Existence and uniqueness of positive radial solutions for the Lane–Emden system

Robert Dalmasso*

Laboratoire LMC-IMAG, Equipe EDP, Tour IRMA, BP 53, F-38041 Grenoble Cedex 9, France

Received 22 April 2003; accepted 24 February 2004

Abstract

In this article, we consider (component-wise) positive radial solutions of a weakly coupled system of elliptic equations in a ball with homogeneous nonlinearities. The existence is well-known in general: We give a result for the remaining cases. The uniqueness is less studied: We complement the known results.

Keywords: Semilinear elliptic system; Positive radial solution

1. Introduction

In this paper, we study the existence and the uniqueness of (component-wise) positive radial solutions of the semilinear elliptic system with homogeneous Dirichlet data

\[
\begin{align*}
\Delta u + v^q &= 0 \quad \text{in } B_R, \\
\Delta v + u^p &= 0 \quad \text{in } B_R, \\
u = v &= 0 \quad \text{on } \partial B_R,
\end{align*}
\]

(1.1)

where \(B_R \) denotes the open ball of radius \(R \) centered at the origin in \(\mathbb{R}^n (n \geq 1) \) and \(p, q > 0 \). Eq. (1.1) is a natural extension of the well-known Lane–Emden equation and thus referred to as the Lane–Emden system.

When \(q = 1 \) and \(p \in (0, 1) \cup (1, +\infty) \) the uniqueness of a positive radial solution of problem (1.1) was established in [2] (see also the references therein). When \(p, q > 0 \) and \(pq < 1 \) the uniqueness of a positive radial solution of problem (1.1) is just

* Tel.: +33-4-76-63-57-38; fax: +33-4-76-63-12-63.
E-mail address: robert.dalmasso@imag.fr (R. Dalmasso).
a particular case of a result obtained in [5]. Finally, when \(n = 1, \ q \geq 1 \) and \(p > 1 \), the uniqueness of a positive solution follows from a general result given in [3]. Therefore, it only remains to study the case where \(p, q \in (0,1) \cup (1, +\infty) \) with \(pq > 1 \) and the case where \(p, q > 0 \) with \(pq = 1 \).

We have the following theorem.

Theorem 1.1. (i) Let \(p, q > 0 \) with \(pq \neq 1 \). Then the Lane–Emden system (1.1) has at most one positive radial solution.

(ii) Let \(p, q > 0 \) with \(pq = 1 \). Assume that the Lane–Emden system (1.1) has a positive radial solution \((u,v)\). Then all positive radial solutions are given by \((\theta^qu,\theta v)\), where \(\theta > 0 \) is an arbitrary constant.

When \(p, q \geq 1, \ pq > 1 \) and
\[
\frac{1}{p+1} + \frac{1}{q+1} > \frac{n-2}{n}, \quad \text{if } n \geq 3,
\]
the existence of a positive solution was established in [1,6,8] for more general nonlinearities (see also [3] when \(n = 1 \)). Moreover, it is well-known (see [7,11]) that when \(n \geq 3, \ p, q > 0 \) and
\[
\frac{1}{p+1} + \frac{1}{q+1} \leq \frac{n-2}{n},
\]
problem (1.1) has no positive solution. If \(p, q > 0 \) and \(pq < 1 \), the existence of a positive solution is a particular case of a result proved in [5]. Therefore, it remains to examine the existence of positive radial solutions of problem (1.1) in the cases described in the following theorem.

Theorem 1.2. (i) If \(p > 1, \ q \in (0,1) \) satisfy (1.2) and \(pq > 1 \), then the Lane–Emden system (1.1) has a positive radial solution.

(ii) Let \(p, q > 0 \) with \(pq = 1 \). Then there exists \(R > 0 \) such that the Lane–Emden system (1.1) has a positive radial solution.

2. **Proof of Theorem 1.1.** (i) Let \((u,v)\) and \((w,z)\) be two positive radial solutions of problem (1.1). Let \(s \) and \(t \) be defined by
\[
s = 2 \frac{q + 1}{pq - 1} \quad \text{and} \quad t = 2 \frac{p + 1}{pq - 1}.
\]
For \(\lambda > 0 \) we set
\[
\tilde{w}(r) = \lambda^sw(\lambda r) \quad \text{and} \quad \tilde{z}(r) = \lambda^t z(\lambda r), \quad 0 \leq r \leq R/\lambda.
\]
We have
\[
\begin{cases}
\Delta \tilde{w} + \tilde{z} = 0, & 0 \leq r \leq R/\lambda, \\
\Delta \tilde{z} + \tilde{w} = 0, & 0 \leq r \leq R/\lambda,
\end{cases}
\]
and
\[
\tilde{w}(R/\lambda) = \tilde{z}(R/\lambda) = 0.
\]
where Δ denotes the polar form of the Laplacian

$$\Delta = r^{1-n} \frac{d}{dr} \left(r^{n-1} \frac{d}{dr} \right).$$

Choose λ such that $\lambda \hat{w}(0) = u(0)$. Then we have

$$\hat{w}(0) = u(0). \tag{2.2}$$

We want to show that

$$\hat{z}(0) = v(0). \tag{2.3}$$

Suppose that $\hat{z}(0) < v(0)$. If there exists $a \in (0, \min(R, R/\lambda))$ such that $\hat{z} - v < 0$ on $[0, a)$ and $(\hat{z} - v)(a) = 0$, then $\hat{w} - u > 0$ on $(0, a]$. Indeed assume the contrary. Then there exists $b \in (0, a]$ such that $(\hat{w} - u)(b) \leq 0$. Since $\Delta(\hat{w} - u) = vq - zq > 0$ on $[0, b)$, the maximum principle implies that $\hat{w} - u < 0$ on $[0, b)$, a contradiction with (2.2).

Now we have $\Delta(\hat{z} - v) = uq - wq < 0$ on $(0, a]$ and the maximum principle implies that $\hat{z} - v > (\hat{z} - v)(a) = 0$ on $[0, a)$, a contradiction. Thus $\hat{z} - v < 0$ on $[0, \min(R, R/\lambda)]$.

Since

$$\hat{z} - v = \begin{cases}
-v(R/\lambda) & \text{if } \lambda > 1, \\
0 & \text{if } \lambda = 1, \\
\hat{z}(R) & \text{if } \lambda < 1,
\end{cases} \tag{2.4}$$

we deduce that $\lambda > 1$. As before we show that $\hat{w} - u > 0$ on $(0, \min(R, R/\lambda)]$. We have

$$\hat{w} - u = \begin{cases}
-u(R/\lambda) & \text{if } \lambda > 1, \\
0 & \text{if } \lambda = 1, \\
\hat{w}(R) & \text{if } \lambda < 1,
\end{cases}$$

hence $\lambda < 1$ and we have a contradiction. The case $\hat{z}(0) > v(0)$ can be handled in the same way. Thus (2.3) is proved.

Now we define the functions U, W, F and G_n by

$$U(r) = (u(r), v(r)), \quad 0 \leq r \leq R,$$

$$W(r) = (\hat{w}(r), \hat{z}(r)), \quad 0 \leq r \leq R/\lambda,$$

$$F(x, y) = (y^q, x^p), x, y \geq 0$$

and

$$G_n(r, s) = \begin{cases}
 r - s & \text{if } n = 1, \\
 s \ln \left(\frac{r}{s} \right) & \text{if } n = 2, \\
 \frac{s}{n-2} \left(1 - \left(\frac{s}{r} \right)^{n-2} \right) & \text{if } n \geq 3,
\end{cases} \tag{2.4}$$

for $0 \leq s \leq r$. Using (2.2) and (2.3) and the fact that $u'(0) = w'(0) = v'(0) = \hat{z}'(0) = 0$ we easily obtain

$$U(r) - W(r) = \int_0^r G_n(r, s)(F(W(s)) - F(U(s))) \, ds.$$
for $r \in [0, \min(R, R/\lambda)]$. When $p, q \geq 1$, F is locally Lipschitz continuous, and using Gronwall’s lemma we obtain $U = W$ on $[0, \min(R, R/\lambda)]$. When p or $q \in (0, 1)$, let $a \in (0, \min(R, R/\lambda))$ be fixed. Then $u(0) \geq u(r) \geq u(a) > 0$, $\tilde{w}(0) = u(0) \geq \tilde{w}(r) > \tilde{w}(a) > 0$, $v(0) \geq v(r) \geq v(a) > 0$ and $\tilde{z}(0) = v(0) \geq \tilde{z}(r) \geq \tilde{z}(a) > 0$ for $r \in [0, a]$. Since F is locally Lipschitz continuous on $(0, +\infty) \times (0, +\infty)$, as before we obtain $U = W$ on $[0, a]$. By continuity we get $U = W$ on $[0, \min(R, R/\lambda)]$. Now we deduce that $\lambda = 1$ and thus $(u; v) = (w, z)$ on $[0, R]$.

(ii) Let (u, v) be a positive radial solution of problem (1.1). Then, for any $\theta > 0$, $(w, z) = (\theta^q u, \theta v)$ is a positive radial solution of problem (1.1). Now let (w, z) be a positive radial solution of (1.1). Choose $\theta > 0$ such that $\theta^q u(0) = w(0)$ and define $\tilde{w} = \theta^q u$, $\tilde{z} = \theta v$. Then (\tilde{w}, \tilde{z}) is a positive radial solution of (1.1) such that $\tilde{w}(0) = w(0)$. Arguing as in part (i) we show that $\tilde{z}(0) = z(0)$ and that $(\tilde{w}, \tilde{z}) = (w, z)$.

Remark 2.1. Notice that our technique also applies when there is a homogeneous dependence on the radius $|x|$. More precisely, for $p, q > 0$ and $pq \neq 1$, the following system:

\[
\begin{align*}
 \Delta u + |x|^s v^\theta &= 0 \quad \text{in } B_R, \\
 \Delta v + |x|^t u^p &= 0 \quad \text{in } B_R, \\
 u = v = 0 \quad \text{on } \partial B_R,
\end{align*}
\]

where $\mu, \nu \geq 0$, has at most one positive radial solution (u, v). Indeed, the arguments are the same with s and t in (2.1) replaced by

\[
 s = \frac{2(q + 1) + v + q \mu}{pq - 1} \quad \text{and} \quad t = \frac{2(p + 1) + \mu + p v}{pq - 1}.
\]

Now let $p, q > 0$ with $pq = 1$. Assume that problem (2.5) has a positive radial solution (u, v). Then all positive radial solutions are given by $(\theta^q u, \theta v)$, where $\theta > 0$ is an arbitrary constant.

3. **Proof of Theorem 1.2.** We shall use a two-dimensional shooting argument for the ordinary differential system associated to radial solutions of (1.1) [3,4,9,10]. We only assume for the moment that $p, q > 0$. Since we are only interested in positive solutions we may extend $v \to v^\theta$ and $u \to u^p$ to \mathbb{R} by setting

\[
g(v) = \begin{cases} v^\theta & \text{if } v > 0, \\
0 & \text{if } v \leq 0,
\end{cases} \quad \text{and} \quad f(u) = \begin{cases} u^p & \text{if } u > 0, \\
0 & \text{if } u \leq 0.
\end{cases}
\]

We introduce the one-dimensional (singular if $n \geq 2$) initial value problem

\[
\begin{align*}
 \Delta u(r) + g(v(r)) &= 0, \quad r > 0, \\
 \Delta v(r) + f(u(r)) &= 0, \quad r > 0, \\
 u(0) = \alpha, v(0) = \beta, u'(0) = v'(0) = 0,
\end{align*}
\]

where $\alpha > 0$, $\beta > 0$.

We shall need a series of lemmas. We begin with a local existence and uniqueness result. The proof is standard (see [3] if \(n = 1 \) and [9,10] when \(n \geq 3 \)).

Lemma 3.1. For any \(\alpha > 0, \beta > 0 \) there exists \(R > 0 \) such that problem (3.1) on \([0,R]\) has a unique solution \((u,v) \in (C^2[0,R])^2\).

In view of Lemma 3.1, for any \(\alpha, \beta \) problem (3.1) has a unique local solution: Let \([0,R_{x,\beta}]\) denote the maximum interval of existence of that solution \((R_{x,\beta} = +\infty \text{ possibly})\). If \(0 < q < 1 \) or \(0 < p < 1 \) the uniqueness of the solution could fail at any point \(r \) where \(v(r) = 0 \) or \(u(r) = 0 \). In this case \(R_{x,\beta} \) could also depend on the particular solution itself. Define

\[
P_{x,\beta} = \{ s \in (0,R_{x,\beta}); u(x,\beta, r)v(x,\beta, r) > 0 \quad \forall r \in [0,s] \},
\]

where \((u(x,\beta, \cdot), v(x,\beta, \cdot))\) is a solution of (3.1) in \([0,R_{x,\beta}]\). Set

\[
r_{x,\beta} = \sup P_{x,\beta}.
\]

Notice that the solution is unique on \([0,r_{x,\beta}]\), so \(r_{x,\beta} \) depends only on \(\alpha, \beta \).

The next lemma can be proved by direct integration of system (3.1).

Lemma 3.2. We have \(u'(x,\beta, r) < 0 \) and \(v'(x,\beta, r) < 0 \) for \(r \in (0,R_{x,\beta}) \).

Lemma 3.3. For any \(\alpha, \beta > 0 \) we have \(R_{x,\beta} > r_{x,\beta} \).

Proof. If not, there exist \(\alpha > 0 \) and \(\beta > 0 \) such that \(r_{x,\beta} = R_{x,\beta} \). Suppose first that \(R_{x,\beta} < \infty \). Noting \(u = u(x,\beta, \cdot) \) and \(v = v(x,\beta, \cdot) \) we have

\[
0 \leq u \leq \alpha \quad \text{and} \quad 0 \leq v \leq \beta \quad \text{on} \quad [0,R_{x,\beta}].
\]

Since

\[
u'(r) = -r^{1-n} \int_0^r s^{n-1} v(s)^p \, ds \quad \text{and} \quad u'(r) = -r^{1-n} \int_0^r s^{n-1} u(s)^q \, ds
\]

for \(r \in (0,R_{x,\beta}) \), we conclude that \(u, v, u' \) and \(v' \) are bounded on \([0,R_{x,\beta}]\) and we get a contradiction with the definition of \(R_{x,\beta} \). Now assume that \(R_{x,\beta} = +\infty \). When \(n \geq 3 \) the result follows from Corollary 1.2 in [9]. When \(n=1 \) we have \(u'' < 0 \) on \([0, +\infty)\).

We deduce that

\[
u'(r) \leq u'(1) < 0 \quad \text{for all} \quad r \geq 1,
\]

from which we get

\[
u(r) \leq u(1) + u'(1)(r - 1) \quad \text{for all} \quad r \geq 1.
\]

Thus, we can find \(r \geq 1 \) such that \(u(r) < 0 \) and we obtain a contradiction. Now if \(n=2 \), we have \((ru'(r))' < 0 \) on \((0, +\infty)\). We deduce that

\[
u'(r) \leq u'(1) < 0, \quad \text{for all} \quad r \geq 1,
\]

from which we get

\[
u(r) \leq u(1) + u'(1) \ln r, \quad \text{for all} \quad r \geq 1.
\]

Thus we can find \(r \geq 1 \) such that \(u(r) < 0 \) and we obtain a contradiction.
Proposition 3.1. For any \(x > 0 \) there exists a unique \(\beta > 0 \) such that \(u(x, \beta, r_{x, \beta}) = v(x, \beta, r_{x, \beta}) = 0 \).

Proof. We first prove the uniqueness. Let \(x > 0 \) be fixed. Suppose that there exist \(\beta > \gamma > 0 \) such that \(u(x, \beta, r_{x, \beta}) = v(x, \beta, r_{x, \beta}) = u(x, \gamma, r_{x, \gamma}) = v(x, \gamma, r_{x, \gamma}) = 0 \). Using the same arguments as in the proof of (2.3) we obtain a contradiction.

Now we prove the existence. Suppose that there exists \(x > 0 \) such that for any \(\beta > 0 \) \(u(x, \beta, r_{x, \beta}) \neq 0 \) or \(v(x, \beta, r_{x, \beta}) \neq 0 \). Define the sets

\[
B = \{ \beta > 0; u(x, \beta, r_{x, \beta}) = 0 \text{ and } v(x, \beta, r_{x, \beta}) > 0 \}
\]

and

\[
C = \{ \beta > 0; u(x, \beta, r_{x, \beta}) > 0 \text{ and } v(x, \beta, r_{x, \beta}) = 0 \}.
\]

The proof of the proposition is completed by using the next two lemmas which contradict the fact that \((0, +\infty) = B \cup C \). \(\square \)

Lemma 3.4. (i) Suppose \(B \neq \emptyset \). Then there exists \(m > 0 \) such that \(m \leq \inf B \).

(ii) Suppose \(C \neq \emptyset \). Then there exists \(M > 0 \) such that \(M \geq \sup C \).

Lemma 3.5. \(B \) and \(C \) are open.

Proof of Lemma 3.4. We have

\[
u(x, \beta, r) = x - \int_0^r G_n(r, s)g(v(x, \beta, s))\,ds, \quad 0 \leq r < R_{x, \beta}, \tag{3.2}
\]

and

\[
v(x, \beta, r) = - \int_0^r G_n(r, s)f(u(x, \beta, s))\,ds, \quad 0 \leq r < R_{x, \beta}, \tag{3.3}
\]

where \(G_n \) is defined in (2.4).

(i) Let \(\beta \in B \). Lemma 3.2 and (3.2) imply

\[
r_{x, \beta} \geq \left(\frac{2nx}{\beta^q} \right)^{1/2}, \tag{3.4}
\]

and from (3.3) we get

\[
\beta \geq \int_0^{r_{x, \beta}} G_n(r_{x, \beta}, s)u(x, \beta, s)^p\,ds. \tag{3.5}
\]

Suppose that \(\inf B = 0 \) and let \((\beta_j) \) be a sequence in \(B \) decreasing to zero. Then \(r_{x, \beta_j} \to +\infty \) by (3.4). From (3.5) we deduce that

\[
\beta_j \geq \int_0^1 G_n(r_{x, \beta_j}, s)u(x, \beta_j, s)^p\,ds \tag{3.6}
\]

for \(j \) large. Using Lemma 3.2 and (3.2) we have

\[
u(x, \beta_j, r) \geq x - \frac{\beta_j^q}{2n} \geq \frac{x}{2} \tag{3.7}
\]

for \(r \in [0, 1] \) and \(j \) large. From (3.6) and (3.7), we get \(\beta_j \geq c \) for \(j \) large where \(c > 0 \) is independent of \(j \). This gives a contradiction.
(ii) Suppose that \(\sup C = +\infty \) and let \((\beta_j)\) be a sequence in \(C \) increasing to \(+\infty\). By virtue of Lemma 3.2 we have

\[
0 < u(z, \beta_j, r) \leq z \quad \text{for} \quad r \in [0, r_{x, \beta_j}].
\]

(3.8) and (3.8) imply that \(r_{x, \beta_j} \to +\infty \) as \(j \to +\infty \). Then we can assume that \(r_{x, \beta_j} \geq 1 \) for all \(j \) and that

\[
z^p \leq \beta_j \quad \text{for all} \quad j.
\]

(3.9) Lemma 3.2, (3.3), (3.8) and (3.9) imply

\[
\frac{2n - 1}{2n} \beta_j \leq v(z, \beta_j, r) \leq \beta_j \quad \text{for} \quad r \in [0, 1]
\]

and using (3.2) we deduce that \(u(z, \beta_j, 1) \leq z - (2n - 1)q/\beta_j^q/(2n)^{q+1} \). But then \(u(z, \beta_j, 1) < 0 \) for \(j \) large contradicting (3.8).

Remark 3.1. When \(n = 1 \) and \(p, q \geq 1 \) Lemma 3.5 is proved in [3]. It is easily seen that the proof also holds when \(n \geq 2 \). Now if \(0 < q < 1 \) and \(p > 1 \), the arguments given in [3] do not apply since \(g \) is no longer Lipschitz continuous at \(0 \); thus one loses continuous dependence on the initial data at \(r = r_{x, \beta} \), a fact which was essential in the proof. We shall use a result [10, Lemma 2.4] which applies in the Lipschitz and non-Lipschitz cases. In fact \(n \geq 3 \) in [10], but the result used also holds when \(n = 1 \) or 2. Finally notice that \(f \) and \(g \) in [10] (see also [9]) are

\[
f(x) = |x|^p \quad \text{and} \quad g(x) = |x|^q
\]

for \(x \in \mathbb{R} \), but the proof is the same with our definition of \(f \) and \(g \).

Proof of Lemma 3.5. As explained in Remark 3.1 we shall use a result established in [10]. Define

\[
X = \{(\gamma, \beta) \in (0, +\infty) \times (0, +\infty); v(\gamma, \beta, r, \gamma, \beta) > u(\gamma, \beta, r, \gamma, \beta) = 0\}
\]

and

\[
Y = \{(\gamma, \beta) \in (0, +\infty) \times (0, +\infty); u(\gamma, \beta, r, \gamma, \beta) > v(\gamma, \beta, r, \gamma, \beta) = 0\}.
\]

\(X \) and \(Y \) are open (see [9,10]). Now let \(h : \mathbb{R}^2 \to \mathbb{R} \) denote the second projection on \(\mathbb{R} \). Since \(B = h(\{x\} \times (0, +\infty) \cap X) \) and \(C = h(\{x\} \times (0, +\infty) \cap Y) \), we deduce that \(B \) and \(C \) are open and the lemma is proved.

Now we can complete the proof of Theorem 1.2.

(i) Let \(z > 0 \) be fixed. By Proposition 3.1 there exists a unique \(\beta > 0 \) such that \(u(z, \beta, r_{x, \beta}) = v(z, \beta, r_{x, \beta}) = 0 \). With \(s \) and \(t \) defined in (2.1) we set

\[
w(r) = \left(\frac{r_{x, \beta}}{R}\right)^s u \left(z, \beta, \frac{r_{x, \beta}}{R} r \right) \quad \text{and} \quad z(r) = \left(\frac{r_{x, \beta}}{R}\right)^t v \left(z, \beta, \frac{r_{x, \beta}}{R} r \right), \quad 0 \leq r \leq R.
\]

Then \((w,z)\) is a positive radial solution of the Lane–Emden system (1.1).

(ii) follows from Proposition 3.1.

Remark 3.2. Notice that, by Lemma 3.3, \(X \) and \(Y \) are precisely \(A \) and \(B \) in [10] (\(B \) and \(A \) in [9]).
References