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Abstract

We study a tangential interpolation problem with an arbitrary set of interpolating points
on the distinguished boundary of the unit polydisk for Schur–Agler class. The description
of all solutions is parametrized in terms of a linear fractional transformation.
 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

In this paper we consider a boundary interpolation problem for the class of
contractive valued functions in the polydisk introduced by Agler in [1]. This class,
which we denote bySd (E,E∗) and call theSchur–Agler class of the polydisk,
consists of allL(E,E∗)-valued functionsS analytic on thed-fold polydiskDd :

D
d = {

z = (z1, . . . , zd ) ∈ C
d : |zk| < 1

}
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and such that

sup
r<1

∥∥S(rT1, . . . , rTd)
∥∥ � 1

for anyr < 1 and for anyd-tuple of commuting contractions(T1, . . . , Td). In the
latter relationS(rT1, . . . , rTd) can be defined by the Cauchy integral formula

S(rT1, . . . , rTn)

= 1

(2πi)d

∫
rTd

S(z) ⊗ (z1I − T1)
−1 . . . (zdI − Td)

−1dz1 . . . dzd .

Throughout the paperE andE∗ are separable Hilbert spaces andL(E,E∗) denotes
the set of all bounded linear operators fromE into E∗. It was shown in [2] thatS
belongs toSd(E,E∗) if and only if there existd analytic operator-valued functions
Hk(z) on Dd with values equal to operators from an auxiliary Hilbert spaceHk

into E∗ so that

IE∗ − S(z)S(w)∗ =
d∑

k=1

(1− zkw̄k)Hk(z)Hk(w)∗ (1.1)

for every choice of pointsz = (z1, . . . , zd) andw = (w1, . . . ,wd) in Dd . Let

H =H1 ⊕ · · · ⊕Hd (1.2)

and letPk be orthogonal projections ofH onto Hk . Then the operator-valued
functions

Z(z) = z1P1 + · · · + zdPd and H(z) = H1(z)P1 + · · · + Hd(z)Pd

(1.3)

admit the block representations

Z(z) =
 z1IH1 0

. . .

0 zdIHd

 and H(z) = [
H1(z) . . . Hd(z)

]
(1.4)

with respect to the decomposition (1.2) and allow us to rewrite (1.1) in a more
compact form as

IE∗ − S(z)S(w)∗ = H(z)
(
IH − Z(z)Z(w)∗

)
H(w)∗. (1.5)

The following alternative characterization of the classSd (E,E∗) in terms of
unitaryd-variable colligations is given in [1] and [14].

Theorem 1.1. A L(E,E∗)-valued functionS analytic inDd belongs toSd (E,E∗)
if and only if there is an auxiliary Hilbert spaceH and a unitary operator

U =
[
A B

C D

]
:

[
H
E

]
→

[
H
E∗

]
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and ad-fold orthogonal decomposition(1.2) of H such that

S(z) = D + C
(
IH − Z(z)A

)−1
Z(z)B, (1.6)

whereZ(z) is given in(1.3). For S of the form(1.6), the representations(1.1)
and(1.5) are valid for

Hk(z) = C
(
I − Z(z)A

)−1
Pk and H(z) = C

(
I − Z(z)A

)−1
, (1.7)

respectively.

The representation (1.6) is calleda unitary realizationof S ∈ Sd(E,E∗).
In this paper we study an interpolation problem onTd , the distinguished

boundary of theDd . Let Ω be a set. The data set for the interpolation problem
is as follows. We are given a one-to-one function

σ = (σ1, . . . , σd) :Ω → T
d,

along with an auxiliary Hilbert spaceML. We are also given functionsa andc
on Ω , which are, respectively,L(ML,E∗), andL(ML,E)-valued. Finally, we
are given a functionΨ (ξ) onΩ whose values are bounded positive operators on
L(ML).

Problem 1.2. Find all functionsS ∈ Sd (E,E∗) such that

lim
r→1

S
(
rσ (ξ)

)∗a(ξ) = c(ξ) (ξ ∈ Ω) (1.8)

and

lim
r→1

a(ξ)∗
IE∗ − S(rσ (ξ))S(rσ (ξ))∗

1− r2 a(ξ) � Ψ (ξ) (ξ ∈ Ω), (1.9)

where the limits in(1.8) and (1.9) are understood in the strong and in the weak
sense, respectively.

Condition (1.8) is called theleft-sidedinterpolation condition forS. It follows
by a multivariable matrix analogue of the classical Julia–Carathéodory theorem
(see Lemma 2.1 below) that if the limit in (1.8) exists and equalsc(ξ), then the
necessary condition for the limits in (1.9) to exist and to be finite is

‖a(ξ)‖E = ‖c(ξ)‖E∗ (ξ ∈ Ω). (1.10)

It follows again by (the third assertion of) Lemma 2.1, thatS satisfies also the
right-sided interpolation condition

lim
r→1

S
(
rσ (ξ)

)
c(ξ) = a(ξ) (ξ ∈ Ω).

Thus, Problem 1.2 is in fact a two-sided interpolation problem and conditions
(1.10) are necessary for this problem to have a solution.
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The breakthrough result on interpolation for the Schur–Agler class was the
result for scalar-valued functions with finitely many interpolation nodes in
the interior of the polydisk obtained in the preprint [2]. Extensions of this
result to matrix-valued functions and to tangential and bitangential problems
were obtained in [3,14]. The approach of these latter papers was to identify
solutions of the interpolation problem as characteristic functions of unitary
colligations which are unitary extensions of a certain partially defined isometric
colligation constructed explicitly from the interpolation data. A method of Arov–
Grossman (see [6,7]) then leads to an elegant linear-fractional parametrization
for the set of all solutions in terms of a free Schur-class parameter. A more
abstract formulation of this approach (called the abstract interpolation problem
(AIP)) has been developed for a variety of single-variable interpolation problems
(see [22,24]); indeed, the paper [23] obtains new results on the (operator-valued)
Hamburger moment problem by first performing a change of variable to convert
the problem to a boundary interpolation problem and then using the AIP method
to analyze this boundary interpolation problem. The existence criterion for a
variety of bitangential interpolation problems for the Schur–Agler class with
interior interpolation nodes can now also be deduced from the general commutant
lifting theorem over the polydisk obtained in [13].

The purpose of this paper is to identify the extension of the AIP approach
required to solve the boundary interpolation problem on the distinguished bound-
ary of the polydisk for the Schur–Agler class (Problem 1.2). For the multivari-
able case (d > 1), we are aware only of the paper [28] on boundary interpola-
tion for the Schur–Agler class; this latter paper, however, treats interpolation on
disks embedded in the nondistinguished boundary of the polydisk rather than the
boundary interpolation on the distinguished boundary related to Carathéodory–
Julia theory, as is treated here. The existence criterion (see Theorem 2.2) is in
terms of what is called an LMI (linear matrix inequality) in the engineering liter-
ature, rather than the positivity of a single Pick matrix as in the univariate case;
we refer to [17,20] for a thorough discussion of LMIs and their manifold applica-
tions in engineering, and to [21] for a discussion of LMIs in the specific context
of (interior) polydisk interpolation. In this context (as already exhibited for the
interior interpolation problem studied in [14]), it is only particular subclasses of
solutions associated with some additional interpolation constraints which have a
single linear-fractional parametrization in terms of a free Schur–Agler-class para-
meter (see Corollary 4.2). Each such set of auxiliary interpolation conditions cor-
responds to a particular choiceP1, . . . ,Pd of solution of the LMI in the existence
criterion; one then must sweep through all linear fractional maps corresponding
to each suchP1, . . . ,Pd as well as through all free Schur–Agler-class parameters
to arrive at the set of all solutions of Problem 1.2.

For the single-variable case (d = 1), boundary interpolation on the unit disk
for scalar-valued functions appears already in the work of Nevanlinna [27] as
well as in [4]. There have been a number of operator-theoretic treatments for
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boundary interpolation problems for the matrix-valued Schur class (see [9,10,
12,15,16,18,25,26]) and the problem is treated in the books [11] and [19]. We
mention that the paper [29] obtains necessary and sufficient conditions for the
inequality condition (1.9) to be solved with equality (for the single-variable scalar-
valued case with finitely many interpolation nodes).

The paper is organized as follows. After the present Introduction, Section 2
presents necessary and sufficient conditions for Problem 1.2 to have a solution,
Section 3 establishes a correspondence between the set of all solutions and unitary
extensions of partially defined isometries, Section 4 presents a description of
all solutions of Problem 1.2 in terms of linear fractional transformations. In
Section 5 we treat the boundary Nevanlinna–Pick problem as a particular case
of Problem 1.2 and present explicit formulas for coefficients of the corresponding
linear transformation in terms of initial data.

2. The solvability criterion

In this section we establish the solvability criterion of Problem 1.2. First we
establish some auxiliary results part of which can be considered as a multivariable
operator analogue of the classical Julia–Carathéodory theorem.

Lemma 2.1. Let S ∈ Sd (E,E∗), β ∈ Td , x ∈ E∗ and letHj (j = 1, . . . , d) be
L(Hj ,E∗)-valued functions from the representation(1.1). Then:

(I) The following three statements are equivalent:
(1) S is subject to

L := sup
0�r<1

x∗ IE∗ − S(rβ)S(rβ)∗

1− r2 x < ∞.

(2) The radial limit

L := lim
r→1

x∗ IE∗ − S(rβ)S(rβ)∗

1− r2
x

exists.
(3) The radial limit

lim
r→1

S(rβ)∗x = y (2.1)

exists in the strong sense and serves to define the vectory ∈ E .
Furthermore,

lim
r→1

S(rβ)y = x, ‖y‖ = ‖x‖ (2.2)

(the limit is understood in the strong sense), and the radial limit

L̃ = lim
r→1

y∗y − x∗S(rβ)y
1− r

(2.3)
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exists.
(II) Any two of the three equalities in(2.1) and(2.2) imply the third.

(III) If any of the three statements in part(I) holds true, then the radial limits

Tj = lim
r→1

Hj(rβ)
∗x (j = 1, . . . , d) (2.4)

exist in the strong sense and

d∑
j=1

T ∗
j Tj = L = L̃ � L. (2.5)

Proof. For the proof of all the statements for the single-variable case (d = 1)
see [8, Lemma 2.2] (all the statements but those related toTj ’s and for finite-
dimensionalE andE∗ are contained in [19, Lemma 8.3, Lemma 8.4, and Theo
rem 8.5]). For the cased � 2, let us introduce the slice-functions

Sβ(ζ ) := S(βζ ) and Hβ(ζ ) := H(βζ ) (ζ ∈ D), (2.6)

the first of which clearly belongs to the classical Schur classS1(E,E∗). Since
β ∈ Td , it follows that Z(ζβ)Z(ωβ)∗ = ζ ω̄IH for every pair ofζ,ω ∈ C and
thus, by (1.5),

IE∗ − Sβ(ζ )Sβ(ω)∗ = (1− ζ ω̄)Hβ(ζ )Hβ(ω)∗.

All the statements of the lemma regard the boundary behavior of the functionSβ

near a boundary pointζ = 1. Applying one-variable results to slice-functionsSβ

andHβ , returning to the original functionsS andH and taking into account the
block decomposition (1.4) ofH , we obtain all the desired assertions. To see the
third statement, note that by the one-variable result, there exists the strong limit

T := lim
r→1

Hβ(r)
∗x, (2.7)

which satisfies

T ∗T = L = L̃ � L. (2.8)

Since, by (1.4) and (2.6),

Hβ(r) = [
H1(rβ) . . . Hd(rβ)

]
,

we conclude from (2.7) that the strong limitsTj = limr→1Hj(rβ) exist for
j = 1, . . . , d and satisfy

T =
 T1

...

Td

 , T ∗T =
d∑

j=1

T ∗
j Tj .

These identities together with (2.8) imply (2.5).✷
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Theorem 2.2. Problem1.2 has a solution if and only if there existd kernels
Pj (ξ,µ) :Ω × Ω → L(ML) (j = 1, . . . , d) such that

Pj (ξ,µ) � 0 (ξ,µ ∈ Ω), (2.9)
d∑

j=1

Pj (ξ, ξ) � Ψ (ξ) (ξ,µ ∈ Ω), (2.10)

and satisfying the generalized Stein identity

d∑
j=1

(
1− σj (ξ)σj (µ)

)
Pj (ξ,µ) = a(ξ)∗a(µ)− c(ξ)∗c(µ) (ξ,µ ∈ Ω).

(2.11)

Proof. Let S be a solution of Problem 1.2, that is, let it belong toSd (E,E∗) and
satisfy interpolation conditions (1.8) and (1.9). SinceS belongs toSd (E,E∗), the
identity (1.1) holds for someL(Hj ,E∗)-valued functionsHj which are analytic
onBd . Let Tj (ξ) stand for the following strong limit

Tj (ξ) := lim
r→1

H
(
rσ (ξ)

)∗a(ξ) (j = 1, . . . , d, ξ ∈ Ω), (2.12)

which exists at every pointξ ∈ Ω , by Lemma 2.1, and satisfies

d∑
j=1

Tj (ξ)
∗Tj (ξ) = L(ξ) := lim

r→1
a(ξ)∗

IE∗ − S(rσ (ξ))S(rσ (ξ))∗

1− r2 a(ξ)

(2.13)

for j = 1, . . . , d and eachξ ∈ Ω . The kernels

Pj (ξ,µ) = Tj (ξ)
∗Tj (µ) (ξ,µ ∈ Ω) (2.14)

are clearly positive and satisfy (2.10) by (1.9) and (2.13). Settingz = rσ (ξ) and
w = rσ (µ) in (1.1) and multiplying both sides in the resulting identity bya(ξ)∗
on the left and bya(µ) on the right, we get

a(ξ)∗
(
IE∗ − S

(
rσ (ξ)

)
S
(
rσ (µ)

)∗)a(µ)

=
d∑

j=1

(
1− r2σ(ξ)σ (µ)

)
a(ξ)∗Hj

(
rσ (ξ)

)
Hj

(
rσ (µ)

)∗a(µ).

Taking the limit asr → 1 in the last identity and making use of (1.8), (2.12)
and (2.14), we come to (2.11), which completes the proof of the necessity part of
the theorem. The proof of the sufficiency part is postponed up to Section 4 where
it will be obtained as a consequence of slightly stronger results.✷

From now on we assume that the necessary conditions (2.9)–(2.11) for Prob-
lem 1.2 to have a solution are in force.
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3. Solutions to the interpolation problem and unitary extensions

We recall that ad-variable colligation is defined as a quadruple

Q=
{
H =

d⊕
j=1

Hj ,E,E∗,U

}
(3.1)

consisting of three Hilbert spacesH (the state space) which is specified to have
a fixedd-fold orthogonal decomposition,E (the input space) andE∗ (the output
space), together with a connecting operator

U =
[
A B

C D

]
:

[
H
E

]
→

[
H
E∗

]
.

The colligation is said to beunitary if the connecting operatorU is unitary.
A colligation

Q̃=
{
H̃ =

d⊕
j=1

H̃j ,E,E∗, Ũ

}
(3.2)

is said to beunitarily equivalentto the colligationQ if there is a unitary operator
α :H→ H̃ such that

αPj = P̃j α (j = 1, . . . , d) and

[
α 0
0 IE∗

]
U = Ũ

[
α 0
0 IE

]
,

wherePj and P̃j are orthogonal projections ofH ontoHj and ofH̃ onto H̃j ,
respectively. Thecharacteristic functionof the colligationQ is defined as

SQ(z) = D + C
(
IH − Z(z)A

)−1
Z(z)B, (3.3)

whereZ(z) is defined as in (1.3). Thus, Theorem 1.1 asserts that aL(E,E∗)-
valued functionS analytic inDd belongs to the classSd(E,E∗) if and only if it is
the characteristic function of somed-variable unitary colligation (3.1).

Although the functionZ depends on thed-fold decomposition (1.2) of the
state spaceH, we shall writeZ(z) rather thanZH(z) if the state space and its
decomposition will be clear from the context.

Remark 3.1. Unitary equivalent colligations have the same characteristic func-
tion.

In this section we associate a certain unitary colligation to Problem 1.2 for a
fixed choice of kernelsPj satisfying conditions (2.9)–(2.11). It turns out that the
characteristic function of this colligation is the transfer function of the Redheffer
transform describing solutions of Problem 1.2 associated with this choice ofPj .
Assuming that the necessary conditions (2.9)–(2.11) for Problem 1.2 to have a
solution are in force, let us consider the linear spaceH0 of ML-valued functions
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h(ξ) defined onΩ which take nonzero values at at most finitely many points. Let
X ∈L(H0,E∗) andY ∈ L(H0,E) be operators defined by

Xh =
∑
ξ

a(ξ)h(ξ), Yh =
∑
ξ

c(ξ)f (ξ), (3.4)

and letDj (h,g) be the quadratic form onH0 ×H0 defined as

Dj (h,g) =
∑
ξi ,ξ)

〈
Pj (ξi , ξ))h(ξ)), g(ξi)

〉
ML

(j = 1, . . . , d). (3.5)

Then it follows from (2.11) that

d∑
j=1

(
Dj (h,g) − Dj (σ jh, σ jg)

) = 〈Xh,Xg〉E∗ − 〈Yh,Yg〉E . (3.6)

We say thath1 ∼ h2 if and only if Dj (h1 − h2, y) = 0 for all y ∈ H0 and denote
[h]Dj the equivalence class ofh with respect to the above equivalence. The linear
space of equivalence classes endowed with the inner product〈[h], [y]〉= Dj (h, y) (3.7)

is a pre-Hilbert space, whose completion we denote byĤj . Rewriting (3.6) as

d∑
j=1

〈[f ]Dj , [f ]Dj

〉
Ĥj

+ 〈Yf,Yf 〉E

=
d∑

j=1

〈[σjf ]Dj , [σjf ]Dj

〉
Ĥj

+ 〈Xf,Xf 〉E∗ (3.8)

and setting

Ĥ = Ĥ1 ⊕ · · · ⊕ Ĥd,

we conclude that the linear map

VP1,...,Pd
:


[f ]D1

...

[f ]Dd

Yf

 →


[σ 1f ]D1

...

[σdf ]Dd

Xf

 (3.9)

is an isometry from

DV = Clos




[f ]D1
...

[f ]Dd

Yf

 , f ∈ H0

 ⊂
[
Ĥ
E

]
(3.10)
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onto

RV = Clos




[σ 1f ]D1
...

[σdf ]Dd

Xf

 , f ∈H0

 ⊂
[
Ĥ
E∗

]
. (3.11)

Theorems 3.2 and 3.4 below establish a correspondence between solutionsS to
Problem 1.2 and unitary extensions of the partially defined isometryVP1,...,Pd

given in (3.9).

Theorem 3.2. Let S be a solution to Problem1.2. Then there existd kernels
P1, . . . ,Pd onΩ satisfying conditions(2.9)–(2.11) such thatS is a characteristic
function of a unitary colligation

Ũ =
[
Ã B̃

C̃ D̃

]
:

[
Ĥ⊕ H̃

E

]
→

[
Ĥ⊕ H̃
E∗

]
, (3.12)

which is an extension of the isometryVP1,...,Pd
given in(3.9).

Proof. Let S be a solution to Problem 1.2. In particular,S belongs toSd (E,E∗)
and, by Theorem 1.1, it is the characteristic function of some unitary colligationQ
of the form (3.1). In other words,S admits a unitary realization (1.6) with the
state spaceH and the equality (1.1) holds for functionsHj ’s defined via (1.7).
The functionsHj ’s are analytic and takeL(Hj ,E∗) values onDd . The function
H(z) defined as in (1.4) is analytic andL(H,E∗)-valued onDd . It also can be
represented in terms of the realization (1.6) as in (1.7) and thus leads to the
following representation

S(z) = D + H(z)Z(z)B (3.13)

of S, which is equivalent to (1.6).
The interpolation conditions (1.8) and (1.9), which are assumed to be satisfied

by S, force certain restrictions on the connecting operator

U =
[
A B

C D

]
.

By Lemma 2.1 and in view of (1.4), the following strong limit exists:

lim
r→1

H
(
rσ (ξ)

)∗a(ξ) =
 T1(ξ)

...

Td(ξ)

 =: T (ξ) (ξ ∈ Ω). (3.14)

Substituting (3.13) into (1.8) we get

lim
r→1

(
D∗ + B∗Z

(
rσ (ξ)

)∗
H

(
rσ (ξ)

)∗)a(ξ) = c(ξ) (ξ ∈ Ω),
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where the limit is understood in the strong sense. It also follows from (1.5) that
C + H(z)Z(z)A = H(z) and, therefore, that (strongly)

C∗a(ξ) + lim
r→1

A∗Z
(
rσ (ξ)

)∗
H

(
rσ (ξ)

)∗a(ξ) = lim
r→1

H
(
rσ (ξ)

)∗a(ξ).

By (1.8) and (3.14), the two last (displayed) equalities are equivalent to

D∗a(ξ) + B∗Z
(
σ(ξ)

)∗
T (ξ) = c(ξ) (3.15)

and

C∗a(ξ) + A∗Z
(
σ(ξ)

)∗
T (ξ) = T (ξ), (3.16)

which can be written in matrix form as[
A∗ C∗
B∗ D∗

][
Z(σ(ξ))∗T (ξ)

a(ξ)

]
=

[
T (ξ)

c(ξ)

]
(ξ ∈ Ω).

Since the operator[ A B
C D

] is unitary, we conclude from the last equality that[
A B

C D

][
T (ξ)

c(ξ)

]
=

[
Z(σ(ξ))∗T (ξ)

a(ξ)

]
. (3.17)

Let P1, . . . ,Pd be defined as in (2.14), letVP1,...,Pd
be the isometry given in (3.9)

and letTj :H0 →Hj be the operator given by

Tj h =
∑
ξ

Tj (ξ)h(ξ) (j = 1, . . . , d). (3.18)

Upon making subsequent use of (3.7), (3.5), (2.14) and (3.18), we get〈[h]Dj , [y]Dj

〉
Ĥj

= Dj (h, y) =
∑
ξi ,ξ)

〈
Pj (ξi , ξ))h(ξ)), y(ξi)

〉
ML

=
∑
ξi ,ξ)

〈
Tj (ξ))h(ξ)), Tj (ξi)y(ξi)

〉
ML

=
〈∑

ξ)

Tj (ξ))h(ξ)),
∑
ξi

Tj (ξi)y(ξi)

〉
ML

= 〈Tj h,Tj y〉Ĥj
.

Therefore, the linear transformationUj :H0 → Ĥj defined by the rule

Uj : Tj f → [f ]Dj (f ∈H0) (3.19)

can be extended to the unitary map (which still is denoted byUj ) from RanTj

ontoĤj . Noticing thatRanTj is a subspace ofHj and setting

Nj :=Hj � RanTj and H̃j := Ĥj ⊕Nj ,
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we define the unitary map̃Uj :Hj → H̃j by the rule

Ũj g =
{
Ujg for g ∈ RanTj ,

g for g ∈Nj .
(3.20)

The operator

Ũ :=
d⊕

j=1

Ũj :H→ H̃ :=
d⊕

j=1

H̃j (3.21)

is unitary and satisfies

ŨPj = P̃j Ũ (j = 1, . . . , d),

wherePj and P̃j are orthogonal projections ofH ontoHj and ofH̃ onto H̃j ,
respectively. Introducing the operators

Ã = ŨAŨ∗, B̃ = ŨB, C̃ = CŨ∗, D̃ = D (3.22)

we construct the colligatioñQ via (3.2) and (3.12). By definition,̃Q is unitarily
equivalent to the initial colligationQ defined in (3.1). By Remark 3.1,̃Q has
the same characteristic function asQ, that is,S(z). It remains to check that the
connecting operator of̃Q is an extension ofVP1,...,Pd

, that is,

[
Ã B̃

C̃ D̃

]
[f ]D1

...

[f ]Dd

Yf

 =


[σ 1f ]D1

...

[σdf ]Dd

Xf

 , f ∈ H0. (3.23)

To this end, note that by (3.18)–(3.20),

Ũ∗
j

([f ]Dj

) = Tj f =
∑
ξ

Tj (ξ)f (ξ)

and

Ũj

(∑
ξ

σj (ξ)Tj (ξ)f (ξ)

)
= ŨjTj (σ jf ) = [σjf ]Dj

for j = 1, . . . , d and for everyf ∈ H0. Taking into account the diagonal structure
(3.21) ofŨ , we now get from the two last equalities that

Ũ∗


 [f ]D1

...

[f ]Dd


 =

∑
ξ

T (ξ)f (ξ) (3.24)

and

Ũ

(∑
ξ

Z
(
σ(ξ)

)∗
T (ξ)f (ξ)

)
=

 [σ1f ]D1
...

[σdf ]Dd

 . (3.25)
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Thus, making subsequent use of (3.22), (3.24), (3.17) and (3.25), we get

[
Ã B̃

C̃ D̃

]
[f ]D1

...

[f ]Dd

Yf

 =
[
Ũ 0
0 I

][
A B

C D

][
Ũ∗ 0
0 I

]
[f ]D1

...

[f ]Dd

Yf


=

[
Ũ 0
0 I

][
A B

C D

](∑
ξ

[
T (ξ)

c(ξ)

]
f (ξ)

)

=
[
Ũ 0
0 I

](∑
ξ

[
A B

C D

][
T (ξ)

c(ξ)

]
f (ξ)

)

=
[
Ũ 0
0 I

](∑
ξ

[
Z(σ(ξ))∗T (ξ)

a(ξ)

]
f (ξ)

)

=


[σ 1f ]D1

...

[σdf ]Dd

Xf

 , (3.26)

which proves (3.23) and completes the proof of the lemma.✷
The converse statement will be proved in Theorem 3.4 below. We start with

some auxiliary results (for the proof see [8, Section 2]).

Lemma 3.3. Let A be a contraction on a Hilbert spaceH. Then the following
strong limits

R := lim
r→1

(1− r)(IH − rA)−1, Q := lim
r→1

(IH − rA)−1(IH − A),

lim
r→1

(1− r)2(IH − rA∗)−1(IH − A∗A)(IH − rA)−1 = 0 (3.27)

exist. Moreover,R andQ are in fact orthogonal projection ontoKer(IH −A) and
Ran(IH − A∗), respectively.

Theorem 3.4. Let P1, . . . ,Pd be kernels onΩ satisfying conditions(2.9)–(2.11)
and let Ũ of the form (3.12) be a unitary extension of the partially defined
isometryVP1,...,Pd

given in(3.9). Then the characteristic functionS of the unitary

colligationQ̃ defined via(3.2) is a solution of Problem1.2.
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Proof. We start with factorizations (2.14) of the kernelsPk and let, according to
(3.14),

T (ξ) =
 T1(ξ)

...

Td(ξ)

 . (3.28)

Furthermore, we define the unitary map̃U via (3.18)–(3.20).Then relations (3.22)
hold by construction and, therefore, the operator

U =
[
A B

C D

]
=

[
Ũ∗ 0
0 I

][
Ã B̃

C̃ D̃

][
Ũ 0
0 I

]
satisfies (3.17) (or, equivalently, (3.15) and (3.16)), which can be easily seen
from (3.26). By Remark 3.1, the colligationŝQ andQ̃ defined in (3.1) and (3.2)
have the same characteristic functions and thusS can be taken in the form (1.6).
Let Hk(z) andH(z) be given by (1.7).

By (3.27) (withA replaced byA∗Z(σ(ξ))∗), it follows that

lim
r→1

(1− r)2(I − rZ
(
σ(ξ)

)
A
)−1

Z
(
σ(ξ)

)
(I − AA∗)Z

(
σ(ξ)

)∗
× (

I − rA∗Z
(
σ(ξ)

)∗)−1 = 0,

which is equivalent, sinceAA∗ + BB∗ = I , to

lim
r→1

(1− r)2(I − rZ
(
σ(ξ)

)
A
)−1

Z
(
σ(ξ)

)
BB∗Z

(
σ(ξ)

)∗
× (

I − rA∗Z
(
σ(ξ)

)∗)−1 = 0.

Therefore,

lim
r→1

(1− r)B∗Z
(
σ(ξ)

)∗(
I − rA∗Z

(
σ(ξ)

)∗)−1
x = 0

(for everyx ∈H). (3.29)

Using (1.6) and expressions forD∗a(ξ) and C∗a(ξ) derived from (3.15) and
(3.16), respectively, we get

S
(
rσ (ξ)

)∗a(ξ) = D∗a(ξ) + rB∗Z
(
σ(ξ)

)∗(
I − rA∗Z

(
σ(ξ)

)∗)−1
C∗a(ξ)

= c(ξ) − B∗Z
(
σ(ξ)

)∗
T (ξ) + rB∗Z

(
σ(ξ)

)∗
× (

I − rA∗Z
(
σ(ξ)

)∗)−1(
I − rA∗Z

(
σ(ξ)

)∗)
T (ξ)

= c(ξ) − (1− r)B∗Z
(
σ(ξ)

)
× (

I − rA∗Z
(
σ(ξ)

)∗)−1
T (ξ). (3.30)

Taking limits in the last identity asr tends to one and taking into account (3.29),
we come to (1.8). Furthermore, by (3.30),
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c(ξ)∗c(ξ) − c(ξ)∗S(rσ (ξ))∗a(ξ)
1− r

= c(ξ)∗B∗Z
(
σ(ξ)

)∗(
I − rA∗Z

(
σ(ξ)

)∗)−1
T (ξ). (3.31)

It follows from (3.17) that

AT (ξ) + Bc(ξ) = Z
(
σ(ξ)

)∗
T (ξ)

and, therefore,

c(ξ)∗B∗ = T (ξ)∗
(
Z
(
σ(ξ)

) − A∗).
Substituting the latter equality into (3.31) and taking into account thatZ(σ(ξ))×
Z(σ(ξ))∗ = I , we get

c(ξ)∗c(ξ) − c(ξ)∗S(rσ (ξ))∗a(ξ)
1− r

= T (ξ)∗
(
I − A∗Z

(
σ(ξ)∗

))(
I − rA∗Z

(
σ(ξ)

)∗)−1
T (ξ).

Taking limits in the last identity asr tends to one and applying Lemma 3.3 (withA

replaced byA∗Z(σ(ξ))∗), we conclude that the following weak limit exists:

lim
r→1

c(ξ)∗c(ξ) − c(ξ)∗S(rσ (ξ))∗a(ξ)
1− r

= T (ξ)∗PRan(IH−Z(σ(ξ))A)T (ξ).

Making use of (1.8) and (1.10) we conclude now by Lemma 2.1 that

lim
r→1

a(ξ)∗ IE∗ − S(rσ (ξ))S(rσ (ξ))∗

1− r2 a(ξ)

= lim
r→1

c(ξ)∗c(ξ) − c(ξ)∗S(rσ (ξ))∗a(ξ)
1− r

, (3.32)

where the limit on the left-hand side in (3.32) is meant in the weak sense (as well
as the limit on the right-hand side). Comparing the two last equalities and making
use of (2.14), (2.10) and (3.28), we get that for everyξ ∈ Ω

lim
r→1

a(ξ)∗ IE∗ − S(rσ (ξ))S(rσ (ξ))∗

1− r2
a(ξ) = T (ξ)∗PRan(IH−Z(σ(ξ))A)T (ξ)

� T (ξ)∗T (ξ) =
d∑

j=1

Tj (ξ)
∗Tj (ξ) =

d∑
j=1

Pj (ξ, ξ) � Ψ (ξ),

which proves (1.9) and completes the proof of theorem.✷

4. The universal unitary colligation associated with the interpolation
problem

A general result of Arov and Grossman (see [6,7]) describes how to parame-
trize the set of all unitary extensions of a given partially defined isometryV. Their
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result has been extended to the multivariable case in [14] and can be applied to
the present setting.

Let VP1,...,Pd
:DVP1,...,Pd

→ RVP1,...,Pd
be the isometry given in (3.9) with

DVP1,...,Pd
andRVP1,...,Pd

given in (3.10) and (3.11). Introduce the defect spaces

∆ =
[
Ĥ
E

]
�DVP1,...,Pd

and ∆∗ =
[
Ĥ
E∗

]
�RVP1,...,Pd

,

and let ∆̃ be another copy of∆ and ∆̃∗ be another copy of∆∗ with unitary
identification maps

i :∆ → ∆̃ and i∗ :∆∗ → ∆̃∗.
Define a unitary operatorU0 fromDVP1,...,Pd

⊕∆⊕ ∆̃∗ ontoRVP1,...,Pd
⊕∆∗ ⊕ ∆̃

by the rule

U0x =


Vx if x ∈DV,

i(x) if x ∈ ∆,

i−1∗ (x) if x ∈ ∆̃∗.
(4.1)

Identifying
[ DVP1,...,Pd

∆

]
with

[
Ĥ
E

]
and

[ RVP1,...,Pd
∆∗

]
with

[
Ĥ
E∗

]
, we decompose

U0 defined by (4.1) according to

U0 =
U11 U12 U13

U21 U22 U23
U31 U32 0

 :

 Ĥ
E
∆̃∗

 →
 Ĥ
E∗
∆̃

 .

The “33” block in this decomposition is zero, since (by definition (4.1)), for

everyx ∈ ∆̃∗, the vectorU0x belongs to∆, which is a subspace of
[
Ĥ
E∗

]
and,

therefore, is orthogonal tõ∆ (in other words,P∆̃U0|∆̃∗ = 0, whereP∆̃ stands for
the orthogonal projection ofRVP1,...,Pd

⊕ ∆∗ ⊕ ∆̃ onto∆̃).
The unitary operatorU0 is the connecting operator of the unitary colligation

Ω0 =
{
Ĥ,

[
E
∆̃∗

]
,

[
E∗
∆̃

]
,U0

}
,

which is calledthe universal unitary colligationassociated with the interpolation
problem. According to (3.3), the characteristic function of this colligation is given
by

Σ(z) =
[
Σ11(z) Σ12(z)

Σ21(z) Σ22(z)

]
=

[
U22 U23
U32 0

]
+

[
U21
U31

](
In − Z(z)U11

)−1
Z(z)[U12 U13] (4.2)

and belongs to the classSd(E ⊕ ∆̃∗,E∗ ⊕ ∆̃), by Theorem 1.1.
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Theorem 4.1. Let V be the isometry defined in(3.9), let Σ be the function
constructed as above, and letS be aL(E,E∗)-valued function. Then the following
are equivalent:

(1) S is a characteristic function of a colligation

Ω =
{
Ĥ⊕ H̃,E,E∗,

[
A B

C D

]}
with the connecting operator being a unitary extension ofVP1,...,Pd

.
(2) S is of the form

S(z) = Σ11(z) + Σ12(z)
(
IE∗⊕∆̃ − T (z)Σ22(z)

)−1T (z)Σ21(z), (4.3)

whereT is a function from the classSd (E ⊕ ∆̃∗,E∗ ⊕ ∆̃).

This result (which has been proved in [14]) together with Theorems 3.2 and 3.4
leads to a description of all solutions of Problem 1.2.

The following corollary on parametrization of particular subclasses of solu-
tions implies in particular the sufficiency part of Theorem 2.2.

Corollary 4.2. Let P1, . . . ,Pd be d kernels satisfying conditions(2.9)–(2.11),
and let

Σ(z) =
[
Σ11(z) Σ12(z)

Σ21(z) Σ22(z)

]
be the characteristic function as in(4.2) of the unitary colligationU0 constructed
fromVP1,...,Pd

as in(4.1). Then the set of all solutionsS of Problem1.2 satisfying
the auxiliary side conditions

Tj (ξ)
∗Tj (µ) = Pj (ξ,µ) for ξ,µ ∈ Ω andj = 1, . . . , d

(whereTj (ξ) = limr→1Hj(rσ (ξ))∗a(ξ) for some choice ofH1(z), . . . ,Hd(z)

for which (1.1) holds) is given by(4.3) whereT is a function from the class
Sd(E ⊕ ∆̃∗,E∗ ⊕ ∆̃).

5. Boundary Nevanlinna–Pick interpolation problem

In this section we consider a boundary Nevanlinna–Pick problem for the class
Sd(E,E∗). We are given an auxiliary Hilbert spaceML, the setZ = {z(1),
. . . , z(n)} ⊂ Td , 2n operators

x1, . . . , xn ∈L(ML,E∗), y1, . . . , yn ∈ L(ML,E)
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andn positive semidefinite operators

γ1, . . . , γn ∈L(ML), γj � 0 (j = 1, . . . , n).

Problem 5.1. Find all functionsS ∈ Sd (E,E∗) such that

lim
r→1

S(rz(j))∗xj = yj (ξ ∈ Ω) (5.1)

and

lim
r→1

x∗
j

IE∗ − S(rz(j))S(rz(j))∗

1− r2
xj � γj (j = 1, . . . , n), (5.2)

where the limits in(5.1) and (5.2) are understood in the strong and in the weak
sense, respectively.

Problem 5.1 is a particular case of Problem 1.2 corresponding to the following
choice of interpolation data:

Ω =Z, σ (ξ) = ξ, Ψ
(
z(j)

) = γj , a
(
z(j)

) = xj ,

c
(
z(j)

) = yj (j = 1, . . . , n). (5.3)

In the present context Theorem 2.2 takes the following form.

Theorem 5.2. Problem5.1 has a solution if and only if there existd positive
semidefinite block matricesPk = [pk

ij ]ni,j=1 � 0 (j = 1, . . . , d) with block entries

pk
ij ∈L(ML) subject to

d∑
k=1

pk
jj � γk (j = 1, . . . , n), (5.4)

which satisfy the generalized Stein equality

d∑
k=1

(
Pk − N∗

k PkNk

) = X∗X − Y ∗Y, (5.5)

where[
X

Y

]
=

[
x1 . . . xn
y1 . . . yn

]
and

Nk =
 z

(1)
k IML

0
. . .

0 z
(n)
k IML

 (k = 1, . . . , d). (5.6)
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Indeed, sinceΩ is a finite set of points, Stein equation (2.11) is equivalent to
equality of Hermitian forms

n∑
i,j=1

〈
d∑

k=1

Pk

(
z(i), z(j)

)
gj , gi

〉

−
n∑

i,j=1

〈
d∑

k=1

Pj

(
z(i), z(r)

)
σ
(
z(j)

)
gj , σ

(
z(i)

)
gi

〉

=
n∑

i,j=1

〈
a
(
z(j)

)
gj ,a

(
z(i)

)
gi

〉 − n∑
i,j=1

〈
c
(
z(j)

)
gj , c

(
z(i)

)
gi

〉
(gi ∈ML)

which, in turn, is equivalent to the operator identity (5.5) with

Pk = [
Pk

(
z(i), z(j)

)]n
i,j=1 (k = 1, . . . , d). (5.7)

Since the kernelsPk are positive onΩ , the matricesPk are positive semidefinite.
Finally, condition (5.4) follows from (2.10).

For every choice of positive semidefinite matricesP1, . . . ,Pd satisfying (5.4)
and (5.5), the set of solutions of Problem 5.1 associated with this choice is para-
metrized by Theorem 4.1 in terms of a Redheffer linear fractional transforma-
tion (4.3). Moreover, in this case one can get explicit formulas for coefficients
Σij (z) of this transformation in terms of interpolation data. Such formulas have
been established in [5] for nonboundary bitangential problem. Since the formulas
depend only on the entries in the identity (5.5) (in contrast to the boundary prob-
lem, the matricesPj for the nonboundary problem are prescribed), they are still
true for the present context. We present these formulas for the sake of complete-
ness:

Σ11(z) = X∆(z)[−1]Y ∗,
Σ12(z) = (

X∆(z)[−1]W∗
1Z(z), IE∗

)
T2,

Σ21(z) = T ∗
1

(
Z(z)W2∆(z)[−1]Y ∗

IE

)
,

Σ22(z) = T ∗
1

(
I

0

)(
I + Z(z)W2∆(z)[−1]W∗

1

)
(I,0)Z(z)T2,

where

W1 =
 P

1/2
1
...

P
1/2
d

 , W2 =
 P

1/2
1 N1
...

P
1/2
d Nd

 ,

T1 andT2 are isometric operators such that

[W∗
1 Y ∗]T1 = 0 and [W∗

2 X∗]T2 = 0,
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and where∆(z)[−1] stands for the Moore–Penrose generalized inverse of the func-
tion

∆(z) =
d∑

k=1

Pk(I − zkNk) + Y ∗Y.
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