Let \(R = \mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right] = \{a + b\left(\frac{1+\sqrt{-19}}{2}\right) \mid a, b \in \mathbb{Z}\} \), and define \(N : R \to \mathbb{Z} \) by
\[
N(a + b(1 + \sqrt{-19})/2) = a^2 + ab + 5b^2 = (a + b/2)^2 + (19/4)b^2.
\]

In this final set of exercises, you will finish showing that \(N \) is a Dedekind-Hasse norm for \(R \), thus proving that \(R \) is a PID which is not a Euclidean domain.

You have proven that it is enough to show that, for any nonzero \(\alpha, \beta \in R \), that if \(\beta \) does not divide \(\alpha \) in \(R \), then there are \(s, t \in R \) such that
\[
0 < N\left(\frac{\alpha}{\beta}s - t\right) < 1. \tag{1}
\]

Let \(\alpha, \beta \in R \) be nonzero, such that \(\beta \) does not divide \(\alpha \) in \(R \), so that \(\alpha/\beta \in \mathbb{Q}(\sqrt{-19}) \). Then from the last handout, there are \(a, b, c \in \mathbb{Z} \), with \(c > 1 \), such that \(\gcd(a, b, c) = 1 \), and such that \(\frac{\alpha}{\beta} = \frac{a + b\sqrt{-19}}{c} \). You proved that if \(c \geq 5 \), then there exist \(s, t \in R \) which satisfy (1). The final steps are to take care of the cases \(c = 2, 3, \) or 4.

(a): Suppose \(c = 2 \). Since \(\gcd(a, b, c) = 1 \), then \(a \) and \(b \) are of different parity. Prove that \(s = 1 \) and \(t = \frac{(a - 1) + b\sqrt{-19}}{2} \) are elements of \(R \) which satisfy (1).

(b): Suppose \(c = 3 \). Prove that \(a^2 + 19b^2 \) cannot be divisible by 3, by considering that it is \(a^2 + b^2 \) modulo 3, and the fact that 3 cannot divide all of \(a, b, \) and \(c \). Let \(a^2 + b^2 = 3q + r \) where \(q, r \in \mathbb{Z} \) and \(r = 1 \) or 2. Prove that \(s = a - b\sqrt{-19} \) and \(t = q \) are elements of \(R \) which satisfy (1).
(c): Finally, suppose $c = 4$. Then a, b cannot both be even since $\gcd(a, b, c) = 1$. If one of a, b is even and the other is odd, show that $a^2 + 19b^2$ is odd, so we can write $a^2 + 19b^2 = 4q + r$ for some $q, r \in \mathbb{Z}$ and $r = 1$ or 3. Show that $s = a - b\sqrt{-19}$ and $t = q$ are elements of R satisfying (1). If both a and b are odd, show that $a^2 + 19b^2 \equiv 4 \pmod{8}$, so $a^2 + 19b^2 = 8q + 4$ for some $q \in \mathbb{Z}$. Show that $s = \frac{a - b\sqrt{-19}}{2}$ and $t = q$ are elements of R which satisfy (1).