Homework #7 Problem

Math 430 - Spring 2013

Let \(R = \mathbb{Z} \left[\frac{1+\sqrt{-19}}{2} \right] = \{ a + b \left(\frac{1+\sqrt{-19}}{2} \right) \mid a, b \in \mathbb{Z} \} \), and define \(N : R \to \mathbb{Z} \) by

\[
N \left(a + b \left(\frac{1+\sqrt{-19}}{2} \right) \right) = a^2 + ab + 5b^2 = (a + b/2)^2 + (19/4)b^2.
\]

On Homeworks #5 and #6, you showed that \(R \) is an integral domain, but is not a Euclidean domain. You also showed, on Homework #5, that if an integral domain has a Dedekind-Hasse norm, then it must be a PID. Between this exercise and an exercise in the last homework, you will show that \(N \) is a Dedekind-Hasse norm for \(R \), thus showing that \(R \) is a PID which is not a Euclidean domain.

You have already shown, when you showed that \(N \) is multiplicative, that \(N(\alpha) = 0 \) if and only if \(\alpha = 0 \). So, to show that \(N \) is a Dedekind-Hasse norm for \(R \), you must show that given nonzero \(\alpha, \beta \in R \), either \(\beta | \alpha \) in \(R \), or there are \(s, t \in R \) such that \(0 < N(s\alpha - t\beta) < N(\beta) \).

\(\textbf{(a)}: \) Let \(F = \{ x + y(1 + \sqrt{-19})/2 \mid x, y \in \mathbb{Q} \} \). Prove that \(F = \mathbb{Q}(\sqrt{-19}) = \{ u + v\sqrt{-19} \mid u, v \in \mathbb{Q} \} \), which we know is a field.

Now, we can extend the definition of \(N \) to \(F = \mathbb{Q}(\sqrt{-19}) \) by

\[
N \left(x + y(1 + \sqrt{-19})/2 \right) = x^2 + xy + 5y^2 = (x + y/2)^2 + (19/4)y^2.
\]

Note that your proof that \(N \) was multiplicative on \(R \) carries over directly to a proof that \(N \) as defined above is multiplicative on \(F = \mathbb{Q}(\sqrt{-19}) \). So, we can use this fact.

\(\textbf{(b)}: \) Let \(\alpha, \beta \in R \) be nonzero, and assume \(\beta \) does not divide \(\alpha \) in \(R \), so \(\alpha/\beta \notin R \). Show that \(\alpha/\beta \in \mathbb{Q}(\sqrt{-19}) \). Explain why, to conclude \(R \) is a
PID, it is enough to find $s, t \in R$ such that

$$0 < N\left(\frac{\alpha}{\beta}s - t\right) < 1.$$

(c): Take $\alpha, \beta \in R$ nonzero as in (b), so that $\alpha/\beta \in \mathbb{Q}(\sqrt{-19})$. So, there are integers a, b, c, such that $c > 1$ (otherwise $\alpha/\beta \in R$), the only integers dividing a, b, and c are 1 or -1 (that is, $\gcd(a, b, c) = 1$), and such that $\frac{\alpha}{\beta} = \frac{a + b\sqrt{-19}}{c}$. Since $\gcd(a, b, c) = 1$, there are integers x, y, z such that $ax + by + cz = 1$ (since in \mathbb{Z}, the ideal (a, b, c) is principal, but any generator must divide all of a, b, and c in \mathbb{Z}, so in particular, $1 \in (a, b, c)$).

Suppose that $c \geq 5$. Explain why we can write $ay - 19bx = cq + r$ with $q, r \in \mathbb{Z}$ and $|r| \leq c/2$.

Let $s = y + x\sqrt{-19}$ and $t = q - z\sqrt{-19}$. Show that

$$0 < N\left(\frac{\alpha}{\beta}s - t\right) = \frac{(ay - 19bx - cq)^2 + 19(ax + by + cz)^2}{c^2} \leq \frac{1}{4} + \frac{19}{c^2} < 1,$$

if $c > 5$, and if $c = 5$, then

$$0 < N\left(\frac{\alpha}{\beta}s - t\right) = \frac{(ay - 19bx - cq)^2 + 19(ax + by + cz)^2}{c^2} \leq \frac{23}{25} < 1.$$

Next week, for the last part, we have to show how to choose $s, t \in R$ in the cases that $c = 2, 3, 4$, and then we’ll be done.