

Nonlinear Analysis 56 (2004) 1007-1010

www.elsevier.com/locate/na

An existence result on positive solutions for a class of p-Laplacian systems

D.D. Hai, R. Shivaji*

Department of Mathematics, Mississippi State University, Mississippi State, MS 39762, USA

Received 15 August 2003; accepted 31 October 2003

Abstract

Consider the system

 $-\Delta_p u = \lambda f(v) \quad \text{in } \Omega,$ $-\Delta_p v = \lambda g(u) \quad \text{in } \Omega,$ $u = v = 0 \quad \text{on } \partial\Omega,$

where $\Delta_p z = \operatorname{div}(|\nabla z|^{p-2} \nabla z), p > 1, \lambda$ is a positive parameter, and Ω is a bounded domain in \mathbb{R}^N with smooth boundary $\partial \Omega$. We prove the existence of a large positive solution for λ large when

$$\lim_{x \to \infty} \frac{f(M(g(x)^{1/(p-1)}))}{x^{p-1}} = 0$$

for every M > 0. In particular, we do not assume any sign conditions on f(0) or g(0). © 2003 Elsevier Ltd. All rights reserved.

Keywords: p-Laplacian systems; Semipositone; Positive solutions

1. Introduction

Consider the boundary value problem

(I)
$$\begin{cases} -\Delta_p u = \lambda f(v) & \text{in } \Omega, \\ -\Delta_p v = \lambda g(u) & \text{in } \Omega, \\ u = v = 0 & \text{on } \partial\Omega, \end{cases}$$

* Corresponding author.

E-mail address: shivaji@ra.msstate.edu (R. Shivaji).

where $\Delta_p z = \operatorname{div}(|\nabla z|^{p-2} \nabla z), p > 1, \lambda$ is a positive parameter, and Ω is a bounded domain in \mathbb{R}^N with smooth boundary $\partial \Omega$.

We are motivated by the paper of Dalmasso [3], in which system (I) was discussed when p=2 and f, g are increasing and $f, g \ge 0$. In [6], Hai–Shivaji extended the study of [3] applied to the case when no sign conditions on f(0) or g(0) were required, and without assuming monotonicity conditions on f or g. However, the results in [6] are for the semilinear case where proofs depend on the Green's functions. In this paper, we shall establish the existence results for system (I) with p > 1 under some additional assumptions than those required in [6]. In particular, our results apply to the case when f(0) or g(0) is negative, that is the semipositone case which is mathematically a challenging area in the study of positive solutions (see [1,7]). For a recent review on semipositone problems, see [2]. We refer to [5] for corresponding results in the single equation case. Our approach is based on the method of sub- and supersolutions (see e.g. [4]).

2. Existence results

We make the following assumptions:

(H.1) $f, g: [0, \infty) \to R$ are C^1 , monotone functions such that

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = \infty$$

(H.2)

$$\lim_{x \to \infty} \frac{f(M(g(x)^{1/(p-1)}))}{x^{p-1}} = 0.$$

We shall establish:

Theorem A. Let (H.1), (H.2) hold. Then there exists a positive number λ^* such that (I) has a large positive solution (u, v) for $\lambda > \lambda^*$.

An example: Let $f(x) = \sum_{i=1}^{m} a_i x^{p_i} - C_1$, $g(x) = \sum_{j=1}^{n} b_j x^{q_j} - C_2$, where p_i, q_j, a_i, b_i, C_1 , $C_2 > 0$ and $p_i q_j < (p-1)^2$. Then it is easy to see that f, g satisfy (H.1), (H.2).

Define f(x) = f(0) and g(x) = g(0) for x < 0. We shall establish Theorem A by constructing a positive weak subsolution (ψ_1, ψ_2) and supersolution (z_1, z_2) of (I) such that $\psi_i \leq z_i$ for i = 1, 2. That is, ψ_i satisfies

$$\int_{\Omega} |\nabla \psi_1|^{p-2} \nabla \psi_1 \cdot \nabla q \, \mathrm{d}x \leq \lambda \int_{\Omega} f(\psi_2) q \, \mathrm{d}x,$$
$$\int_{\Omega} |\nabla \psi_2|^{p-2} \nabla \psi_2 \cdot \nabla q \, \mathrm{d}x \leq \lambda \int_{\Omega} g(\psi_1) q \, \mathrm{d}x,$$

and

$$\int_{\Omega} |\nabla z_1|^{p-2} \nabla z_1 \cdot \nabla q \, \mathrm{d}x \ge \lambda \int_{\Omega} f(z_2) q \, \mathrm{d}x$$
$$\int_{\Omega} |\nabla z_2|^{p-2} \nabla z_2 \cdot \nabla q \, \mathrm{d}x \ge \lambda \int_{\Omega} g(z_1) q \, \mathrm{d}x$$

for all $q \in H_0^1(\Omega)$ with $q \ge 0$.

1008

Proof of Theorem A. Let λ_1 be the first eigenvalue of $-\Delta_p$ with Dirichlet boundary conditions and ϕ the corresponding positive eigenfunction with $\|\phi\|_{\infty} = 1$. Let $k_0, m, \delta > 0$ be such that $f(z), g(z) \ge -k_0$ for all $z \ge 0$ and $|\nabla \phi|^p - \lambda_1 \phi^p \ge m$ on $\overline{\Omega}_{\delta} = \{x \in \Omega : d(x, \partial \Omega) \le \delta\}$. We shall verify that $(\psi_1, \psi_2) = (\psi, \psi)$, where $\psi = (\lambda k_0/m)^{1/(p-1)}$ $((p-1)/p)\phi^{p/(p-1)}$, is a subsolution of (I) for λ large. Let $q \in H_0^1(\Omega)$ with $q \ge 0$. A calculation shows that

$$\begin{split} \int_{\Omega} |\nabla \psi|^{p-2} \nabla \psi \cdot \nabla q \, \mathrm{d}x &= \frac{\lambda k_0}{m} \int_{\Omega} \phi |\nabla \phi|^{p-2} \nabla \phi \cdot \nabla q \, \mathrm{d}x \\ &= \frac{\lambda k_0}{m} \left\{ \int_{\Omega} |\nabla \phi|^{p-2} \nabla \phi \nabla (\phi q) \, \mathrm{d}x - \int_{\Omega} |\nabla \phi|^p q \, \mathrm{d}x \right\} \\ &= \frac{\lambda k_0}{m} \int_{\Omega} (\lambda_1 \phi^p - |\nabla \phi|^p) q \, \mathrm{d}x. \end{split}$$

Now, on $\bar{\Omega}_{\delta}$ we have $|\nabla \phi|^p - \lambda_1 \phi^p \ge m$, which implies that

$$\frac{k_0}{m}(\lambda_1\phi^p - |\nabla\phi|^p) - f(\psi) \leq 0.$$

Next, on $\Omega \setminus \overline{\Omega}_{\delta}$ we have $\phi \ge \mu$ for some $\mu > 0$, and therefore for λ large,

$$f(\psi) \ge \frac{k_0}{m} \lambda_1 \ge \frac{k_0}{m} (\lambda_1 \phi^p - |\nabla \phi|^p).$$

Hence

$$\int_{\Omega} |\nabla \psi|^{p-2} \nabla \psi \cdot \nabla q \, \mathrm{d}x \leq \lambda \int_{\Omega} f(\psi) q \, \mathrm{d}x$$

Similarly,

$$\int_{\Omega} |\nabla \psi|^{p-2} \nabla \psi \cdot \nabla q \, \mathrm{d}x \leq \lambda \int_{\Omega} g(\psi) q \, \mathrm{d}x$$

i.e. (ψ, ψ) is a subsolution of (I).

Next, let ϕ_0 be the solution of

$$-\varDelta_p \phi_0 = 1$$
 in Ω , $\phi_0 = 0$ on $\partial \Omega$.

Let

$$(z_1, z_2) = \left(\frac{C}{\mu} \lambda^{1/(p-1)} \phi_0, [g(C\lambda^{1/(p-1)})]^{1/(p-1)} \lambda^{1/(p-1)} \phi_0\right),$$

where $\mu = \|\phi_0\|_{\infty}$ and C > 0 is a large number to be chosen later. We shall verify that (z_1, z_2) is a supersolution of (I) for λ large. To this end, let $q \in H_0^1(\Omega)$ with $q \ge 0$. Then we have

$$\int_{\Omega} |\nabla z_1|^{p-2} \nabla z_1 \cdot \nabla q \, \mathrm{d}x = \lambda \left(\frac{C}{\mu}\right)^{p-1} \int_{\Omega} |\nabla \phi_0|^{p-2} \nabla \phi_0 \cdot \nabla q \, \mathrm{d}x$$
$$= \lambda \left(\frac{C}{\mu}\right)^{p-1} \int_{\Omega} q \, \mathrm{d}x.$$

By (H.2), we can choose C large enough so that

$$(C\lambda^{1/(p-1)})^{p-1} \ge (\mu^{p-1}\lambda)f([\lambda^{1/(p-1)}\mu][g(C\lambda^{1/(p-1)})]^{1/(p-1)}),$$

and therefore

$$\begin{split} \int_{\Omega} |\nabla z_1|^{p-2} \nabla z_1 \cdot \nabla q \, \mathrm{d}x &\geq \lambda \int_{\Omega} f([\lambda^{1/(p-1)}\mu][g(C\lambda^{1/(p-1)})]^{1/(p-1)})q \, \mathrm{d}x \\ &\geq \lambda \int_{\Omega} f(z_2)q \, \mathrm{d}x. \end{split}$$

Next,

$$\int_{\Omega} |\nabla z_2|^{p-2} \nabla z_2 \cdot \nabla q \, \mathrm{d}x = \lambda g(C \lambda^{1/(p-1)}) \int_{\Omega} q \, \mathrm{d}x$$
$$\geqslant \lambda \int_{\Omega} g(C \mu^{-1} \lambda^{1/(p-1)} \phi_0) q \, \mathrm{d}x$$
$$= \lambda \int_{\Omega} g(z_1) q \, \mathrm{d}x,$$

i.e. (z_1, z_2) is a supersolution of (I) with $z_i \ge \psi$ for C large, i = 1, 2. Thus, there exists a solution (u, v) of (I) with $\psi \le u \le z_1$, $\psi \le v \le z_2$. This completes the proof of Theorem A. \Box

References

- H. Berestycki, L.A. Caffarelli, L. Nirenberg, Inequalities for second-order elliptic equations with applications to unbounded domains I. A celebration of J.F. Nash, Jr, Duke Math. J. 81 (1996) 467–494.
- [2] A. Castro, C. Maya, R. Shivaji, Nonlinear eigenvalue problems with semipositone structure, Electron. J. Differential Equations 5 (2000) 33–49.
- [3] R. Dalmasso, Existence and uniqueness of positive solutions of semilinear elliptic systems, Nonlinear Anal. 39 (2000) 559–568.
- [4] P. Dravek, J. Hernandez, Existence and uniqueness of positive solutions for some quasilinear elliptic problems, Nonlinear Anal. 44 (2001) 189–204.
- [5] D.D. Hai, On a class of sublinear quasilinear elliptic problems, Proc. Amer. Math. Soc. 131 (2003) 2409–2414.
- [6] D.D. Hai, R. Shivaji, An existence result on positive solutions for a class of semilinear elliptic systems, Proc. Roy. Soc. Edinburgh, to appear.
- [7] P.L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev. 24 (1982) 441–467.

1010