(a): If V is a vector space, give the conditions which define a subset W to be a subspace of V.

Solution: W is a subspace of V if: (i) the zero vector 0 is in W, (ii) whenever u and v are in W, then $u + v$ is in W, and (iii) whenever u is in W and c is a scalar in \mathbb{R}, then cu is in W.

(b): Consider the following collection of vectors in \mathbb{R}^2:

$$H = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mid x_2 \geq 0 \right\},$$

so that H is the collection of all vectors in the upper-half of the plane, including the x_1-axis. Show that H satisfies two of the three conditions listed in (a), but does not satisfy one of them, and conclude that H is not a subspace of \mathbb{R}^2.

Solution: First, 0 is in H since $0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ has second coordinate non-negative. Second, if $u = \begin{bmatrix} x \\ y \end{bmatrix}$ and $v = \begin{bmatrix} a \\ b \end{bmatrix}$ are in H, so that $y \geq 0$ and $b \geq 0$, then

$$u + v = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} x + a \\ y + b \end{bmatrix}$$

is also in H, since $y + b \geq 0$. So, the first two conditions listed in (a) hold. However, if we consider, say $w = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, which is in H since its second coordinate is $1 \geq 0$, and we take $c = -1$, then

$$cw = \begin{bmatrix} 0 \\ -1 \end{bmatrix},$$

which is not an element of H. So, the third condition listed in (a) does not hold for H, and so H is not a subspace of \mathbb{R}^2.