1. Let \(R = \mathbb{Z} \left[\frac{1+\sqrt{-19}}{2} \right] = \{ a + b \left(\frac{1+\sqrt{-19}}{2} \right) \mid a, b \in \mathbb{Z} \} \).
(a): Prove that \(R \) is a subring of \(\mathbb{C} \), and conclude that \(R \) is an integral domain.
(b): Define \(N : R \to \mathbb{Z} \) by
\[
N \left(a + b \left(\frac{1+\sqrt{-19}}{2} \right) \right) = a^2 + ab + 5b^2 = \left(a + \frac{b}{2} \right)^2 + \frac{19}{4} b^2.
\]
Prove that \(N \) is a multiplicative norm on \(R \).
(c): Find all units in \(R \).

2. Let \(D \) be an integral domain. A Dedekind-Hasse norm on \(D \) is a function \(N : D \to \mathbb{Z}_{\geq 0} \) such that \(N(a) = 0 \) if and only if \(a = 0 \), and given any nonzero \(a, b \in D \), either \(b \mid a \) in \(D \), or there exist \(s, t \in D \) such that \(0 < N(sa - tb) < N(b) \). Prove that if \(D \) is an integral domain on which there exists a Dedekind-Hasse norm, then \(N \) is a PID. (Hint: Use the same type of idea used to show that any Euclidean domain is a PID).