For both parts below, let \(f(x) = 1 + 3x^2 - 2x^3 \). Show all work clearly, with some explanation.

(a): Find all intervals where \(f(x) \) is increasing, where it is decreasing, and find the locations of all local maxima and minima.

Solution: The function is increasing when \(f'(x) > 0 \), decreasing when \(f'(x) < 0 \), and there is a local extremum whenever \(f'(x) \) changes sign, according to the first derivative test. We have \(f'(x) = 6x - 6x^2 = 6x(1 - x) \). The critical numbers are thus \(x = 0 \) and \(x = 1 \). We consider the signs of \(f'(x) \) on the intervals defined by these critical numbers.

- When \(x < 0 \), \(6x < 0 \) and \(1 - x > 0 \), so \(f'(x) = 6x(1 - x) < 0 \).
- When \(0 < x < 1 \), \(6x > 0 \) and \(1 - x > 0 \), so \(f'(x) = 6x(1 - x) > 0 \).
- When \(x > 1 \), \(6x > 0 \) and \(1 - x < 0 \), so \(f'(x) = 6x(1 - x) < 0 \).

So \(f(x) \) is increasing when \(0 < x < 1 \) and decreasing when \(x < 0 \) or \(x > 1 \). By the first derivative test, there is a local minimum at \(x = 0 \) and a local maximum at \(x = 1 \). Since \(f(0) = 1 \) and \(f(1) = 2 \), then the local minimum is at \((0, 1)\) and the local maximum is at \((1, 2)\).

(b): Find all intervals where \(f(x) \) is concave up, where it is concave down, and find the locations of all points of inflection.

Solution: The function is concave up when \(f''(x) > 0 \), concave down when \(f''(x) < 0 \), and points of inflection occur when \(f''(x) \) changes sign. We have \(f'(x) = 6x - 6x^2 \), and so \(f''(x) = 6 - 12x = 6(1 - 2x) \). The sign of \(f''(x) \) depends only on the sign of \(1 - 2x \), which is 0 when \(x = 1/2 \). When \(x < 1/2 \), \(1 - 2x > 0 \) and so \(f''(x) > 0 \). When \(x > 1/2 \), then \(1 - 2x < 0 \) and so \(f''(x) < 0 \). Thus the function is concave up when \(x < 1/2 \), concave down when \(x > 1/2 \), and there is a point of inflection at \(x = 1/2 \). Since \(f(1/2) = 1 + (3/4) - (2/8) = 3/2 \), then the point of inflection is at \((1/2, 3/2)\).