Let E be a local field, and \mathcal{O}_E its ring of integers. A lattice in E^n is a finitely generated \mathcal{O}_E-submodule Λ such that $\Lambda \otimes_{\mathcal{O}_E} E = E^n$; equivalently, an \mathcal{O}_E-submodule such that $\Lambda \cong \mathcal{O}_E^n$. We will make use of, but not prove, the equivalence of these two characterizations of lattices in E^n.

Lemma 0.1. If K is a compact group acting continuously and linearly on E^n, then there exists a lattice Λ stabilized by K.

Proof. Let Λ' be any lattice in E^n. The set $U = \{ g \in K : g\Lambda' \subset \Lambda' \}$ is open; to see this, note for instance that if v_1, \ldots, v_n is a basis of Λ' and $f_i : K \to E^n$ is the map $g \mapsto gv_i$, then $U = \bigcap_i \{ g : gv_i \in \Lambda' \} = \bigcap_i f_i^{-1}(\Lambda')$. The sets gU for $g \in K$ are open covers of K, hence they have a finite subcover g_1U, \ldots, g_rU for $i = 1, \ldots, r$. Set $\Lambda = g_1\Lambda' + \cdots + g_r\Lambda'$; by the first characterization of lattices, this is again a lattice.

To prove that K stabilizes Λ we need to check that $g(g_iu) \in \Lambda$ for each $g \in K$, $v \in \Lambda'$, and $i = 1, \ldots, r$. Write $gg_i = g_ju$ with $u \in U$. Then $g(g_iu) = g_j(uv) \in g_j\Lambda'$, as desired. \hfill \square

Write $G = \text{GL}_n(E)$ and let G act naturally on E^n, which contains the standard lattice \mathcal{O}_E^n.

Lemma 0.2. The stabilizer of \mathcal{O}_E^n under this action is $\text{GL}_n(\mathcal{O}_E)$.

Proof. It is clear that $\text{GL}_n(\mathcal{O}_E)$ stabilizes \mathcal{O}_E^n. On the other hand if $g \in G \setminus \text{GL}_n(\mathcal{O}_E)$, suppose that the (i, j)-entry of g is not contained in \mathcal{O}_E. If e_j is the jth standard basis vector of E^n then $ge_j \notin \mathcal{O}_E^n$, so g does not stabilize \mathcal{O}_E^n. \hfill \square

Now we are ready to prove the following.

Theorem 0.3. $\text{GL}_n(\mathcal{O}_E)$ is a maximal compact subgroup of $\text{GL}_n(E)$.

Proof. Let $\pi \in \mathcal{O}_E$ be a uniformizer. To see that $\text{GL}_n(\mathcal{O}_E)$ is compact, note that the kernel of the homomorphism $\text{GL}_n(\mathcal{O}_E) \to \text{GL}_n(\mathcal{O}_E/\pi)$ is $I + \pi M_n(\mathcal{O}_E)$, which is certainly compact (it is homeomorphic to \mathcal{O}_E^n). Since $\text{GL}_n(\mathcal{O}_E/\pi)$ is finite, $\text{GL}_n(\mathcal{O}_E)$ is the (disjoint) union of finitely many translates of a compact set.

Now suppose that K is a compact subgroup of $\text{GL}_n(E)$ containing $\text{GL}_n(\mathcal{O}_E)$. By Lemma 0.1 there is a lattice Λ stabilized by K. Noting that K also stabilizes $c\Lambda$ for any $c \in E^\times$, we may replace Λ with $\pi\Lambda$ so that $\Lambda \subset \mathcal{O}_E^n$ but $\Lambda \not\subset \mathcal{O}_E^n$. Choose $v \in \Lambda$ so that one of the coordinates of v is a unit. It is easily checked that the $\text{GL}_n(\mathcal{O}_E)$-orbit of v is all of \mathcal{O}_E^n. Since the K-orbit of v is at least as large, we must have $\mathcal{O}_E^n \subset \Lambda$, hence $\Lambda = \mathcal{O}_E^n$. Thus K stabilizes \mathcal{O}_E^n, and Lemma 0.2 gives the reverse inequality $K \subset \text{GL}_n(\mathcal{O}_E)$. \hfill \square
We can reinterpret this result as follows.

Corollary 0.4. The following are equivalent:

1. K is a maximal compact subgroup of $GL_n(E)$;
2. K is the stabilizer of some lattice Λ;
3. K is conjugate to $GL_n(O_E)$.

Proof. The second and third statements are trivially seen to be equivalent (the group $A GL_n(O_E) A^{-1}$ is the stabilizer of $A \cdot O^n_E$). Any conjugate of a maximal compact subgroup is again a maximal compact subgroup, so the third statement together with Theorem 0.3 implies the first.

Finally, suppose K is a maximal compact subgroup of $GL_n(E)$. By Lemma 0.1, K stabilizes a lattice Λ. Then K is contained in the stabilizer of Λ, which is conjugate to $GL_n(O_E)$, hence compact; by maximality, K is equal to the stabilizer of Λ. \qed