated multiplier θ(z). This deficiency has now been remedied
in the paper of Greene, Richter, and Sundberg (2002).

The following is the analogue of Theorem 2.15; we omit the proof as it exactly
parallels the proof of Theorem 2.15. The result goes back to Drury (1978).

Theorem 3.27 Suppose that T = (T1, . . . , Td) is a commutative row-contractive oper-
ator-tuple with T∗ strongly stable and define the defect operator DT∗ and the coefficient
space Y as in (2.63). Then there is a subspace M ⊂ HY (kd) invariant for the backward
shift operator-tuple M∗

λ on HY (kd) so that T is unitarily equivalent to PMM∗
λ|M. In

particular, T has a Arveson-shift dilation unitarily equivalent to Mλ on HY (kd).
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As a corollary of this result one can arrive at the von Neumann inequality

‖p(T1, . . . , Td)‖ ≤ ‖p(Mλ1 , . . . , Mλd)‖
of Drury (1978) and Arveson (1998) (see Remark 2.16 for the noncommutative case).

Remark 3.28 The result in Theorem 3.27 is tied to the unit ball with associated
multivariable resolvent operator (I − λ1T∗

1 − · · · − λdT∗
d)−1, associated defect oper-

ator DT∗ = (I − T1T∗
1 − · · · − TdT∗

d)1/2, associated observability operator of the
form Ôa

DT∗ ,T∗ = DT∗(I − λ1T∗
1 − · · · − λdT∗

d)−1 and associated ambient kernel func-

tion k(λ, ζ ) = 1/(1 − λ1ζ1 − · · · − λdζd). We mention that there has been a lot
of work centering around other types of kernels and giving a model theory for
other classes of operator-tuples by using appropriately modified observability-like
operators. Specifically, Müller and Vasilescu (1993) for the commutative ball case
with k(λ, ζ ) = 1/(1 − λ1ζ1 − · · · − λdζd)m, Curto and Vasilescu (1993, 1995) for
the commutative polydisk case with k(λ, ζ ) = (1/(1 − λ1ζ1) · · · (1 − λdζd))m, and
Pott (1999) and Bhattacharyya and Sarkar (2006) for the commutative case with
k(λ, ζ ) = 1/(1 − P(λ1ζ1, . . . , λdζd)) with P equal to a “positively regular polynomial”.
The most general form of results along this line is due to Ambrozie, Engliš, and Mül-
ler (2002) and Arazy and Engliš (2003): given a positive-definite kernel k(λ, ζ ) on a
domain D ⊂ C

d and a d-tuple of operators T = (T1, . . . , Td) with Taylor spectrum
contained in D for which one can make sense of the defect operator DT∗ := 1

k (T, T)

and of the observability operator

ODT∗ ,T∗ : x �→ DT∗k(λ, T)

(for example, if k(λ, ζ ) has no zeros in D × D and T has Taylor spectrum contained
in D), then, under the assumption that DT∗ ≥ 0 and that an additional stability condi-
tion on T∗ holds, ODT∗ ,T∗ implements a unitary equivalence between T and PMMλ|M,
where

M = Ran ODT∗ ,T∗ ⊂ H(k) ⊗ Y with Y := RanDT∗ ,

where Mλ = (Mλ1 , . . . , Mλd) is the operator-tuple of multiplication by the coordinate
functions on H(k) ⊗ Y , and where M is invariant under each of M∗

λ1
, . . . , M∗

λd
. The

noncommutative case is not as well developed at this writing, but there is the paper
of Popescu (1999) which handles the case of a Cartesian product of noncommutative
balls (and therefore including a noncommutative polydisk). We expect that many of
the ideas of the present paper, including the interplay between the noncommuta-
tive and commutative settings and the connections with system theory, have some
parallels, in these other situations.
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