Conjugacy Classes of the Symmetric Groups

Math 430 - Spring 2009

Let G be any group. If $g, x \in G$, we define the conjugate of g by x to be the element xgx^{-1}. (Note: some texts define the conjugate of g by x to be $x^{-1}gx$. By our definition, this would be the conjugate of g by x^{-1}.) If $g, h \in G$, and there is some $x \in G$ such that $xgx^{-1} = h$, we say that g and h are conjugate in G. For the group G, define the relation \sim by $g \sim h$ if g and h are conjugate in G.

Proposition 1 Let G be a group, and define the relation \sim on G by $g \sim h$ if g and h are conjugate in G. Then \sim is an equivalence relation on G.

Proof. We need to check that \sim satisfies the three defining properties of an equivalence relation. First, for any $g \in G$, we have $g \sim g$ since $ege^{-1} = g$, so the reflexive property holds. Now suppose gh. Then there is some $x \in G$ such that $xgx^{-1} = h$. Then we obtain $g = x^{-1}hx$. So we may conjugate h by x^{-1} to get g, so $h \sim g$ and the reflexive property holds. Now suppose $g, h, k \in G$, where $g \sim h$ and $h \sim k$. Then there are $y, z \in G$ such that $ygy^{-1} = h$ and $zhz^{-1} = k$. Substituting the former expression for h into the latter, we obtain $zygy^{-1}z^{-1} = k$, or $(zy)g(zy)^{-1} = k$. So, we may conjugate g by zy to get k, so $g \sim k$ and the transitive property holds. Thus \sim is an equivalence relation on G. □

Since \sim is an equivalence relation on G, its equivalence classes partition G. The equivalence classes under this relation are called the conjugacy classes of G. So, the conjugacy class of $g \in G$ is

$$[g] = \{xgx^{-1} \mid x \in G\}.$$

Exercise 1. Let G be any group, and let $x, g_1, g_2, \ldots, g_n \in G$. Show that for any n, the conjugate of $g_1g_2\cdots g_n$ by x is the product of the conjugates
by \(x \) of \(g_1, g_2, \ldots, g_n \).

Exercise 2. Let \(G \) be an Abelian group. Show that for any \(a \in G \), the conjugacy class of \(a \) is the singleton set \(\{a\} \).

When \(G \) is non-Abelian, understanding the conjugacy classes of \(G \) is an important part of understanding the group structure of \(G \). Conjugacy classes play a key role in a subject called representation theory, which is one of the main applications of group theory to chemistry and physics.

We now determine the conjugacy classes of the symmetric group \(S_n \). We begin by noticing that any conjugate of a \(k \)-cycle is again a \(k \)-cycle.

Lemma 1 Let \(\alpha, \tau \in S_n \), where \(\alpha \) is the \(k \)-cycle \((a_1 a_2 \cdots a_k) \). Then

\[
\tau \alpha \tau^{-1} = (\tau(a_1) \tau(a_2) \cdots \tau(a_k)).
\]

Proof. Consider \(\tau(a_i) \) such that \(1 \leq i \leq k \). Then we have \(\tau^{-1}(a_i) = a_i \), and \(\alpha(a_i) = a_{i+1 \mod k} \). We now have \(\tau \alpha \tau^{-1}(\tau(a_i)) = \tau(a_{i+1 \mod k}) \). Now take any \(j \) such that \(j \in \{1, 2, 3, \ldots, n\} \), but \(j \neq a_i \) for any \(i \). Then \(\alpha(j) = j \) since \(j \) is not in the \(k \)-cycle defining \(\alpha \). So, \(\tau \alpha \tau^{-1}(\tau(j)) = \tau(j) \). We now see that \(\tau \alpha \tau^{-1} \) fixes any number which is not of the form \(\tau(a_i) \) for some \(i \), and we have

\[
\tau \alpha \tau^{-1} = (\tau(a_1) \tau(a_2) \cdots \tau(a_k)). \quad \square
\]

For any permutation \(\alpha \in S_n \), we know we can write \(\alpha \) as a product of disjoint cycles. Suppose we write \(\alpha \) in this way, and \(\alpha \) has cycles of length \(k_1, k_2, k_3, \ldots, k_t \), where \(k_1 \geq k_2 \geq k_3 \geq \ldots \geq k_t \), and where we include 1’s in this list for fixed points. We call the sequence \((k_1, k_2, k_3, \ldots, k_t) \) the cycle type of \(\alpha \). Note that \(\sum_{i=1}^{t} k_i = n \) since every element in \(\{1, 2, \ldots, n\} \) is either fixed or appears in some cycle.

Example 1. If \(\sigma \in S_{10} \) and \(\sigma = (1 \ 3 \ 4 \ 5)(2 \ 7 \ 8 \ 9) \), then \(\sigma \) has cycle type \((4, 4, 1, 1) \).

Example 2. If \(\alpha \) is a \(k \)-cycle in \(S_n \), where \(k \leq n \), then the cycle type of \(\alpha \) is \((k, 1, \ldots, 1) \), where there are \(n-k \) 1’s in the sequence.

We may now describe the conjugacy classes of the symmetric groups.
Theorem 1 The conjugacy classes of any S_n are determined by cycle type. That is, if σ has cycle type $(k_1, k_2, \ldots, k_\ell)$, then any conjugate of σ has cycle type $(k_1, k_2, \ldots, k_\ell)$, and if ρ is any other element of S_n with cycle type $(k_1, k_2, \ldots, k_\ell)$, then σ is conjugate to ρ.

Proof. Suppose that σ has cycle type $(k_1, k_2, \ldots, k_\ell)$, so that σ can be written as a product of disjoint cycles as $\sigma = \alpha_1 \alpha_2 \cdots \alpha_\ell$, where α_i is a k_i-cycle. Let $\tau \in S_n$, then by Exercise 1 we have

$$\tau \sigma \tau^{-1} = \tau \alpha_1 \alpha_2 \cdots \alpha_\ell \tau^{-1} = (\tau \alpha_1 \tau^{-1})(\tau \alpha_2 \tau^{-1}) \cdots (\tau \alpha_\ell \tau^{-1}).$$

(1)

Now, for each i such that $1 \leq i \leq \ell$, we have α_i is a k_i-cycle. From Lemma 1, we know that $\tau \alpha_i \tau^{-1}$ is also a k_i-cycle. For any $i, j \in \{1, 2, \ldots, \ell\}$ such that $i \neq j$, we know that α_i and α_j are disjoint, and so $\tau \alpha_i \tau^{-1}$ and $\tau \alpha_j \tau^{-1}$ must be disjoint since τ is a one-to-one function. So, the product in (1) above is $\tau \sigma \tau^{-1}$ written as a product of disjoint cycles, and $\tau \alpha_i \tau^{-1}$ is a k_i-cycle. Now we see that any conjugate of σ has cycle type $(k_1, k_2, \ldots, k_\ell)$.

Now let $\sigma, \rho \in S_n$ both be of cycle type $(k_1, k_2, \ldots, k_\ell)$, and we show that σ and ρ are conjugate in S_n. Let σ and τ be written as products of disjoint cycles as

$$\sigma = \alpha_1 \alpha_2 \cdots \alpha_\ell \quad \text{and} \quad \rho = \beta_1 \beta_2 \cdots \beta_\ell,$$

where α_i and β_i are k_i-cycles. For each i, let us write

$$\alpha_i = (a_{i1} a_{i2} \cdots a_{ik_i}) \quad \text{and} \quad \beta_i = (b_{i1} b_{i2} \cdots b_{ik_i}).$$

Now define τ by $\tau(a_{ij}) = b_{ij}$ for every i, j such that $1 \leq i \leq \ell$ and $1 \leq j \leq k_i$. From Lemma 1, we have $\tau \alpha_i \tau^{-1} = \beta_i$. So, from Exercise 1, we have

$$\tau \sigma \tau^{-1} = (\tau \alpha_1 \tau^{-1})(\tau \alpha_2 \tau^{-1}) \cdots (\tau \alpha_\ell \tau^{-1}) = \beta_1 \beta_2 \cdots \beta_\ell = \rho.$$

So, any two elements of S_n with the same cycle type are in the same conjugacy class. \square

If n is a positive integer, a sequence of positive integers $(k_1, k_2, \ldots, k_\ell)$ such that $k_1 \geq k_2 \geq \cdots \geq k_\ell$ and $\sum_{i=1}^\ell k_i = n$ is called a partition of n. From Theorem 1, the partitions of n are in one-to-one correspondence with the conjugacy classes of S_n. The number of partitions of a positive number n is often denoted $p(n)$, called the partition function, and we have $p(n)$ is the number of conjugacy classes of S_n. The partition function and its properties
are of great interest in number theory. There is no known closed formula for $p(n)$ in terms of n, but there are several known modular arithmetic equivalences for the function. For example, if m is any non-negative integer, then it is known that $p(5m + 4) \equiv 0 \mod 5$.