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a b s t r a c t 

This paper addresses the discrete p -dispersion problem (PDP) which is about selecting p facilities from 

a given set of candidates in such a way that the minimum distance between selected facilities is max- 

imized. We propose a new compact formulation for this problem. In addition, we discuss two simple 

enhancements of the new formulation: Simple bounds on the optimal distance can be exploited to re- 

duce the size and to increase the tightness of the model at a relatively low cost of additional computa- 

tion time. Moreover, the new formulation can be further strengthened by adding valid inequalities. We 

present a computational study carried out over a set of large-scale test instances in order to compare the 

new formulation against a standard mixed-integer programming model of the PDP, a line search, and a 

binary search. Our numerical results indicate that the new formulation in combination with the simple 

bounds is solved to optimality by an out-of-the-box mixed-integer programming solver in 34 out of 40 

instances, while this is neither possible with the standard model nor with the search procedures. For 

instances in which the line and binary search fail to find a provably optimal solution, we achieve this by 

adding cuts to our enhanced formulation. With the new techniques we are able to exactly solve instances 

of one order of magnitude larger than previously solved in the literature. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

In the p -dispersion problem (PDP), we are given a set of candi-

date locations I = { 1 , 2 , . . . , n } and an n × n matrix ( d ij ) i , j ∈ I with

distances d ij between facility i and j . The optimization task is to

select 1 < p < n facilities from I such that the minimum distance

between any pair of selected facilities is maximized. 

In practice, this location problem occurs whenever a close

proximity of facilities is less desirable. A standard application is

concerned with the location of nuclear power plants. Therein, one

is interested in minimizing the risk of losing multiple plants in

the event that only one plant is subjected to an enemy attack.

To achieve this, a selection of plants is desired so that interplant

distances are as large as possible. Similar applications can be

found in the military sector. In more peaceful contexts, one seeks

for facilities of the same franchise system or for public facilities

which have overlapping areas of service, e.g., schools, hospitals,

waste collection plants, or electoral districts. We refer the reader

to Kuby (1987) and to the comprehensive survey of Erkut and

Neuman (1989) for an overview on the variety of applications of

the PDP. Another area of application is recognized if distances

are not interpreted physically but as a measure of the diversity
∗ Corresponding author. Tel.: +4961313922087. 
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etween members of a group, e.g., products of the same portfolio

 Saboonchi, Hansen, & Perron, 2014 ). 

The contribution of this paper is a new compact formulation of

he PDP. To highlight the main objective pursued with this model,

ote that we intend to provide a competitive exact approach for

he PDP in which a major part of the overall optimization task is

ndertaken by an out-of-the-box software package. To make the

ew model competitive, it is delivered along with two simple en-

ancements: We exploit simple bounds on the optimal distance to

educe the size and to increase the tightness of the model. The

ounds are obtained by very simple heuristics that are already

nown in the literature. We show that clique inequalities are valid

or the new model and can be used to further strengthen it. For the

eparation of the clique cuts, we also suggest a greedy heuristic in

rder to keep the coding effort and the computational burden as

ow as possible. 

We carry out computational experiments over large-scale test

nstances in order to compare the new formulation against a stan-

ard mixed-integer programming model. The enhanced formula-

ion is solved to optimality by a mixed-integer programming solver

n 34 out of 40 test instances, while this is not possible with the

tandard model. We also compare our enhanced model against two

tandard search procedures for the PDP, i.e., a line search and a bi-

ary search. This comparison is interesting because these search

rocedures are easy-to-implement and exact making use of the re-

ationship between the PDP and the maximum independent set

http://dx.doi.org/10.1016/j.ejor.2016.06.036
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2016.06.036&domain=pdf
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roblem. For instances in which either line or binary search, or

oth, fail to find a provably optimal solution, we achieve this by

dding the clique cuts to our formulation. 

The remainder of the paper is structured as follows: In

ection 2 , we present non-linear and linearized PDP formulations

rom the literature and introduce our new compact formulation

hat is based on exploiting the relationship between PDP and the

ndependent set problem. Section 3 describes the setup of the

omputational study and its results. In the concluding Section 4 ,

e briefly hint at potential algorithmic improvements and related

ispersion problems for which the approach taken in this paper

ight be promising. 

. Formulations 

Without loss of generality, we assume that the distance ma-

rix ( d ij ) is symmetric and that any non-diagonal value is strictly

ositive. All formulations are based on a graph representation of

he problem. Let ( I , E ) be the complete graph in which locations I

re the vertices and E = { (i, j) ∈ I × I : i < j} are the edges. Given

ny distance d , we further define subsets of edges as 

(d) = { (i, j) ∈ E : d i j < d} ⊆ E. 

The PDP is a bottleneck optimization problem with a max–

in objective function ( Hsu & Nemhauser, 1979 ). We now briefly

eview two existing non-linear formulations exploiting this fact

efore we present a standard mixed integer linear programming

MILP) model and our new formulation. 

.1. Non-linear formulations 

The first formulation is the mixed integer non-linear program

f Pisinger (2006) : Define a vector of location variables x = (x i ) i ∈ I 
nd let x i = 1 indicate that candidate location i ∈ I is open (0, oth-

rwise). Using a continuous variable d ≥ 0 for the minimum dis-

ance between open locations, the PDP can be written as 

 = max d (1a) 

.t. 
∑ 

i ∈ I 
x i = p (1b) 

 x i x j ≤ d i j (i, j ) ∈ E (1c) 

 i ∈ { 0 , 1 } i ∈ I (1d) 

 ≥ 0 . (1e) 

The objective (1a) maximizes the minimum distance d , and ex-

ctly p candidate locations are opened because of (1b) . The non-

inear constraints (1c) impose that any two locations i and j are

nly opened simultaneously ( x i x j = 1 ) if their distance d ij is at

east d . The variable domains are given by (1d) and (1e) . 

The next PDP formulation utilizes the relationship between PDP

nd the maximum cardinality independent set problem in sub-

raphs (I, ̃  E ) of the graph ( I , E ), which can be stated as follows: 

max 
∑ 

i ∈ I 
x i (2a) 

.t. x i + x j ≤ 1 (i, j) ∈ 

˜ E ⊆ E (2b) 

 i ∈ { 0 , 1 } i ∈ I. (2c) 

A vector x ∈ {0, 1} I satisfying constraints (2b) is the incidence

ector of a subset S ⊆I that contains pairwise non-adjacent nodes

n the graph (I, ̃  E ) , i.e., x i = x j = 1 only if (i, j) / ∈ 

˜ E . We refer to S

s an independent set (IDS) of the graph (I, ̃  E ) . 
For a given value of d , the set of feasible solutions to PDP with

inimum distance at least d is given by 

 (d) 

= 

{ 

x ∈ { 0 , 1 } I : ∑ 

i ∈ I 
x i = p and x i + x j ≤ 1 ∀ (i, j) ∈ E(d) 

} 

. 

 vector x ∈ X (d) is the incidence vector of an IDS of size p in the

raph ( I , E ( d )). This notation allows us to state the PDP in the form

 = max d (3a) 

.t. X (d) � = ∅ (3b) 

 ≥ 0 . (3c) 

The minimum distance d is maximized in (3a) , while con-

traint (3b) states that a feasible choice of d has to ensure that

n IDS of size p exists in ( I , E ( d )). We refer to the problem of

eciding whether X (d) is non-empty for any d as the IDS prob-

em. Erkut (1990) proposed another non-linear formulation similar

o (3) . Neither of the above non-linear formulations was supposed

o be solved directly. The authors motivate the two subsequent

ategories of exact solution approaches to the PDP which can be

ound in the literature. 

ILP-based approaches. These approaches are driven by compact

inearized versions of model (1) . We describe a standard MILP

ormulation of the PDP in Section 2.2 . Some authors suggest to

olve the compact model straightaway using any off-the-shelf MILP

olver ( Daskin, 1995; Kuby, 1987 ). Erkut (1990) tailored a branch-

nd-bound algorithm for the PDP. 

earch procedures. Model (3) motivates a simple search algorithm,

.g., line or binary search, to find a largest minimum distance

n combination with an efficient method to perform the feasibil-

ty tests in each iteration of the search. For a continuous ver-

ion of the PDP defined on a tree, Chandrasekaran and Daughety

1981) propose a search procedure which requires consecutive so-

utions of anti-cover problems. The anti-cover problem ( Chaudhry,

cCormick, & Moon, 1986 ) and the d -separation problem ( Erkut,

990; Erkut, ReVelle, & Ülküsal, 1996 ) are synonyms for the max-

mum IDS problem. Pisinger (2006) suggests a binary search and

onsiders cliques of size p for the feasibility test. 

We position the contribution of this paper in the first cate-

ory because a new compact formulation for the PDP is presented

see Section 2.3 ). Along with the new formulation, we provide in

ection 2.3.2 a greedy but usually effective procedure to strengthen

ts linear relaxation by separating valid inequalities. In our compu-

ational tests, we benchmark the new formulation against the stan-

ard MILP formulation and against the search procedures known

rom the literature. 

.2. Kuby formulation 

Using an appropriately large number M , a linearization

f (1) suggested by Kuby (1987) can be written as 

 = max d (4a) 

.t. 
∑ 

i ∈ I 
x i = p (4b) 

 ≤ M(2 − x i − x j ) + d i j (i, j) ∈ E (4c) 

 i ∈ { 0 , 1 } i ∈ I (4d) 

 ≥ 0 . (4e) 
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(4a), (4b), (4d) , and (4e) are identical to formulation (1) , while con-

straints (4c) replace (1c) . The latter constraints guarantee d ≤ d ij 
whenever both locations i and j are chosen via x i = x j = 1 . This

model is fairly compact, since it has n + 1 variables and | E| + 1 =
n (n − 1) / 2 + 1 constraints. 

It should be remarked that we formulate the linking con-

straints (4c) following the suggestion of Erkut (1990) and the most

recent literature, e.g., Saboonchi et al. (2014) . Kuby (1987) and also

Daskin (1995) state these constraints in a slightly different way.

However, we attribute Kuby ’s name to the model, since his work

is the first documenting the “big M ” constraints in the PDP context

to our knowledge. 

Finally, A ̆gca, Eksioglu, and Ghosh (20 0 0) developed a third

mixed-integer formulation in order solve it via a Lagrangian

relaxation-based heuristic. Their model is less compact than

Kuby ’s, thus not considered in this paper. 

2.3. New compact formulation 

We now present our new compact formulation which exploits

the fact that an optimal distance is identical to at least one of the

entries of the distance matrix. 

Let D 

0 < D 

1 < · · · < D 

k max be the different non-zero val-

ues in ( d ij ). The associated index sets are K = { 1 , 2 , . . . , k max }
and K 0 = { 0 } ∪ K. By definition, ∅ = E(D 

0 ) � E(D 

1 ) � E(D 

2 ) � · · · �

E(D 

k max ) � E holds. 

The new compact formulation uses two types of binary vari-

ables: As before, the binary location variable x i indicates whether

location i ∈ I is opened. For k ∈ K , the binary variable z k indicates

whether the location decisions satisfy a minimum distance of at

least D 

k . The pure binary program reads as follows: 

Z = max D 

0 + 

∑ 

k ∈ K 
(D 

k − D 

k −1 ) z k (5a)

s.t. 
∑ 

i ∈ I 
x i = p (5b)

z k ≤ z k −1 k ∈ K, k > 1 (5c)

x i + x j + z k ≤ 2 k ∈ K, (i, j) ∈ E(D 

k ) \ E(D 

k −1 ) (5d)

x i ∈ { 0 , 1 } i ∈ I (5e)

z k ∈ { 0 , 1 } k ∈ K (5f)

Constraints (5b) ensure that exactly p locations are chosen. The

consistency between the z k variables is modeled via (5c) in the

sense that the z k variables are non-increasing in k . Consequently,

any feasible solution fulfills that there exists a unique k ∈ K 0 with

z 1 = · · · = z k = 1 and z k +1 = · · · = z k max 
= 0 (in the extreme case of

k = 0 , z 1 = · · · = z k max 
= 0 ). Whenever the minimum distance is at

least D 

k , i.e., z 1 = z 2 = · · · = z k = 1 , the constraints (5d) ensure that

no pair ( i , j ) of locations with distance d ij < D 

k is chosen simulta-

neously. The domains of the variables are given by (5e) and (5f) . 

Any feasible solution to formulation (4) implies a feasible so-

lution to formulation (5) . Suppose that x is feasible in (4) and

define the set P = { i ∈ I : x i = 1 } of open locations. Then, x satis-

fies (5b) because P has the right cardinality p . Moreover, let D 

� 

for an � ∈ K 0 be the minimum distance between two locations

in P , i.e., D 

� = min i � = j∈ P d i j . Then, any pair i � = j ∈ P fulfills ( i , j ) �∈ 

E ( D 

k ) for all k = 0 , 1 , . . . , � . It means that one can set z k = 1 for

all k = 1 , . . . , � without violating any constraints in (5d) for these

values of k . For all other values k ∈ K , k > � , setting z k = 0 is

also consistent with (5c) . Due to (5a) the resulting objective value

is D 

0 + 

∑ � 
k =1 (D 

k − D 

k −1 ) z k = D 

� , which shows that x is valued with

the same minimum distance in (5) . The reverse statement follows
nalogously. Hence, formulations (4) and (5) are equivalent as MILP

ormulations. 

The new formulation (5) is compact, since it has exactly n +
 max variables and k max + | E(D 

k max ) | constraints. Both values do not

xceed n 2 . 

The principle of modelling a continuous location problem as

 pure binary problem is not new. Elloumi, Labbé, and Pochet

2004) exploit the relationship between the p -center problem and

he set-covering problem (SCP): For each possible maximum dis-

ance between customers and locations, the question whether

here exists a solution with p locations can be answered by solving

 SCP. Thus, the analogy between the PDP and the p -center prob-

em is that both have a pure binary feasibility decision problem, an

DS problem in the former case and an SCP in the latter case. 

.3.1. Exploitation of lower and upper bounds 

Model (5) can be reduced and tightened if bounds for the op-

imal distance Z are available. If one knows lb ≤ Z ≤ ub with

b = D 

k min and ub = D 

k max , then the definition of K can be al-

ered into K = { k min , k min + 1 , . . . , k max } . Moreover, one must rede-

ne D 

0 := D 

k min and E (D 

k min −1 ) := E (D 

0 ) . Now, formulation (5) has

nly n + ( k max − k min + 1) variables and only ( k max − k min + 1) +
 E(D 

k max ) \ E(D 

k min ) | constraints. It is guaranteed that the linear re-

axation of formulation (5) delivers a bound between lb and ub . 

Upper bounds can be computed with a procedure first sug-

ested by Pisinger (2006) . For each location i ∈ I , one first deter-

ines the p − 1 largest distances d ij to any j ∈ I , j � = i . Let d 
p−1 
i 

be

he smallest of these distances. If these values are computed for

ll i ∈ I , one must find the p th largest value among these. This is a

alid upper bound. 

We suggest a simple lower bounding procedure that uses a

reedy algorithm to compute maximum cardinality IDSs ( Chaudhry

t al., 1986 ). It works as follows: For each k ∈ K we consider the

ormulation (2) with 

˜ E = E(D 

k ) . Any solution x to this model cor-

esponds to an IDS S ⊆I in the graph ( I , E ( D 

k )) consisting of loca-

ions with minimum distance at least D 

k . If an IDS with cardinality

 S | ≥ p is found, then D 

k is a valid lower bound. In order to keep

he computational effort small, we search for large IDSs S with de-

reasing values of k using the greedy approach in each outer iter-

tion. In each inner iteration of the greedy algorithm, a minimum

egree vertex is chosen, this vertex and all its adjacent vertices

re removed from the graph, and the process is repeated. All cho-

en vertices form an IDS S . Such a greedy algorithm can be imple-

ented using O (n 2 ) time. 

.3.2. Valid inequalities 

Formulation (5) can be strengthened by adding additional valid

nequalities. The idea is to consider more than two locations at

he same time that are incompatible with a certain minimum dis-

ance D 

k . The valid inequalities have the following form: 
 

i ∈ S 
x i + (| S| − 1) z k ≤ | S| k ∈ K, 

 � = S ⊆ I : (i, j) ∈ E(D 

k ) for all i < j ∈ S (6)

ote first that for 1 ≤ | S | ≤ 2 the inequalities are given by the

ounds (5e) and constraints (5d) , respectively. For larger | S | ≥ 3,

he validity can be derived considering the two cases z k = 0 and

 k = 1 . In the first case, �i ∈ S x i ≤ | S | is always true. In the second

ase, the minimum distance of the solution is D 

k or larger so that

i ∈ S x i ≤ 1 is valid as imposed by (6) . 

Violated inequalities (6) can be separated by solving a series of

aximum weight clique problems, one for each k ∈ K . First, for a

xed k , real-valued weights for all locations i ∈ I are defined by

 i = x̄ i + ̄z k − 1 , where ( ̄x , ̄z ) is a possibly fractional solution to the

inear relaxation of (5) . Using the vector of decision variables y =
(y ) , the k th separation problem can be written as follows: 
i i ∈ I 
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max 
∑ 

i ∈ I 
w i y i (7a) 

 i + y j ≤ 1 (i, j) ∈ E \ E(D 

k ) (7b) 

 i ∈ { 0 , 1 } i ∈ I (7c) 

A vector y ∈ {0, 1} I satisfying (7b) is the incidence vector of

n IDS S = { i ∈ I : y i = 1 } in the complement graph ( I , E �E ( D 

k )), or

quivalently stated, S is a clique in the graph ( I , E ( D 

k )). Thus, S is a

alid set according to the definition in (6) . 

If the weight of the clique, i.e., 
∑ 

i ∈ S w i = 

∑ 

i ∈ S x̄ i + | S| ̄z k − | S| is

reater than z̄ k , it follows that 
∑ 

i ∈ S x̄ i + (| S| − 1) ̄z k > | S| , and hence

 violated inequality (6) is found. 

Again, in order to keep the computational effort small, we ap-

ly a greedy algorithm to solve the model (7) . Starting from the

raph ( I , E ( D 

k )), we iteratively determine a vertex maximizing the

roduct of vertex degree and weight. This vertex and vertices not

djacent to it are removed from the graph. The procedure is re-

eated on the resulting graph. All chosen vertices together form

he clique. This greedy algorithm can be implemented so that its

ffort is O (n 2 ) . 

. Computational results 

The compact formulation proposed in this paper provides a fast

nd easy-to-implement way to find optimal solutions to the PDP.

e show how computation times scale and use the 40 pmed in-

tances from the OR-Library (ORLIB) ( Beasley, 1990 ). These sym-

etric instances have been originally designed to test p -median

lgorithms. Their distance matrices are quadratic and therefore ap-

ropriate for the PDP. Since the ORLIB instances are much larger

s those used in recent studies, e.g., Della Croce, Grosso, and Lo-

atelli (2009) , Porumbel, Hao, and Glover (2011) , and Saboonchi

t al. (2014) , we think that they are well suited for a comparison. 

The characteristics of the ORLIB instances are summarized in

he first two blocks of Table 1 . In the first block, p is the number

f locations to open, | K 0 | the number of distinct distances, and n

he overall number of locations. The largest instances have n = 900

ocations and up to p = 200 locations need to be opened. In the

econd block, we show the lower and upper bounds resulting for

he bounding procedures of Section 2.3.1 . Lower and upper bounds

re given by lb and ub and the corresponding k -values are given by

 min and k max . For convenience, the remaining number of relevant

istinct distances is displayed in the column # k . 

.1. Computational setup 

All computations were performed on a standard PC with an In-

el(R) Core(TM) i7-2600 3.4 GigaHertz processor with 16 GigaByte

f main memory. The bounding, separation, line and binary search

rocedures were coded in C++ and compiled in release mode with

S-Visual Studio 2010. We used CPLEX 12.5 as general-purpose

ixed integer linear programming (MILP) solver and allow CPLEX

o allocate two threads. 

The following different exact methods were used to study the

elative performance of the compact formulation of Section 2.3 . We

ested the six subsequent settings over all test instances: 

Kuby Kuby formulation (4) solved by CPLEX. 

NF The new formulation (5) solved by CPLEX. 

NF ∗ The reduced formulation (5) solved by CPLEX. 

NFC 

∗ The reduced formulation (5) solved by CPLEX and separa-

tion of cuts (6) . 

LS ∗ The non-linear formulation (3) solved via line search. 
∗
BS The non-linear formulation (3) solved via binary search. i
The parameter M in model (4) is set equal to the largest dis-

ance D 

k max . In setting NF, we solve the full model as defined

n (5) with z k variables for all k = 1 , . . . , k max . As already men-

ioned, the clique cuts (6) in setting NFC 

∗ are separated by the

euristic described in Section 2.3.2 . We kept all default parame-

ers of CPLEX, except for NFC 

∗ for which we set the backtracking

olerance to zero (this lets CPLEX focus on improving the upper

ound). All starred settings (NF ∗, NFC 

∗, LS ∗ and BS ∗ ) make use of

he bounds described in Section 2.3.1 replacing 0 and k max by k min 

nd some smaller k max . In particular, the line and binary search

rocedures are accelerated by restricting the search interval to the

istance values between D 

k min and D 

k max . Our line search starts

rom D 

k min and increases distance values since the lower bounds

rovided by the iterated greedy procedure are often close to the

ptimal distance (cf. Table 1 ). In the following, # k = k max − k min + 1

enotes the resulting number of distinct distance values possible

or the minimum distance Z . 

We notice that Erkut (1990) already suggests a line and a bi-

ary search over the minimum distance d . In the worst case,

he line search needs at most O (# k ) and the binary search at

ost O ( log (# k )) checks. Of course, the IDS problem in every it-

ration can be solved with any general-purpose MILP solver. In

ddition, one can exploit the structure of the feasibility problem

y using, e.g., “integer-friendly” models (see Erkut et al., 1996 ).

isinger (2006) proposes a special-purpose algorithm based on a

ense subgraph representation of the feasibility problem. 

Our attempt is to further speed up both search procedures

hile keeping the effort incurred by their implementation as low

s possible. Thus, we realized the feasibility tests using the exact

ethod introduced by Östergård (2002) for which the author dis-

ributes a free C library. Note that Östergård ’s implementation al-

ows to specify lower and upper bounds to terminate the search

rematurely. 

.2. Results 

We start with an analysis of the upper bounds resulting from

he linear relaxations produced by Kuby, NF, NF ∗, and NFC 

∗. The

hird block of Table 1 shows these bounds. Note that the LP

ounds stated in the second last column (NFC 

∗) were obtained

y the heuristic separation of the clique cuts (6) as described in

ection 2.3.2 . 

It is obvious that the new formulation (5) produces significantly

ighter upper bounds than Kuby ’s model (4) , in particular when the

reprocessing has already restricted the search space to distances

 

k with k min ≤ k ≤ k max . It can also be seen that the preprocessing

pper bound ( ub ) is preserved when solving the linear relaxation

f the reduced model, see the LP bounds in column NF ∗ of Table 1 .

he last column of this table reports the optimal distance values Z

r, where these are not known, the best known lower and upper

ounds. Taking these values as benchmark, the linear relaxation of

he Kuby formulation (4) produces upper bounds that are on av-

rage approximately 75 percent above, while the LP bounds asso-

iated with the new formulation (5) and the reduced version are

4 percent and 29 percent above, respectively. From the last two

olumns of Table 1 , we compute an average integrality gap of 11

ercent if the clique cuts (6) are heuristically separated and added,

nd we see that the PDP is solved at the root node in 19 out of 40

ases. 

It remains to discuss the results with respect to Kuby, NF, NF ∗,

FC 

∗, LS ∗, and BS ∗. The corresponding numbers are reported in the

ix blocks of Table 2 . Each block consists of two columns: The first

olumn shows either the optimal distance or the lower bound as-

ociated with the best integer solution and the best upper bound.

he numbers in the second column are the computation times

n seconds required to prove the optimal distance. An entry “TL”



66 D. Sayah, S. Irnich / European Journal of Operational Research 256 (2017) 62–67 

Table 1 

Characteristics of instances, lower and upper bounds, LP bounds, and optimal distances; the values marked with † were obtained with NFC ∗ in extended computation time. 

Instance Proprocessing bounds LP upper bounds Opt. 

Name p | K 0 | n lb ub k min k max # k Kuby NF NF ∗ NFC ∗ Z 

pmed1 5 284 100 223 268 221 266 46 599 299 268 228 228 

pmed2 10 282 100 181 240 178 237 60 601 316 240 181 181 

pmed3 10 316 100 164 236 162 234 73 731 388 236 193 .1 167 

pmed4 20 289 100 124 225 117 218 102 571 .5 335 225 126 .5 125 

pmed5 33 261 100 75 151 74 150 77 451 .7 312 151 75 75 

pmed6 5 188 200 159 178 158 175 18 397 198 178 159 159 

pmed7 10 170 200 115 145 114 144 31 367 .6 184 145 118 118 

pmed8 20 204 200 92 136 91 135 45 414 .6 220 136 109 .3 92 

pmed9 40 189 200 60 108 59 107 49 362 .5 215 108 65 62 

pmed10 67 162 200 33 74 32 73 42 240 .1 169 74 33 33 

pmed11 5 129 300 112 116 111 115 5 269 134 116 112 112 

pmed12 10 154 300 92 109 91 108 18 335 167 109 99 .3 92 

pmed13 30 139 300 61 91 60 90 31 283 .3 150 91 82 .3 64 

pmed14 60 160 300 42 77 41 76 36 299 .7 179 77 56 .1 43 

pmed15 100 130 300 26 62 25 61 37 194 136 62 33 .2 27 

pmed16 5 103 400 91 94 90 93 4 215 107 94 91 91 

pmed17 10 103 400 71 83 70 82 13 211 105 83 71 71 

pmed18 40 118 400 45 72 44 71 28 264 .3 141 72 70 .2 48 

pmed19 80 100 400 29 60 28 59 32 170 .9 101 60 43 31 

pmed20 133 111 400 20 52 19 51 33 160 .6 113 52 21 21 

pmed21 5 88 500 74 78 73 77 5 183 91 78 74 74 

pmed22 10 111 500 65 78 64 77 14 227 113 78 75 .4 66 

pmed23 50 94 500 36 60 35 59 25 177 .2 94 60 56 .5 39 

pmed24 100 95 500 24 49 23 48 26 167 .7 100 49 30 .2 25 

pmed25 167 99 500 17 43 16 42 27 144 102 43 17 17 

pmed26 5 82 600 67 74 66 73 8 175 87 74 68 68 

pmed27 10 90 600 58 66 57 65 9 183 91 66 59 59 

pmed28 60 106 600 31 48 30 47 18 204 .9 110 48 41 .5 31 

pmed29 120 87 600 21 42 20 41 22 147 .5 88 42 30 .6 22 † 

pmed30 200 95 600 14 39 13 38 26 134 .9 96 39 16 15 

pmed31 5 65 700 56 60 55 59 5 131 65 60 57 57 

pmed32 10 117 700 51 58 50 57 8 249 124 58 52 52 

pmed33 70 71 700 26 43 25 42 18 138 .7 74 43 42 [27,28 † ] 

pmed34 140 94 700 18 37 17 36 20 162 .8 98 37 27 .4 19 † 

pmed35 5 69 800 58 59 57 58 2 149 74 59 58 58 

pmed36 10 87 800 50 57 49 56 8 175 87 57 51 51 

pmed37 80 77 800 26 41 25 40 16 146 78 41 37 .3 [26,27 † ] 

pmed38 5 80 900 57 58 56 57 2 169 84 58 57 57 

pmed39 10 95 900 40 47 39 46 8 231 115 47 46 41 

pmed40 90 68 900 21 37 20 36 17 129 .1 69 37 37 [22,29] 
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indicates that it was not possible to prove optimality within

the time limit of 1800 seconds, and the entry “ME” stands for

a CPLEX abort prior to the time limit due to the occurrence of

an out-of-memory error. The last three lines of Table 2 are the

number of solved instances, the average computation time over all

instances, and the average computation time over instances solved

to optimality. 

Surprisingly, the line search outperforms the binary search on

average over the solved instances, see the last line of Table 2 . This

is due to the fact that the greedy lower bound, from which we

start the line search, is often quite close to the optimum. In these

cases, the line search may need fewer iterations to hit the op-

timum distance than the binary search. Note that this statement

does not necessarily hold in general because the solvability of the

IDS problems depends on the value d . Thus, even if the line search

requires fewer iterations, we may be better off with the binary

search if the feasibility checks are easier to perform. 

It is obvious that, when the new formulation (5) is prepro-

cessed using the simple bounds, it is possible to solve 34 instances,

i.e., 10 instances more than with the standard model (4) and 4

instances more than both line and binary search. Moreover, the

greedy separation appears quite effective in the sense that the av-

erage computation time of NF ∗ could be further shortened by 14,7

percent over all instances and by 26.8 percent over the solved in-

stances. 
. Conclusions 

We proposed a new compact pure binary formulation for the

 -dispersion problem along with two options to enhance the for-

ulation at a low computational cost. First, we suggested a pre-

rocessing phase in which the number of constraints and vari-

bles can be considerably reduced by exploiting simple bounds

n the optimal distance. Second, we showed that clique in-

qualities are valid for the new model and that their heuris-

ic separation is sufficient to achieve a significant speed-up in

any tested instances. Summarizing, it turns out that MIP solvers

enefit from reformulating the PDP in terms of a series of

ure binary feasibility problems whose structure can be further

xploited. 

For future research, fast improvement heuristics in the pre-

rocessing phase might further improve our formulation, since in

ome instances the best upper bounds are already tight. Moreover,

t would be interesting to see if our modeling approach also ap-

lies to the various related dispersion problems. Among these vari-

nts are, for example, the PDP with an additional given set of fixed

pen facilities or with demand locations, from which the new fa-

ilities have to be located as far as possible, the problem of max-

mizing the total minimum distance between open facilities and

emand locations, and the problem of maximizing the dispersion

f multiple types of facilities ( Curtin & Church, 2006 ). 
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Table 2 

Numerical results for the pmed instances of the ORLIB; the time limit TL was set to 1800 seconds; ME indicates the occurrence of an out-of-memory error. 

Kuby NF NF ∗ NFC ∗ LS ∗ BS ∗

Name lb / ub time lb / ub time lb / ub time lb / ub time lb / ub time lb / ub time 

pmed1 228 0 .7 228 1 .3 228 0 .1 228 0 .1 228 < 0 .1 228 < 0 .1 

pmed2 181 2 .4 181 4 .3 181 0 .2 181 0 .2 181 < 0 .1 181 < 0 .1 

pmed3 167 7 .1 167 9 .8 167 0 .6 167 0 .8 167 < 0 .1 167 < 0 .1 

pmed4 125 301 .3 125 12 .5 125 0 .4 125 0 .4 125 < 0 .1 125 < 0 .1 

pmed5 75 443 .6 75 56 .5 75 0 .2 75 0 .3 75 < 0 .1 75 < 0 .1 

pmed6 159 2 .2 159 3 .0 159 < 0 .1 159 < 0 .1 159 < 0 .1 159 < 0 .1 

pmed7 118 10 .5 118 18 .7 118 0 .5 118 0 .7 118 < 0 .1 118 < 0 .1 

pmed8 92 105 .6 92 39 .8 92 3 .1 92 4 .4 92 < 0 .1 92 < 0 .1 

pmed9 62/107 TL 62/79 389 .3 62 3 .9 62 8 .0 62 0 .7 62 < 0 .1 

pmed10 33/69 TL 33 195 .8 33 0 .8 33 0 .9 33 < 0 .1 33 7 .0 

pmed11 112 22 .0 112 7 .2 112 < 0 .1 112 < 0 .1 112 < 0 .1 112 < 0 .1 

pmed12 92 35 .0 92 280 .2 92 0 .2 92 0 .5 92 < 0 .1 92 < 0 .1 

pmed13 64/93 TL 64 279 .8 64 36 .8 64 32 .2 64 < 0 .1 64 < 0 .1 

pmed14 43/96 TL 43 1059 .2 43 30 .9 43 59 .4 43 94 .6 43 96 .5 

pmed15 27/78 TL 27 305 .5 27 12 .1 27 37 .8 27 920 .3 27 1462 .3 

pmed16 91 37 .1 91 40 .0 91 0 .1 91 0 .1 91 < 0 .1 91 < 0 .1 

pmed17 71 101 .8 71 49 .6 71 0 .4 71 0 .8 71 < 0 .1 71 < 0 .1 

pmed18 48/84 TL 48/84 TL 48 1486 .2 48 740 .6 48 18 .2 48 17 .1 

pmed19 31/79 ME 31/67 TL 31 623 .2 31 249 .0 29/60 TL 29/36 TL 

pmed20 20/77 TL 74 TL 21 25 .3 21 95 .1 20/52 TL 20/36 TL 

pmed21 74 30 .1 74 111 .8 74 0 .2 74 0 .2 74 < 0 .1 74 < 0 .1 

pmed22 66 200 .0 66 342 .7 66 1 .0 66 4 .0 66 < 0 .1 66 < 0 .1 

pmed23 39 15 .3 39/44 .8 TL 39 1427 .2 39 1054 .8 39 51 .0 39 15 .3 

pmed24 24/103 TL 24/103 TL 25 1617 .9 25 379 .0 24/49 TL 24/36 TL 

pmed25 17/85 .5 TL 17/94 .8 TL 17 15 .0 17 18 .3 17/43 TL 17/43 TL 

pmed26 68 30 .2 68 187 .9 68 0 .5 68 0 .8 68 < 0 .1 68 < 0 .1 

pmed27 59 247 .4 59 272 .2 59 2 .6 59 3 .5 59 < 0 .1 59 < 0 .1 

pmed28 31 129 .0 31/110 TL 31/48 TL 31 1311 .4 31 145 .3 31 130 .2 

pmed29 21/91 TL 21/91 TL 22/23 TL 22/23 TL 21/42 TL 21/31 TL 

pmed30 14/97 .9 TL 14/96 TL 15 211 .4 15/18 .5 ME 14/39 TL 14/39 TL 

pmed31 57 76 .3 57 197 .9 57 0 .8 57 1 .1 57 < 0 .1 57 < 0 .1 

pmed32 52 434 .1 52 517 .1 52 3 .5 52 4 .8 52 < 0 .1 52 < 0 .1 

pmed33 26/34 TL 26/34 TL 26/43 TL 27/41 .9 TL 26/43 TL 26/34 TL 

pmed34 18/101 .4 TL 18/98 TL 18/21 TL 18/20 TL 18/37 TL 18/27 TL 

pmed35 58 < 0 .1 58 868 .6 58 0 .8 58 0 .9 58 < 0 .1 58 < 0 .1 

pmed36 51 < 0 .1 51 808 .5 51 4 .6 51 5 .6 51 < 0 .1 51 < 0 .1 

pmed37 26/83 .9 TL 26/83 .9 TL 26/41 TL 26/36 .9 TL 26/41 TL 26/33 TL 

pmed38 57 155 .7 57 155 .7 57 0 .9 57 1 .0 57 < 0 .1 57 < 0 .1 

pmed39 41 < 0 .1 41/108 .8 TL 41 6 .7 41 20 .7 41 < 0 .1 41 < 0 .1 

pmed40 21/29 TL 21/69 TL 22/37 TL 21/37 TL 21/37 TL 21/29 TL 

#opt. 24 25 34 34 30 30 

avg.(tot.) 777 .4 785 .5 408 .1 348 .0 481 .0 493 .5 

avg.(opt.) 99 .5 233 .0 162 .3 118 .7 41 .0 57 .6 
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