CSCI 688-02
Network Location Theory
Course Syllabus—Summer 2011

INSTRUCTOR: Rex K. Kincaid
Office—126 Hugh Jones Hall
Phone—221-2038 (O)
Email—rrkinc@math.wm.edu
Office Hours—TBA

PREREQUISITES: Csci 141, Csci 241, and Math 323 (high-level programming language, elementary data structures and rudimentary knowledge of optimization) or their equivalent.

DESCRIPTION: Network location problems arise in many diverse applications. Examples include locating facilities, sensors, components, vehicles, people, services, and actuators. The course will include topics from classical location theory (covering, center and median problems) as well as more recent topics in the literature.

TOPIC OUTLINE:
1. Introduction (ch. 1 of Daskin) [week 1]
2. Complexity Theory (ch. 3 of Daskin) [week 1]
3. Covering Problems (ch. 4 of Daskin) [week 1]
4. Center Problems (ch. 5 of Daskin) [week 2]
5. Median Problems (ch. 6 of Daskin) [week 3]
• Midterm Exam
6. Students present research articles [week 4]
7. Fixed Charge (ch. 7 of Daskin) [week 4]
8. Extensions of Location Models (ch. 8 of Daskin) [week 5]
8. Meet for individual/group projects [week 5]

Students will work on individual or group projects/papers during the last part of the course. This can take the form of an application of an existing model, development of a new formulation, or implementation of a solution algorithm. Here is a link to information about the textbook, http://sitemaker.umich.edu/msdaskin/books.

REFERENCES:

HOMEWORK: Homework emphasizing and extending lecture material will be assigned and graded. Late homework is not accepted except in the case of an unanticipatable absence (serious illness, death in the family, loss of your favorite DVD, etc.).

GRADES: The midterm exam will be “almost closed book,” i.e. students may use two 8.5 by 11 inch sheet of notes. Such notes may be on both sides of the paper, but they should be in original pen or pencil, **not photo-copies**. The course project will be due no later than the last day of class (August 5). Homework assignments will be given periodically throughout the course and together will count 30% of the final course grade. Some homework assignments will involve programming and the use of optimization software. Finally, class discussion will be critical. 10% of the course grade will reflect your participation and insightfulness in class discussions.

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>30%</td>
</tr>
<tr>
<td>Midterm Exam</td>
<td>25%</td>
</tr>
<tr>
<td>Presentations</td>
<td>10%</td>
</tr>
<tr>
<td>Projects</td>
<td>25%</td>
</tr>
<tr>
<td>Discussion</td>
<td>10%</td>
</tr>
</tbody>
</table>