Homework #1 Problems

Math 430 - Spring 2013

1. Suppose G is a finite abelian group. Prove that any composition series for G, \(\{e\} = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_{m-1} \triangleleft H_m = G \), is such that H_i/H_{i-1} is cyclic of prime order for $i = 1, 2, \ldots, m$.
 (Hint: Since G is abelian, each H_i must be abelian, and we know each H_i/H_{i-1} is simple.)

2. Suppose K and H are groups such that $K \triangleleft H$ and H/K is a finite abelian group. Prove that there are subgroups K_i such that $K = K_0 \triangleleft K_1 \triangleleft \cdots \triangleleft K_{m-1} \triangleleft K_m = H$ such that K_i/K_{i-1} is cyclic of prime order for $i = 1, 2, \ldots, m$.
 (Hint: First apply Problem 1 to the group H/K, then pull back to subgroups of H.)

3. Use the above two problems to prove the following. Suppose that G is a finite group which has a subnormal series \(\{e\} = N_0 \triangleleft N_1 \triangleleft \cdots \triangleleft N_{m-1} \triangleleft N_m = G \) such that N_i/N_{i-1} is abelian for $i = 1, 2, \ldots, m$. Prove that G has a composition series \(\{e\} = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_{\ell-1} \triangleleft H_\ell = G \) such that H_i/H_{i-1} is cyclic of prime order for $i = 1, 2, \ldots, \ell$.