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Abstract

We study a tangential interpolation problem with an arbitrary set of interpolating points
on the distinguished boundary of the unit polydisk for Schur—Agler class. The description
of all solutions is parametrized in terms of a linear fractional transformation.
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1. Introduction

In this paper we consider a boundary interpolation problem for the class of
contractive valued functions in the polydisk introduced by Agler in [1]. This class,
which we denote by5,;(€, &) and call theSchur—Agler class of the polydisk
consists of allZ (£, &,)-valued functionsS analytic on thef-fold polydiskD?:

D! ={z=(z1,...,24) € C%: |z | < 1}
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and such that
sup||SGrT,....rTy)| <1
r<l

for anyr < 1 and for anyl-tuple of commuting contractionds, ..., 7). In the
latter relationS(r 71, ..., rT;) can be defined by the Cauchy integral formula

SrT1,...,rTy)
=S / S@) @ (@l —T) ™ .. (zal —To) tdza. .. dzg.
(2ri)
rTd

Throughout the papet and&, are separable Hilbert spaces ab@, £,) denotes
the set of all bounded linear operators frénmto &,. It was shown in [2] thalS
belongstaS, (&, &) if and only if there exist/ analytic operator-valued functions
H;(z) onD4 with values equal to operators from an auxiliary Hilbert spage
into &, so that

d

Ig, — S@)S(w)* = (1 — zxby) Hx (2) Hi (w)* (1.1)
k=1

for every choice of points = (z1, ..., zg) andw = (w1, ..., wy) in D4, Let
H=H1® - ®Hy (1.2)

and let P, be orthogonal projections dff onto Hy. Then the operator-valued
functions

Z(z)=z1P1+---+2z4Ps and H(z)=Hi(z)P1+---+ Ha(2) Pa

(1.3)
admit the block representations
21ln, 0
Z(z) = and H(z)=[H1() ... Ha(2)]
0 I
“dHy (1.4)

with respect to the decomposition (1.2) and allow us to rewrite (1.1) in a more
compact form as

Ie, — S()Sw)* = H(2)(In — Z(2) Z(w)*) H (w)*. (1.5)
The following alternative characterization of the clagg&, &) in terms of
unitaryd-variable colligations is given in [1] and [14].

Theorem 1.1. A L(&, &)-valued functionS analytic inD? belongs taS; (&, &)
if and only if there is an auxiliary Hilbert spack and a unitary operator

o-[e B E]-LE]
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and ad-fold orthogonal decompositiofi.2) of H such that
S(z) =D+ C(In — Z()A) ‘Z(2)B, (1.6)
whereZ(z) is given in(1.3). For S of the form(1.6), the representationél.1)

and(1.5) are valid for

Hix)=C(I —Z()A) 'P and H()=C(I—Z(A) ", (1.7

respectively.

The representation (1.6) is calladunitary realizationof S € S;(&, &x).

In this paper we study an interpolation problem ®f, the distinguished
boundary of theD?. Let 2 be a set. The data set for the interpolation problem
is as follows. We are given a one-to-one function

G:(Ul,...,ad):.Q—>Td,

along with an auxiliary Hilbert spacé1;. We are also given functioresandc

on £2, which are, respectivelye (M, E), and L(M, £)-valued. Finally, we
are given a functiow (¢) on £2 whose values are bounded positive operators on
L(ML).

Problem 1.2. Find all functionsS € S; (€, £;) such that
rliLnlS(M(é))*a(S) =c(§) (6€$2) (1.8)

and

lg, — S(ro(§))S(ro(§))*
1—42

where the limits in(1.8) and (1.9) are understood in the strong and in the weak

sense, respectively.

JiLnla(S)* ag)<v(E) (Gef), (1.9)

Condition (1.8) is called thieft-sidedinterpolation condition fosS. It follows
by a multivariable matrix analogue of the classical Julia—Carathéodory theorem
(see Lemma 2.1 below) that if the limit in (1.8) exists and equéd$, then the
necessary condition for the limits in (1.9) to exist and to be finite is

la@)lle = llcEle, (& € £2). (1.10)

It follows again by (the third assertion of) Lemma 2.1, tasatisfies also the
right-sided interpolation condition

J@lS(rG(S))C(é) =a) (e0).

Thus, Problem 1.2 is in fact a two-sided interpolation problem and conditions
(1.10) are necessary for this problem to have a solution.
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The breakthrough result on interpolation for the Schur—Agler class was the
result for scalar-valued functions with finitely many interpolation nodes in
the interior of the polydisk obtained in the preprint [2]. Extensions of this
result to matrix-valued functions and to tangential and bitangential problems
were obtained in [3,14]. The approach of these latter papers was to identify
solutions of the interpolation problem as characteristic functions of unitary
colligations which are unitary extensions of a certain partially defined isometric
colligation constructed explicitly from the interpolation data. A method of Arov—
Grossman (see [6,7]) then leads to an elegant linear-fractional parametrization
for the set of all solutions in terms of a free Schur-class parameter. A more
abstract formulation of this approach (called the abstract interpolation problem
(AIP)) has been developed for a variety of single-variable interpolation problems
(see [22,24]); indeed, the paper [23] obtains new results on the (operator-valued)
Hamburger moment problem by first performing a change of variable to convert
the problem to a boundary interpolation problem and then using the AIP method
to analyze this boundary interpolation problem. The existence criterion for a
variety of bitangential interpolation problems for the Schur-Agler class with
interior interpolation nodes can now also be deduced from the general commutant
lifting theorem over the polydisk obtained in [13].

The purpose of this paper is to identify the extension of the AIP approach
required to solve the boundary interpolation problem on the distinguished bound-
ary of the polydisk for the Schur—Agler class (Problem 1.2). For the multivari-
able cased > 1), we are aware only of the paper [28] on boundary interpola-
tion for the Schur—Agler class; this latter paper, however, treats interpolation on
disks embedded in the nondistinguished boundary of the polydisk rather than the
boundary interpolation on the distinguished boundary related to Carathéodory—
Julia theory, as is treated here. The existence criterion (see Theorem 2.2) is in
terms of what is called an LMI (linear matrix inequality) in the engineering liter-
ature, rather than the positivity of a single Pick matrix as in the univariate case;
we refer to [17,20] for a thorough discussion of LMIs and their manifold applica-
tions in engineering, and to [21] for a discussion of LMIs in the specific context
of (interior) polydisk interpolation. In this context (as already exhibited for the
interior interpolation problem studied in [14]), it is only particular subclasses of
solutions associated with some additional interpolation constraints which have a
single linear-fractional parametrization in terms of a free Schur—Agler-class para-
meter (see Corollary 4.2). Each such set of auxiliary interpolation conditions cor-
responds to a particular choi, . .., P of solution of the LMI in the existence
criterion; one then must sweep through all linear fractional maps corresponding
to each suclP, ..., P; as well as through all free Schur—Agler-class parameters
to arrive at the set of all solutions of Problem 1.2.

For the single-variable casé & 1), boundary interpolation on the unit disk
for scalar-valued functions appears already in the work of Nevanlinna [27] as
well as in [4]. There have been a number of operator-theoretic treatments for
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boundary interpolation problems for the matrix-valued Schur class (see [9,10,
12,15,16,18,25,26]) and the problem is treated in the books [11] and [19]. We
mention that the paper [29] obtains necessary and sufficient conditions for the
inequality condition (1.9) to be solved with equality (for the single-variable scalar-
valued case with finitely many interpolation nodes).

The paper is organized as follows. After the present Introduction, Section 2
presents necessary and sufficient conditions for Problem 1.2 to have a solution,
Section 3 establishes a correspondence between the set of all solutions and unitary
extensions of partially defined isometries, Section 4 presents a description of
all solutions of Problem 1.2 in terms of linear fractional transformations. In
Section 5 we treat the boundary Nevanlinna—Pick problem as a particular case
of Problem 1.2 and present explicit formulas for coefficients of the corresponding
linear transformation in terms of initial data.

2. The solvability criterion

In this section we establish the solvability criterion of Problem 1.2. First we
establish some auxiliary results part of which can be considered as a multivariable
operator analogue of the classical Julia—Carathéodory theorem.

Lemma 2.1. Let S € S4(E,&), BeT¢, xe & and letH; (j=1,...,d) be
L(H;, £)-valued functions from the representati¢inl). Then

() The following three statements are equivalent
(1) Sis subjectto

L := sup x* e, S(r’B)ZS(rﬂ) X < 00
0<r<1 1-r
(2) The radial limit
Igx — S(rB)S(rP)* X

L :=lim x*

r—1 1—1r2
exists.
(3) The radial limit
IimlS(rﬂ)*x:y (2.1)
r—
exists in the strong sense and serves to define the vgctoi€.
Furthermore,
lim Sepyy=x.lyl= x| (2.2)

(the limit is understood in the strong sehs&nd the radial limit
— lim Yy = X*S(rp)y

L 2.3
r—1 1—r ( )
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exists.
(I Any two of the three equalities (2.1) and(2.2) imply the third.
(1) If any of the three statements in p&} holds true, then the radial limits

Tj=lim Hjrpy'x (j=1.....d) (2.4)

exist in the strong sense and

d
Y TiTj=L=L<L. (2.5)
j=1

Proof. For the proof of all the statements for the single-variable cdse ()

see [8, Lemma 2.2] (all the statements but those relatef} 'soand for finite-
dimensionalf and €&, are contained in [19, Lemma 8.3, Lemma 8.4, and Theo
rem 8.5]). For the cas# > 2, let us introduce the slice-functions

Sp(0):=S(B¢) and Hg(l):=H(BL) (€D, (2.6)

the first of which clearly belongs to the classical Schur cl&gs&, &,). Since
B € T, it follows that Z(¢8)Z(wB)* = ¢l for every pair of¢,w € C and
thus, by (1.5),

Ie, — Sp(0)Sp(w)* = (1 —¢w)Hg(¢)Hp(w)*.

All the statements of the lemma regard the boundary behavior of the furition
near a boundary poirgt = 1. Applying one-variable results to slice-functiofys

and Hg, returning to the original functionS and H and taking into account the
block decomposition (1.4) off, we obtain all the desired assertions. To see the
third statement, note that by the one-variable result, there exists the strong limit

T:= rliLan/g(r)*X, 2.7)
which satisfies

T*T=L=L<L. (2.8)
Since, by (1.4) and (2.6),

Hg(r) =[H1(rB) ... Ha(rB)],

we conclude from (2.7) that the strong limi& = lim,_.1 H;(rB) exist for
j=1,...,d and satisfy

T=|:|. T'T=)TTj
Ty j=1
These identities together with (2.8) imply (2.5)a
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Theorem 2.2. Problem 1.2 has a solution if and only if there exigt kernels
Pig,n):2x2—> L Mp) (j=1,..., d) such that

Pj6.1)=0 (5.ue), (2.9)
d
D PIEHSEE) Gpe), (2.10)
j=1

and satisfying the generalized Stein identity
d
Z(l —0;(&)aj(W)P; (€, w) =aE)*a(u) —c€)*c(n) (&, pneR).
=t (2.11)
Proof. Let S be a solution of Problem 1.2, that is, let it belongSa(&, &) and
satisfy interpolation conditions (1.8) and (1.9). Sirftbelongs taS; (€, &), the

identity (1.1) holds for som&(H ;, £x)-valued functiongd; which are analytic
onB‘. Let T;(¢) stand for the following strong limit

Tj(€) ::rliLnlﬂ(m(g))*a(g) (j=1,....d, £ € £), (2.12)

which exists at every poirit € £2, by Lemma 2.1, and satisfies

Ie, — S(ro (§)S(ro (£))*
S a)

d
2 Ti@ Tj(€) = L(€) = lim a©)*
=t (2.13)

for j=1,...,d and eaclt € 2. The kernels

Pi€. w=T;&)"Tj(n) (¢ nes) (2.14)

are clearly positive and satisfy (2.10) by (1.9) and (2.13). Settiag-o (¢§) and
w =ro(u) in (1.1) and multiplying both sides in the resulting identity doi¢)*
on the left and bya(u) on the right, we get

a®) (Ig, — S(ro(©)S(ro(w)*)aw)
d
=Y (1-rPo©)o(w)aE) H(ro &) H;j(ro () au).
j=1

Taking the limit asr — 1 in the last identity and making use of (1.8), (2.12)
and (2.14), we come to (2.11), which completes the proof of the necessity part of
the theorem. The proof of the sufficiency part is postponed up to Section 4 where
it will be obtained as a consequence of slightly stronger resultts.

From now on we assume that the necessary conditions (2.9)—(2.11) for Prob-
lem 1.2 to have a solution are in force.
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3. Solutionstotheinterpolation problem and unitary extensions

We recall that al-variable colligation is defined as a quadruple

d
Q:{H:@Hj,&&,u} (3.1)
j=1
consisting of three Hilbert spacés (the state spagewhich is specified to have
a fixedd-fold orthogonal decompositio®, (the input spaceandé&, (the output
space, together with a connecting operator

o-[2 21 [2]

The colligation is said to beinitary if the connecting operatod is unitary.
A colligation

d
éz{ﬁz@ﬁj,e,&,ﬁ} @2
j=1
is said to beunitarily equivalento the colligationQ if there is a unitary operator
o :'H — H such that
. a O ~la O

O[Pj:PjO{ (G=1,....,d) and |:0 Ig*i|U—U|:0 ]g:|’
where P; and P; are orthogonal projections 6{ ontoH; and of H onto H;,
respectively. Theharacteristic functiorof the colligationQ is defined as

So(2) =D+ C(Iy — Z(2)A) “Z(2)B. (3.3)

where Z(z) is defined as in (1.3). Thus, Theorem 1.1 asserts that&éa &, )-
valued functions analytic inD¢ belongs to the clasS; (£, &) if and only if it is
the characteristic function of soraevariable unitary colligation (3.1).

Although the functionZ depends on thé&-fold decomposition (1.2) of the
state spacé{, we shall writeZ(z) rather thanZy,(z) if the state space and its
decomposition will be clear from the context.

Remark 3.1. Unitary equivalent colligations have the same characteristic func-
tion.

In this section we associate a certain unitary colligation to Problem 1.2 for a
fixed choice of kernel®; satisfying conditions (2.9)—(2.11). It turns out that the
characteristic function of this colligation is the transfer function of the Redheffer
transform describing solutions of Problem 1.2 associated with this choiEe. of
Assuming that the necessary conditions (2.9)—(2.11) for Problem 1.2 to have a
solution are in force, let us consider the linear spegef M -valued functions
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h(&) defined on2 which take nonzero values at at most finitely many points. Let
X € L(Ho, &) andY € L(Ho, £) be operators defined by

Xh=> a@hE), Yh=) c@f(&), (3.4)
§ §
and letD; (h, g) be the quadratic form ol x Ho defined as
Dj(h,g) = Z(Pj(&-, §h(8e), g(éi))ML (=1....4). (3.5)
&i &

Then it follows from (2.11) that

d
> (Djh.g) — D;(@ ;h.7;8)) = (Xh, Xg)e, — (Y, Yg)e. (3.6)

We say thaty ~ h if and only if D;(hy — h2, y) =0 for all y € Ho and denote
[h]p; the equivalence class bfwith respect to the above equivalence. The linear
space of equivalence classes endowed with the inner product

((r). [yl)=Dj(h,y) (3.7)

is a pre-Hilbert space, whose completion we denotéfpyRewriting (3.6) as

d
D {1y Lf 1))z, + (Y £ Y e
j=1

d
=> {6, f1p,.16; b)), + (XL X[)e, (3.8)
j=1

and setting
H=T1® - ®Ha,

we conclude that the linear map

[f]Dl [Elf]Dl
Vpy, P, : - : (3.9)
[f]Dd [Udf]Dd
Yf Xf
is an isometry from
[f]Dl
: H
Dy = Clos : , feHop C [ P } (3.10)
]Dd

Yf
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onto
[Elf]Dl
: H
Ry = Clos . , f€eHo C[g } (3.11)
[Edf]Dd *
Xf

Theorems 3.2 and 3.4 below establish a correspondence between safutmns
Problem 1.2 and unitary extensions of the partially defined isométry p,
givenin (3.9).

Theorem 3.2. Let S be a solution to Probleni.2. Then there exist/ kernels
Py, ...,P; on$2 satisfying condition$2.9)—(2.11) such thatS is a characteristic
function of a unitary colligation

~ [A B].[HeH HoH

U_[C D]'[ < i|—>|: e } (3.12)
which is an extension of the isomeWy, _p, givenin(3.9).

Proof. Let S be a solution to Problem 1.2. In particul&rbelongs taS; (€, &)

and, by Theorem 1.1, itis the characteristic function of some unitary colligg&tion

of the form (3.1). In other words§ admits a unitary realization (1.6) with the
state spacét and the equality (1.1) holds for functiorf;’s defined via (1.7).

The functionsH;’s are analytic and také(H;, £,) values onD“. The function

H (z) defined as in (1.4) is analytic an®(H, &,)-valued onD. It also can be
represented in terms of the realization (1.6) as in (1.7) and thus leads to the
following representation

S(z)=D+ H()Z(2)B (3.13)

of S, which is equivalent to (1.6).
The interpolation conditions (1.8) and (1.9), which are assumed to be satisfied
by S, force certain restrictions on the connecting operator

A B
U= |:C Di| '
By Lemma 2.1 and in view of (1.4), the following strong limit exists:
T1(8)
lm H(ro©) a@)=| : |=TE Ee). (3.14)
T4(§)

Substituting (3.13) into (1.8) we get
lim (D* + B*Z(ro (6))"H (ro (£)) )a@) =c(€) (¢ € ),
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where the limit is understood in the strong sense. It also follows from (1.5) that
C + H(z)Z(z)A = H(z) and, therefore, that (strongly)
C*a(€) + lim A*Z(ro &) H (o (€))"a@) = lim H(ro &) a().
By (1.8) and (3.14), the two last (displayed) equalities are equivalent to
D*a(€) + B*Z(0(§))" T (§) = (&) (3.15)
and
C*a) +A*Z(c(§))'TE) =T (), (3.16)

which can be written in matrix form as

[A* C* [ Z@@E)'TE | _[T®
B DH a(é) }_[C(S)} e,
Since the operatgr % 1 is unitary, we conclude from the last equality that
[A B|[T®E ] _[ZOE)TE®)
Ke D}[C(S)}_[ a() } G147

LetPq,...,P; be defined as in (2.14), I&tp, . p, be the isometry given in (3.9)
and letT ; : Ho — H; be the operator given by

Tih=>Y Tj®hE (=1....4d). (3.18)
5

Upon making subsequent use of (3.7), (3.5), (2.14) and (3.18), we get
(1D, [HD,-)H/ =Dj(h,y) =) (Pj(& E0h &), y(E))yy,
' §i.6e
=Y (TjE0hE). TjEDyED)
&i &

= < Z T;(E0)h (&), Z T; (&)y(&)>

& §i My
= (Tjh, ij)ﬁj.

Therefore, the linear transformatiéf} : Ho — ﬁj defined by the rule
Uj:T;f = [flp; (f€Ho) (3.19)

can be extended to the unitary map (which still is denoted/pyfrom RanT ;
onto7;. Noticing thatRanT ; is a subspace df; and setting

Nj:=HjeRanT; and ﬁj :=ﬁj ®N;,
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we define the unitary mali; : H; — H; by the rule

~ | Ujg forgeRanT;,
U,g_{g for g € AV;. (3.20)
The operator
d _ d
U=U;:H—-H:=EPH, (3.21)
j=1 j=1

is unitary and satisfies

UP,=P;U (j=1,...,d),
where P; and P; are orthogonal projections 6{ onto ,; and of H onto ﬁj,
respectively. Introducing the operators

A=UAU*, B=UB, C=cCcU*, D=D (3.22)
we construct the colligatiod via (3.2) and (3.12). By definitionQ is unitarily

equivalent to the initial colligatior® defined in (3.1). By Remark 3.10 has
the same characteristic function &s that is, S(z). It remains to check that the

.....

[f]Dl [Elf]Dl
A B : .
A BT || FeMo. (3.23)
[C D} [F1n, G4 flp, °

Yf Xf

To this end, note that by (3.18)—(3.20),
Ur((f1p;) =Tif =D T f &)
and E
ﬁ,-(Z%T,@f@) =U,;T;G;f)=15;fIp,
&

for j=1,...,d and for everyf € Ho. Taking into account the diagonal structure
(3.21) ofU, we now get from the two last equalities that

[f1p,
U* : =) TEfE) (3.24)
[f1p, §
and
[01f]1p,
ﬁ(zz(o(s>)*T(s)f(s>)= : : (3.25)
5

[Ed f]Dd
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Thus, making subsequent use of (3.22), (3.24), (3.17) and (3.25), we get

[f]Dl [f]Dl
A B | _JU o][a B|[U* 0O :
C D [f1p, __0 1__C D_ 0 I [f1p,
Yf Yf
[0 0][A B] T (&)
__0 I[C D_(%:[C(é)}f@))

o
o

A B || T()

Z(0(§)*T ()

Kl
Kl

[ [G1f1p,

o QU
o

|
|

: (3.26)
[Ed f] Dy

Xf

which proves (3.23) and completes the proof of the lemnma.

The converse statement will be proved in Theorem 3.4 below. We start with
some auxiliary results (for the proof see [8, Section 2]).

Lemma 3.3. Let A be a contraction on a Hilbert spack. Then the following
strong limits

R:= Iiml(l —r)(Iy—rA)7L 0:= Iiml(IH —rA) Yy — A),
Iiml(l — )2y — rAS YUy — A*A) Iy —rA)1=0 (3.27)

exist. MoreoverR and Q are in fact orthogonal projection ontéer(7; — A) and
Ran(ly — A*), respectively.

Theorem~3.4. LetPq,..., P; be kernels o2 satisfying condition$2.9)—(2.11)
and letU of the form (3.12) be a unitary extension of the partially defined
isometryWp, . p, given in(3.9). Then the characteristic functighof the unitary

colligation O defined via(3.2) is a solution of Problem..2.
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Proof. We start with factorizations (2.14) of the kern&lsand let, according to
(3.14),

T1(8)
TE=| : |. (3.28)
Ta(8)

Furthermore, we define the unitary mﬁp/ia (3.18)—(3.20). Then relations (3.22)
hold by construction and, therefore, the operator

u_[A B]_[Ur 0o][4 B][U O
“|C D| |0 I C D 0 1
satisfies (3.17) (or, equivalently, (3.15) and (3.16)), which can be easily seen
from (3.26). By Remark 3.1, the colligatiod® and Q defined in (3.1) and (3.2)

have the same characteristic functions and thean be taken in the form (1.6).
Let Hy(z) and H (z) be given by (1.7).

By (3.27) (with A replaced byA*Z (o (£))*), it follows that
rIiLnl(l —r2(I-rZ(o (s))A)‘lz(a &)U — AAHZ(0 &))"
x (I —rA*Z(c©)*) " =0,
which is equivalent, sincAA* + BB* =1, to
lim (1 - r)2(1 = rZ(c©)A) ' Z(o () BB*Z(o(¢))"
x (I —rA*Z(c®)") ' =0.
Therefore,
lim (1~ PB*Z(0(©)*(I —rA*Z(c(€)") 'x=0
(for everyx € H). (3.29)
Using (1.6) and expressions fd*a(¢) and C*a(¢) derived from (3.15) and
(3.16), respectively, we get
S(ro(€))*a®) = D*a) +rB*Z(0 () (I - rA*Z(0(§)") ' C*a)
=c(§) = B*Z(0(®)) ' TE) +rB*Z(c(5))"
x (I —rA*Z(c(&)") (1 = rA*Z(c(©)))T )
=c(§) —(1—r)B*Z(0 (%))
x (I =rA*Z(c®)") T ®). (3.30)

Taking limits in the last identity as tends to one and taking into account (3.29),
we come to (1.8). Furthermore, by (3.30),
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c)*c) —c)*S(ro(§))*a)
1—r
=c)*B*Z(c (&))" (I —rA*Z(o (g))*)‘lT(g). (3.31)
It follows from (3.17) that
AT (&) + Be§) = Z(o (§)) T (§)
and, therefore,
C&)*B* =T ()" (Z(0 (&) — AY).
Substituting the latter equality into (3.31) and taking into accountZtiat¢)) x
Z(o(E)* =1, we get
c(&)*c(§) —c)*S(ro(§))*a)
1-r
=TE* (1 -A*Z(c(®*))(I - rA*Z(a(g))*)*lT(g).

Taking limits in the last identity astends to one and applying Lemma 3.3 (with
replaced byA*Z (o (£))*), we conclude that the following weak limit exists:

. C&)cE) —c®)*SroE)*ae) ¥
r'@l 1, =T Pra—zc@nn ! €)-

Making use of (1.8) and (1.10) we conclude now by Lemma 2.1 that
Ig, = S(ro(§))S(ro(§))" a

e &
_ ”ml c(§)*c) — C(léi*rs(m(é))*a(é) ’ (3.32)

where the limit on the left-hand side in (3.32) is meant in the weak sense (as well
as the limit on the right-hand side). Comparing the two last equalities and making
use of (2.14), (2.10) and (3.28), we get that for every 2

- «le, = S(ra(§)Sra(§)*
rlglla(é) 1-r2

a€) =T &) Prartr—ze@yn T ©

d d
STETE =) T TjE) =) P& <¥E),

j=1 j=1
which proves (1.9) and completes the proof of theorem.

4. Theuniversal unitary colligation associated with theinterpolation
problem

A general result of Arov and Grossman (see [6,7]) describes how to parame-
trize the set of all unitary extensions of a given partially defined isométiheir
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result has been extended to the multivariable case in [14] and can be applied to
the present setting.

Dvg, s, @andRy; 5, givenin (3.10) and (3.11). Introduce the defect spaces
H H
A:[S}GDV[P By and A*:[g*}eRVﬂnl ..... Py

and let A be another copy oftA and A, be another copy ofA, with unitary
identification maps
itA—> A and i,:A,— A,

Define a unitary operatdyg from DV[Pl

b, ®AD A, ONORy, , BADA
by the rule

by DA A ONO VR, ”
Vx if x €Dy,

Uox =14 i(x) ifxeA, 4.1
i;l(x) if x € Ay.

Identifying [D\’ﬂ’g---vﬂ”d ] with [?] and [ RVH};-M ] with [Z} we decompose

Ug defined by (4.1) according to

Uin Uiz Uis H H
Uog=| Uz1 U Us3 |: é — (%
Usi Usz2 O Ay A

The “33” block in this decomposition is zero, since (by definition (4.1)), for
everyx € A,, the vectorUgx belongs toA, which is a subspace r{f?] and,

therefore, is orthogonal td (in other wordsP zUol 3, = 0, whereP 3 stands for

the orthogonal projection Ry, , & A & A onto A).
The unitary operatddg is the connecting operator of the unitary colligation

oo ]3] 4]

which is calledthe universal unitary colligatiomssociated with the interpolation
problem. According to (3.3), the characteristic function of this colligation is given

by

$() = [211(2) 212(Z)i|

201(z)  X22(z)

Uz U U B
- [Uzi 53} + [Uzi] (In — Z(2)U11) ' Z(2)[U12 U] (4.2)

and belongs to the clas (€ ® A, & @ A), by Theorem 1.1.
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Theorem 4.1. Let V be the isometry defined i(8.9), let ¥ be the function
constructed as above, and lebe aL (&, £,)-valued function. Then the following
are equivalent

(1) S is a characteristic function of a colligation

=~ o~ A B
.Q::H@H,S,S*,[C Di|}

with the connecting operator being a unitary extensiol g
(2) Sis of the form

vvvvv Py -

S(2) = £11(2) + Z12(z) (Ig, 5 — T(Z)Ezz(Z))_lT(Z)Ezl(Z), (4.3)

whereT is a function from the clasS,; (€ ® A Ex @ A~).

This result (which has been proved in [14]) together with Theorems 3.2 and 3.4
leads to a description of all solutions of Problem 1.2.

The following corollary on parametrization of particular subclasses of solu-
tions implies in particular the sufficiency part of Theorem 2.2.

Corollary 4.2. Let P4, ...,P; bed kernels satisfying condition&.9)—(2.11),
and let

S(2) = [Ell(z) Elz(Z)}

221(z)  X22(2)

be the characteristic function as {@.2) of the unitary colligationJg constructed
fromVp, _p, asin(4.1). Then the set of all solutiorssof Probleml.2 satisfying
the auxiliary side conditions

Tj(€)"T;(u) =P n) for&, peandj=1,....d

(where T;(¢) = lim, .1 H;j(ro (§))*a(§) for some choice ofd1(z), ..., Hy(z)
for which(l.l) thds) is given by(4.3) where7 is a function from the class
Si(EBALED A).

5. Boundary Nevanlinna—Pick interpolation problem

In this section we consider a boundary Nevanlinna—Pick problem for the class
S4(E.E). We are given an auxiliary Hilbert spackl;, the setZ = {zD,
...,z2™M}yc T¢, 2n operators

xl,'-',anE(ML,g*)y y17-~~7)’n€£(ML,g)
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andn positive semidefinite operators

Y1, ...y ¥Yn € LML), )/j20 (G=1,...,n).

Problem 5.1. Find all functionsS € S; (€, &) such that

im SreP)xj =y Ee2) (5.1)
and

g, = 502 ) Sz _

lim xj 1_,2 xj<yi (G=1....m), (5.2)

where the limits in(5.1) and (5.2) are understood in the strong and in the weak
sense, respectively.

Problem 5.1 is a particular case of Problem 1.2 corresponding to the following
choice of interpolation data:

2=z,  o® =t v(E)=y, a?)=x,

c(z2V)=y; (=1,...,n). (5.3)
In the present context Theorem 2.2 takes the following form.
Theorem 5.2. Problem5.1 has a solution if and only if there exigt positive

semidefinite block matrice® = [pf;1?;,_; >0 (j =1,...,d) with block entries
pl; € L(M_) subject to

Zplj‘-jgyk (G=1,...,n), (5.4)

which satisfy the generalized Stein equality

d
> (Pi— NfPN) = X*X = Y*Y, (5.5)
k=1

where

X X1 ... Xp
= and
|: Y i| [yl oo Yn i|
Z,(cl)IML 0
Ni = : (k=1,...,d) (5.6)
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Indeed, since? is a finite set of points, Stein equation (2.11) is equivalent to
equality of Hermitian forms

n d ' -
Z <le>k(z(l)7 Z(]))gj, gi>

ij=1 \k=1

- Z <Zd:]P’j(Z(i)’Z(r))mgj’mgi>

i,j=1 \k=1
n . . n . .
= _(a")gj.a?)si) = Y _(e(z)s;j. c(z)si) (gi € M)
i,j=1 i,j=1
which, in turn, is equivalent to the operator identity (5.5) with
Pe=[Px(zV,2D)]7 Ly (k=1,....a). (5.7)

Since the kernel®; are positive o2, the matricesP?, are positive semidefinite.
Finally, condition (5.4) follows from (2.10).

For every choice of positive semidefinite matrid@s.. ., P satisfying (5.4)
and (5.5), the set of solutions of Problem 5.1 associated with this choice is para-
metrized by Theorem 4.1 in terms of a Redheffer linear fractional transforma-
tion (4.3). Moreover, in this case one can get explicit formulas for coefficients
X (2) of this transformation in terms of interpolation data. Such formulas have
been established in [5] for nonboundary bitangential problem. Since the formulas
depend only on the entries in the identity (5.5) (in contrast to the boundary prob-
lem, the matrices?; for the nonboundary problem are prescribed), they are still
true for the present context. We present these formulas for the sake of complete-
ness:

T11(z) = X A@) Hy,
Z122) = (XA@THWF Z(2), Ie,) T,

Z(Q)WaA(x)!-Hy* )

20 =17 < I

S =T{ ( é) (I +Z@W24@" W) (1.0 Z() T,

where
P2 P?Ny
Wi=| = |, Wo = :
P2 PNy
T1 andT> are isometric operators such that
[Wj Y*]T1=0 and [Wj X*]T> =0,



J.A. Ball, V. Bolotnikov / J. Math. Anal. Appl. 273 (2002) 328-348 347

and whereA (z)! =1 stands for the Moore—Penrose generalized inverse of the func-
tion

d
AR =) P —zNo) + Y*Y.
k=1
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