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1. Introduction.

As part of his study of functions defined on product spaces, M. Hušek
introduced a family of diagonal conditions in a topological space X [H1,H2].
For a cardinal number κ, he defined that the diagonal ∆(X) of a space
X is κ-inaccessible if for any T ⊂ X2 − ∆(X), |T | = κ implies that
|T −W | = κ for some open neighborhood W of ∆(X). If the diagonal of
X is ω1-inaccessible, he said that X has a small diagonal. Subsequently,
these notions have played a role in metrization theory ([HX, JS]) and in the
study of Cp(X) ([A], [AT]), often for compact spaces, and sometimes using
additional set-theoretic assumptions such as the Continuum Hypothesis
(CH).

For regular uncountable κ, Hušek’s diagonal properties generalize the
notion of a Gδ-diagonal. Given the central role played by Gδ-diagonals
in metrization theory for compact Hausdorff spaces and for linearly or-
dered spaces (see [S] and [L1], for example), it is natural to ask about
the role of Hušek’s diagonal conditions in metrization of such spaces, and
several positive results have been obtained. The first is due to Juhász and
Szentmiklóssy [JS] and the second, due to van Douwen and Lutzer, was
announced in [H2] but no proof has been published until now.

1.1) Theorem: [JS] The Continuum Hypothesis implies that any compact

Hausdorff space with a small diagonal is metrizable.

1.2) Theorem:[H2] Any compact linearly ordered topological space with a

small diagonal is metrizable, and the same is true for any Lindelöf linearly

ordered topological space with a small diagonal.

Historically, metrization theorems for compact Hausdorff spaces have
often been generalized to metrization theorems for the progressively larger
classes of locally compact spaces, then Čech-complete spaces, and finally
the p-spaces of Arhangel’skii, often with the additional hypothesis of para-
compactness [Bo,Ok]. Parallel generalizations have been found for Gδ- and
p-embedded subspaces of linearly ordered spaces ([L2]). It is, therefore,
reasonable to ask whether the results in (1.1) and (1.2) can be generalized
to those larger classes. The first step is very easy:

1.3) Proposition: Suppose Y is paracompact, locally compact, and has a

small diagonal.

a) Under CH, Y is metrizable.

b) In any model of set theory, if Y is a subspace of a linearly ordered

space, then Y is metrizable.

Proof: Such a space is locally metrizable and paracompact.
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One of the goals of this paper is to show that further generalization of
(1.3) to Čech complete spaces, or to p-spaces, is not possible.

A second goal of the paper is to introduce and study a relative of
Hušek’s small diagonal condition.

1.4) Definition: For a space X, let D(X) be the set of regular uncountable
cardinals κ such that:

a) κ ≤ |X|; and
b) the diagonal of X is κ-inaccessible, i.e., if T ⊂ X2−∆(X) and |T | = κ,

then |T −W | = κ for some open neighborhood W of ∆(X).

1.5) Definition: The space X has an H-diagonal provided D(X) = {κ ≤
|X| : κ is a regular uncountable cardinal}.
It is easy to see that if X is an uncountable space with a Gδ-diagonal then
X has an H-diagonal, and that if X has an H- diagonal, then X has a
small diagonal. Examples 6.2 and 7.7 show that neither implication can
be reversed. Using the notion of an H-diagonal, we prove the following
generalization of (1.2):

1.6) Proposition: Any locally compact generalized ordered space with an

H-diagonal is metrizable.

Proof: The key step is to prove that a generalized ordered space with an
H-diagonal must be paracompact. That result appears in Section 5, below.

The possibilities for further generalization of (1.1) and (1.2) are extremely
limited, as can be seen from:

1.7) Example: There is a non-metrizable, Čech- complete, linearly ordered

topological space that has an H-diagonal (and hence a small diagonal).

Even though Čech-complete linearly ordered spaces with H-diagonals may
fail to be metrizable, they are not without special structure, as can be seen
from:

1.8) Proposition: Let X be a linearly ordered topological space with an

H-diagonal. If X is either Čech-complete or a p-space, then X has a dense

metrizable subspace.

Other examples in our paper illustrate the interactions of H-diagonals with
various base conditions in ordered spaces, e.g.:

1.9) Example: If M∗ denotes the smallest linearly ordered topological

space that contains the Michael line M as a closed subspace, then M∗ is
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not metrizable, has a σ-disjoint base, and does not have an H-diagonal.

However, it is undecidable in ZFC whether or not M∗ has a small diagonal,

and it is undecidable in ZFC whether or not c ∈ D(M∗).

Our paper is organized as follows. In Section 2 we present defini-
tions from ordered space theory and remind the reader of a standard tree
construction. In Section 3 we use the tree construction to establish cer-
tain cardinal function inequalities for ordered spaces with various diagonal
conditions. In Section 4 we apply those results to prove Theorem (1.2),
above. In Section 5 we investigate properties of generalized ordered spaces
with H- diagonals, and prove (1.6). Examples in Section 6 show the role
of Hušek’s diagonal conditions in familiar ordered spaces. Section 7 uses
the “splitting points” technique to produce the space of Example (1.7).
Section 8 uses another ordered space construction to investigate the role
of H- diagonals in the presence of certain base conditions, partially prov-
ing (1.9) among other results. Section 9 translates and extends certain
results from Section 8 using the language of ωω and its ordering ≤∗, and
completes the proof of (1.9).

The authors would like to thank K. P. Hart for showing how to sub-
stantially shorten proofs of several results in this paper, and for pointing
out results that appear in Section 9.

2. Definitions and the tree construction

Recall that a linearly ordered topological space (LOTS) is a triple
(X, T , <) such that < is a linear ordering of X and T is the usual open
interval topology of <. A subspace of a LOTS may fail to be a LOTS
when equipped with the subspace topology and the restricted ordering.
Subspaces of LOTS are called generalized ordered spaces (GO-spaces) and
may be characterized another way: GO-spaces are triples (X, T , <) where
< is a linear ordering of X and T is a Hausdorff topology on X that has
a base consisting of order-convex sets. The best known GO-spaces are
the Sorgenfrey line ([So]) and the Michael line ([M1]). Neither is a LOTS
under any linear ordering.

Intervals in a linearly ordered set will be denoted by ]a, b[, [a, b[, [a, b]
and ] ←, b], etc. In many cases, members of the underlying linearly
ordered set will be ordered pairs, and intervals will have forms such as
](a, 0), (b, 1)[. Cardinal functions c(X), d(X), w(X), l(X), hl(X) and
hd(X) are defined as in [E]. For any GO-space X, we know that l(X) ≤
hl(X) = c(X) ≤ d(X) = hd(X). [L2]
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The following tree construction is standard in GO-space theory, but
notation varies from one author to another. We will need the details of
the construction in Section 3, so we outline it here. Our construction
can be carried out in any GO-space, but it is most easily described in
its historical context, namely in situations where X is a GO-space having
c(X) = κ < d(X). We know that hl(X) = c(X) = κ (but we do not know
that κ is regular or uncountable).

Let D(0) =
⋃
{G : G is open in X and |G| ≤ κ}. Because hl(X) = κ,

the subspace D(0) can be covered by κ open sets, each with cardinality at
most κ, so that |D(0)| ≤ κ. Hence D(0) cannot be dense in X. Let U(0)
be the family of all convex components of X − cl(D(0)).

For each open convex C ⊂ X − cl(D(0)), let f(C) ∈ C be chosen in
such a way that C −{f(C)} has two convex components C ′ and C ′′, each
with cardinality greater than κ, named in such a way that each point of
C ′ is less than each point of C ′′. Such a choice is always possible, because
each nonempty open set disjoint from D(0) must have cardinality greater
than κ.

Suppose α < κ+ and that for each β < α we have collections U(β)
and sets D(β) satisfying:

a) each U(β) is a nonvoid, pairwise disjoint collection of nonvoid, convex,
open subsets of X;

b) if β is a limit ordinal then U(β) is the family of convex components
of X − cl(

⋃
{D(γ) : γ < β}) and D(β) =

⋃
{D(γ) : γ < β}.

c) if β = γ + 1 is not a limit ordinal, then D(β) = {f(C) : C ∈ U(γ)}
and U(β) = {C ′, C ′′ : C ∈ U(γ)}.

d) for each β < α, we have |U(β)| ≤ κ and |D(β)| ≤ κ.

e) if γ < β < α, then each member of U(β) is contained in a unique
member of U(γ).

We now define D(α) and U(α). If α is a limit ordinal, let D(α) =
⋃
{D(β) :

β < α}. Then |D(α)| ≤ κ so that D(α) cannot be dense in X. Let U(α)
be the family of all convex components of X−cl(D(α)). If α = β+1 is not
a limit ordinal, let D(α) = {f(C) : C ∈ U(β)} and let U(α) = {C ′, C ′′ :
C ∈ U(β)}. Observe that the function f: U → X is injective.

This recursive construction, carried out under the assumption that
c(X) = κ < d(X), gives nonempty collections U(α) and nonempty sets
D(α) for each α < κ+. Let U =

⋃
{U(α) : α < κ+}.
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2.1) Proposition: The collection U is a tree and if c(X) = κ < d(X),
then U has no subcollection V with |V| = κ+ that is linearly ordered by

inclusion. In particular, no V ⊂ U with |V| = κ+ has
⋂
V 6= ∅.

2.2)Corollary: If c(X) = κ < d(X), then the set D =
⋃
{D(α) : α < κ+}

is dense in X and has |D| = κ+.

2.3) Corollary: For any GO-space, either d(X) = c(X) or else d(X) =
c(X)+

.

It is consistent with ZFC that a LOTS X can have c(X) = ω and yet
d(X) = ω1. Such an X is a Souslin space.

3. Cardinal invariants and D(X) for GO-spaces

As noted in Section 2, for any GO-space X, we have l(X) ≤ hl(X) =
c(X) ≤ d(X) = hd(X). In this section we will investigate the interplay
between those cardinal functions and the cardinals in D(X).

It will sometimes be useful to have a translation of the statement
“κ ∈ D(X)” into the language of open coverings.

3.1) Proposition: Suppose that X is any topological space and that κ is

a regular uncountable cardinal. Then κ ∈ D(X) if and only if for each

set T ⊂ X2 − ∆(X) having |T | = κ, there is an open cover G of X and

a subset T0 ⊂ T such that |T0| = κ and such that if (x, y) ∈ T0, then no

member of G contains both x and y.

Proof: Suppose that κ ∈ D(X) and T ⊂ X2 − ∆(X) are given, with
|T | = κ. Find an open neighborhood W of ∆(X) such that |T0| = κ,
where T0 = T −W . For each x ∈ X find an open set G(x) ⊂ X such that
(x, x) ∈ (G(x))2 ⊂W . Let G = {G(x) : x ∈ X}.

Conversely, suppose that X satisfies the covering condition above.
Given T , find T0 and G. For each x ∈ X choose G(x) ∈ G with x ∈ G(x)
and let W =

⋃
{(G(x))2 : x ∈ X}. Then T0 ⊂ T −W as required to prove

that κ ∈ D(X).

3.2) Proposition: Suppose (X, T , <) is a GO space such that κ+ ∈ D(X).
If c(X) ≤ κ then d(X) ≤ κ.

Proof: From (2.3), we know that either d(X) = c(X), in which case there
is nothing to prove, or else d(X) = c(X)+. For contradiction, suppose
that d(X) = c(X)+ and d(X) > κ. Then c(X) = κ and d(X) = κ+.

The construction in Section 2 yields pairwise disjoint collections U(α)
for each α < κ+. For each C ∈ U(α), recall that C ′, C ′′ are the two convex
components of C−{f(C)} and that C ′ ⊂ ]←, f(C)] and C ′′ ⊂ ]f(C),→ [.
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Let T = {(f(C), f(C ′′)) : C ∈ U}. Then T ⊂ X2 − ∆(X) and
|T | = κ+. Because κ+ ∈ D(X), there is an open neighborhood W of
∆(X) having |T −W | = κ+. Let V = {C ∈ U : (f(C), f(C ′′)) ∈ T −W}.
Then |V| = κ+.

For each x ∈ X, choose an open set G(x) with (x, x) ∈ G(x)2 ⊂ W .
Because l(X) ≤ hl(X) = c(X) = κ, there is a collection G ⊂ {G(x) : x ∈
X} having

⋃
G = X and |G| = κ. For each G ∈ G let V(G) = {C ∈ V :

f(C) ∈ G} Then V =
⋃
{V(G) : G ∈ G}. Because |V| = κ+, for some

G0 ∈ G we have |V(G0)| = κ+.

Consider two distinct members C1, C2 ∈ V(G0) numbered in such a
way that f(C1) < f(C2). Because f(C1) ∈ G0 we must have f(C ′′1 ) /∈ G0

for otherwise (f(C1), f(C ′′1 ) ∈ G0 ×G0 ⊂ W contrary to (f(C1), f(C ′′1 ) ∈
T −W . But then f(C2) < f(C ′′1 ) so that f(C2) ∈ ]f(C1), f(C ′′1 )[ ⊂ C1.
Because C1 and C2 are members of a tree and are not disjoint, it follows
that C1 ⊂ C2 or C2 ⊂ C1. Therefore V(G0) is linearly ordered by inclusion,
and that is impossible by Corollary (2.1).

3.3) Proposition: Suppose that X is a GO-space with κ+ ∈ D(X). Let

J = {a ∈ X : for some b > a, ]a, b[ = ∅}. If l(X) ≤ κ, then |J | ≤ κ.

Proof: For contradiction, suppose |J | > κ. Choose S ⊂ J with |S| = κ+.
For each a ∈ S, choose b(a) > a with ]a, b(a)[ = ∅. Let T = {(a, b(a)) : a ∈
S}. Then |T | = κ+ and T ∩∆(X) = ∅ so that some open neighborhood
W of ∆(X) has |T −W | = κ+. Let S0 = {a ∈ S : (a, b(a)) ∈ T −W}.
Then |S0| = κ+.

We claim that S0 is a closed discrete subspace of X. For any x ∈ X,
let G(x) be an open convex subset of X with G(x) × G(x) ⊂ W . If a ∈
G(x)∩S0 then b(a) /∈ G(x) for otherwise (a, b(a)) ∈ G(x)2 ⊂W , contrary
to a ∈ S0. Therefore a ∈ G(x) ∩ S0 implies G(x) ⊂ ]←, b(a)[ = ]←, a] so
that |G(x) ∩ S0| ≤ 1.

But then S0 is a closed discrete subspace of X even though l(X) ≤ κ
and |S0| = κ+, and that is impossible.

Recall that for any subset Y of a space X, ψ(Y,X) is the least cardi-
nality of a collection U of open sets such that

⋂
U = Y . For example, the

assertion “ψ(∆(X), X2) = ω” is the statement that X has a Gδ-diagonal.

3.4) Proposition: Let X be a GO-space with κ+ ∈ D(X). If c(X) ≤ κ

then ψ(∆(X), X2) is less than or equal to κ.

Proof: In the light of (3.1) and (3.3), we know that d(X) ≤ κ and |J | ≤ κ.
Let D be a dense subset of X with cardinality κ. We next define a family
of open covers of X. There are two cases to consider.
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1) If a < b < c are points ofD, define G(a, b, c) = { ]←, b[, ]a, c[, ]b,→ [ }
2) If x ∈ J , then there is a unique point b(x) such that x < b(x) and

]x, b(x)[ = ∅. Then define G(x) = { ]←, b(x)[ , ]x,→ [ }.
In each case, we obtain an open cover of X, and the family of covers so
obtained has cardinality ≤ κ.

We next show that if p < q are points of X, then there is an open
cover H defined above so that q /∈ St(p,H) and hence p /∈ St(q,H). There
are two cases to consider.

a) If the interval ]p, q[ is infinite, we may choose points a < b < c in
D∩ ]p, q[ and then St(p,G(a, b, c)) = ]←, b[ which does not contain q.

b) If the interval ]p, q[ is finite, then p ∈ J so that G(p) is defined and
St(p,G(p)) = ]←, p] which does not contain q.

For each of the open coversH defined above, let W (H) =
⋃
{H2 : H ∈

H}. We thereby obtain κ-many open subsets of X×X whose intersection
is ∆(X), as required.

Combining (3.2), (3.3), and (3.4) we obtain:

3.5) Proposition: Suppose that X is a GO-space and that κ+ ∈ D(X). If

c(X) ≤ κ, then ψ(∆(X), X2) ≤ c(X) = hl(X) ≤ d(X) ≤ κ.

If we consider linearly ordered spaces, rather than GO-spaces, then
we can add the Lindelöf degree l(X) to the list in (3.5).

3.6) Proposition: Suppose X is a LOTS with κ+ ∈ D(X). If l(X) ≤ κ,

then c(X) ≤ κ and hence ψ(∆(X), X2) ≤ c(X) = hl(X) ≤ d(X) ≤ κ.

Proof: If not, then there is a family U = { ]x(α), y(α)[ : α < κ+} of
pairwise disjoint, nonempty, open intervals in X. Write A = [0, κ+[. Let
T = {(x(α), y(α)) : α ∈ A}. Then T ∩∆(X) = ∅. Because κ+ ∈ D(X),
(3.1) yields a convex open cover G of X and a set T0 ⊂ T with |T0| = κ+

and with the property that if (x(α), y(α)) ∈ T0 then no member of G
contains both x and y. Because l(X) = κ we may assume that |G| = κ.

For each G ∈ G, let A(G) = {α ∈ A : x(α) ∈ G}. Because
⋃
G = X,

we have A =
⋃
{A(G) : G ∈ G}. Hence, some G0 ∈ G has |A(G0)| = κ+.

Choose α, β, γ ∈ A(G0) such that x(α) < x(β) < x(γ). Easy examples
show that the order relationship between those points and the associated
points y(α), y(β), y(γ) may vary, so there are cases to consider. If y(α) ≤
x(γ), then convexity of G0 yields x(α), y(α) ∈ [x(α), x(γ)] ⊂ G0, contrary
to α ∈ A(G0). Hence x(γ) < y(α). Next, either x(γ) < y(β) or else
y(β) ≤ x(γ). In the first case we have x(α) < x(β) < x(γ) < y(β) and
x(α) < x(β) < x(γ) < y(α) so that x(γ) ∈ ]x(β), y(β)[ ∩ ]x(α), y(α)[ = ∅
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which is impossible. In the second case we have x(α) < x(β) < y(β) ≤
x(γ) so that convexity of G0 yields x(β), y(β) ∈ [x(α), x(γ)] ⊂ G0 contrary
to (b(β), y(β)) /∈W .

4. Metrization of ordered spaces and small diagonals

In this section, we will use the cardinal function inequalities proved
in Section 3 to provide a proof of Theorem 1.2 of the Introduction.

4.1) Theorem: Suppose X is a Lindelöf LOTS with a small diagonal. Then

X is metrizable.

Proof: If |X| ≤ ω, there is nothing to prove, so assume that X is uncount-
able. Then ω+ = ω1 ∈ D(X). We are given that l(X) = ω so that (3.6)
yields c(X) ≤ ω. But then (3.4) yields ψ(∆(X), X2) ≤ ω, i.e., that X has
a Gδ-diagonal. Hence X is metrizable ([L1]).

4.2) Remark: It is crucial in (4.1) that X be a LOTS and not merely a
GO-space, as can be seen from the example of the Sorgenfrey line.

4.3) Remark: Example 6.2 below is a LOTS with a small diagonal that
is not even first countable, let alone metrizable. Thus some hypothesis
beyond the existence of a small diagonal is needed in order to make an
arbitrary LOTS metrizable.

Because Souslin spaces are a frequently studied class of linearly or-
dered spaces, it might be worthwhile noting the no Souslin space can have
a small diagonal. Indeed, a slightly more general consequence of (3.2) is
available, namely:

4.4) Proposition: Suppose X is a GO-space with a small diagonal. If

c(X) = ω, then X is separable.

It is often the case that diagonal metrization theorems can be proved
for countably compact spaces. Among GO-spaces, we have:

4.5) Proposition: Suppose X is a countably compact GO- space with a

small diagonal. Then X is metrizable.

Proof: If we can show that X is paracompact, then it will follow that
X is compact and (4.1) will apply to complete the proof. Suppose that
X is not paracompact. Then there is a stationary subset S of a regular
uncountable cardinal κ that embeds in X as a closed subset. Then S

inherits both countable compactness and a small diagonal.

Consider S with the topology and ordering inherited from [0, κ[. For
each s ∈ S, let t(s) be the first point of S that is greater than s and let σ
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be the first element of S such that S1 = {s ∈ S : s < σ} is uncountable.
Let T = {(s, t(s)) : s ∈ S1}. Then T ⊂ S2 −∆(S) has |T | = ω1. Because
ω1 ∈ D(S), (4.1) yields an open convex cover G of S and an uncountable
subset T0 ⊂ T such that if (s, t(s)) ∈ T0 then no member of G contains
both s and t(s). Because T0 is uncountable, we may choose a sequence
s(1) < s(2) < ... of points of S1 such that (s(n), t(s(n)) ∈ T0 for each
n. Because S is countably compact, there is a point p ∈ S such that
p = lim{s(n) : n ≥ 1}. Choose G ∈ G such that p ∈ G. Then for
some n, s(n) ∈ G. Then s(n) < t(s(n)) ≤ s(n + 1), so that convexity
of G forces {s(n), t(s(n))} ⊂ [s(n), s(n + 1)] ⊂ G and that contradicts
(s(n), t(s(n)) ∈ T0.

5. GO-spaces with H-diagonals

Recall that a space X has an H-diagonal provided every regular un-
countable cardinal κ ≤ |X| belongs to D(X). It is immediate that:

5.1) Lemma: If X has a Gδ-diagonal, then X has an H-diagonal.

The converse of (5.1) is false, as Example 7.7 shows. In this section we
will show that GO-spaces with H-diagonals share two important proper-
ties with the class of GO-spaces having Gδ-diagonals, namely hereditarily
paracompactness and first countability. Examples in Section 6 will show
that GO-spaces (and even LOTS) with only small diagonals need not have
these properties.

5.2) Lemma: Suppose Y ⊂ X. If X has an H- diagonal, then so does Y .

Proof: Suppose κ ≤ |Y | is a regular uncountable cardinal. Then κ ∈
D(X). If T ⊂ Y 2 −∆(Y ) has cardinality κ, then T ⊂ X2 −∆(X) so that
some open neighborhood W of ∆(X) has |T −W | = κ. But then W ∩ Y
is an open neighborhood of ∆(Y ) and |T − (W ∩ Y )| = |T −W | = κ so
that κ ∈ D(Y ), as required.

5.3) Proposition: Suppose S is a stationary subset of a regular uncountable

cardinal κ. Then κ /∈ D(S). Consequently, if X is any GO-space with an

H-diagonal, then X is hereditarily paracompact.

Proof: Given a stationary S ⊂ [0, κ[, for each s ∈ S, let s′ be the first
element of S that is larger than s. Let T = {(s, s′) : s ∈ S}. Then |T | = κ

and an easy Pressing Down Lemma argument shows that |T −W | < κ

whenever W is an open subset of X2 that contains ∆(X), as required.

Now let X be any GO-space with an H-diagonal. If X is not heredi-
tarily paracompact, then it follows from [EL] that there is an uncountable

10



regular cardinal κ and a stationary subset S ⊂ [0, κ[ that embeds in X.
According to (5.2), S must have an H- diagonal, and that is impossible in
the light of the first paragraph of this proof.

5.4) Remark: Proposition (5.3) is false for GO-spaces that have only a
small diagonal, as can be seen from Example 6.3 below.

5.5) Proposition: Suppose X is a GO-space with an H- diagonal. Then X

is first-countable.

Proof: It will be enough to prove that if p ∈ X and if [p,→ [ is not open,
then the cofinality of ] ←, p[ is ω and if ] ←, p] is not open, then the
coinitiality of ]p,→ [ is also ω. The two proofs are analogous and we will
outline the first.

For contradiction, suppose κ = cf( ] ←, p[ ) is uncountable. Being
a cofinality, κ is a regular cardinal. Hence κ ∈ D(X). Choose a strictly
increasing net {x(α) : α < κ} in ] ←, p[ that converges to p. Then the
net {(x(α), x(α + 1)) : α < κ} converges to (p, p) in the space X2. Let
T = {(x(α), x(α + 1)) : α < κ}. Then T ∩ ∆(X) = ∅. However, any
neighborhood W of ∆(X) must have |T −W | < κ, contrary to κ ∈ D(X).

5.6) Remark: Proposition (5.5) is not valid for GO-spaces, or even for
LOTS, having only a small diagonal, as can be seen from Example 6.2.

Our next result summarizes the cardinal function inequalities from
Section 3 for GO-spaces with H-diagonals.

5.7) Proposition: Let X be a GO-space with an H- diagonal. Then

ψ(∆(X), X2) ≤ c(X) = hl(X) = d(X) = hd(X).

Proof: We know that hl(X) = c(X) ≤ d(X) = hd(X) ≤ c(X)+ because
X is a GO-space. Let c(X) = κ. If κ+ > |X|, then |X| = κ so that
κ = c(X) ≤ d(X) ≤ |X| = κ. In addition, ψ(∆(X), X2) ≤ |X2| = κ.
Combining these two inequalities yields the desired conclusion. And if
κ+ ≤ |X|, then because X has an H-diagonal and κ+ is regular, we have
κ+ ∈ D(X). The desired conclusion now follows from (3.5).

5.8) Remark: As the example of a metrizable discrete LOTS with cardi-
nality ω1 shows, we can have ψ(∆(X), X2) = ω < ω1 = c(X) = d(X) =
hl(X) in (5.7).

If we consider linearly ordered spaces, rather than GO-spaces, then
we can add one more cardinal function to the list in (5.8), namely the
weight w(X) of X.
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5.9) Proposition: Suppose X is a LOTS with an H- diagonal. Then

ψ(∆(X), X2) ≤ c(X) = hl(X) = d(X) = hd(X) = w(X).

Proof: It will be enough to show that c(X) ≥ w(X). Let κ = c(X) and let
J(X) = {a ∈ X : some b(a) > a has ]a, b(a)[ = ∅}. From (3.3) we know
that |J(X)| ≤ κ and from (5.7) we know that d(X) = κ. But in a LOTS,
w(X) = d(X) + |J(X)| ≤ κ+ κ, as required.

We now consider metrization theory for GO-spaces with H-diagonals.
We begin by proving the result announced in (1.6).

5.10) Proposition: Let X be a locally compact GO-space with an H-

diagonal. Then X is metrizable.

Proof: By (5.3), X is paracompact. By (4.1), X is locally metrizable.
Hence X is metrizable.

As noted in the Introduction, Example 7.7 shows that (5.10) can-
not be generalized to Čech-complete GO-spaces (or even Čech-complete
LOTS) with H-diagonals. However, such GO-spaces do have some special
structure, as we will show in our next result.

5.11) Proposition: Suppose X is a GO-space that is Čech-complete or is

a p-space with an H-diagonal. Then X has a dense metrizable subspace.

Proof: According to (5.3), X is hereditarily paracompact. According to
([vW, Theorem 2.1.7]), there is a perfect, order preserving mapping F from
X onto a metrizable GO-space Y because X is a paracompact p-space.

For each y ∈ Y , let C(y) = F−1[{y}]. Each C(y) is a compact convex
subset of X and must therefore have the form C(y) = [a(y), b(y)] for some
points a(y) ≤ b(y) of X. Because X has an H-diagonal, it follows that the
compact set C(y) is metrizable. Define M =

⋃
{Int(C(y)) : y ∈ Y }. Being

locally metrizable and paracompact, M is a metrizable subspace of X.

Let W be the family of all convex components of the open set X −
cl(M). Observe that if W ∈ W and y ∈ Y , then W ∩ Int(C(y)) = ∅. It
follows that no nonempty open subset of W can be finite.

Next observe that the order-preserving nature of F guarantees that,
with the possible exception of the two end points of W , if x ∈ W , then
C(F (x)) ⊂ W . In addition, if p < q < r are points of W , then it cannot
happen that F (p) = F (q) = F (r), because that equality would force
q ∈W ∩ Int(C(F (q)). Therefore, if y ∈ Y and C(y) ⊂W , then |C(y)| ≤ 2.

Consider any point p ∈ W such that C(F (p)) 6⊂ W . Then p must be
an endpoint of W , say the left endpoint. We claim that p ∈ cl(W − {p}).
For otherwise there would be a convex open neighborhood N of p such

12



that N ∩ (W − {p}) = ∅ We already know that [p,→ [ is open, because p
is the left endpoint of the open set W (and p ∈ W ). It then follows that
{p} is open in X and that is impossible, as noted above. Therefore, by
removing at most the two endpoints of W, we obtain a convex open subset
V ⊂W such that:

a) V is dense in W ;
b) V = F−1[F [V ]];
c) of x ∈ V then Int(F−1[F (x)]) ⊂ V .

Fix W ∈ W, find V ⊂ W as above, and let f be the restriction of
F to V . Then f is an order preserving, perfect mapping of V onto some
subset of Y . In addition, f is an irreducible mapping. For suppose V0

is an open, convex subset of V . Then V0 is not finite, so we may choose
points a < b < c in V0. Then f−1[f(b)] ⊂ [a, c] ⊂ V0, as required to show
that f is irreducible.

Because f [V ] is a subset of the metric space Y , there is a dense subset
E of f [V ] such that E is the union of countably many discrete subsets
E(n), each closed in the space Y . Because f is irreducible, the set f−1[E]
is dense in V and hence also in W . Write D(W ) = f−1[E]. For each
n, {f−1[{e}] : e ∈ E(n)} is a closed discrete collection in the space X.
Because each f−1[{e}] consists of at most two points, it follows that the
set D(n) =

⋃
{f−1[{e}] : e ∈ E(n)} is a discrete closed subset of X.

Therefore, D(W ) is a GO-space that is σ-discrete, and hence D(W ) is
metrizable.

Therefore, we now know that for each W ∈ W, there is a dense
metrizable subspace D(W ) of W . Because M and the members of W are
pairwise disjoint open sets in X, it follows that Z =

⋃
{D(W ) : W ∈

W} ∪M is a dense metrizable subspace of X, as required. .

6. Preliminary examples

In this section, Z denotes the set of all positive and negative integers
and R denotes the set of real numbers.

6.1) Example: There is a first countable hereditarily paracompact LOTS

that does not have a small diagonal.

Proof: Let S be the Sorgenfrey line and let S∗ = S×{n ∈ Z : n ≤ 0},
ordered lexicographically. Then S∗ is the smallest LOTS that contains S
as a closed subspace. We begin by proving that if T2 is any uncountable
subset of {((x,−1), (x, 0)) : x ∈ S}, then for any neighborhood W of the
diagonal in (S∗)2, we have W ∩ T2 6= ∅.

13



Given such a T2 let S2 = {x ∈ S : ((x,−1), (x, 0)) ∈ T2}. Then S2 is
an uncountable subset of S so that S2 contains a point p with the property
that for every ε > 0 the set [p, p + ε[ ∩ S2 is uncountable. Suppose W
is any open neighborhood of the diagonal in S∗ × S∗. Then there is a
δ > 0 such that ([(p, 0), (p + δ), 0[)2 ⊂ W . Choose x ∈ ]p, p + δ[ ∩S2.
Then in S∗ we have (p, 0) < (x,−1) < (x, 0) < (p + δ, 0) so that
((x,−1), (x, 0)) ∈ T2 ∩W , as claimed.

To show that S∗ does not have a small diagonal, let S1 be any subset
of S with cardinality ω1 and let T1 = {((x,−1), (x, 0)) : x ∈ S1}. If S∗ had
a small diagonal, there would be an open neighborhood W of the diagonal
such that the set T2 = T1 −W is uncountable. Apply the first part of the
proof to show that T2 ∩W 6= ∅, contradicting the definition of T2.

6.2) Example: There is a LOTS X with |X| = ω2 and ω2 /∈ D(X) and

ω1 ∈ D(X). Thus, X has a small diagonal but not an H-diagonal. In

addition, X is not first countable.

Proof: Let X = ([0, ω2[×Z) ∪ {(ω2, 0)} with the lexicographic ordering.

6.3) Example: There is a LOTS with a small diagonal that is not para-

compact.

Proof: Let S = {α < ω3 : cf(α) = ω2}. As a subspace of [0, ω3[, S is
stationary and therefore is not paracompact. Of course, S is not a LOTS
in its natural ordering. However, because S is scattered, a result of Purisch
[P] shows that S can be re- ordered in such a way that S becomes a LOTS.
Because S is not paracompact, we know from (5.3) that S does not have
an H-diagonal.

To show that S has a small diagonal, observe that any subspace of S
with cardinality ω1 is a closed and discrete subspace of S and is therefore
metrizable. Now suppose that T ⊂ (S × S) − ∆(S) has cardinality ω1.
Let S0 = π1[T ] ∪ π2[T ] where πi are the natural coordinate projections.
Then T ⊂ (S0)2 − ∆(S0) so that, S0 being metrizable, there is an open
subset U of S2 with ∆(S0) ⊂ U and with |T − (U ∩ (S0)2)| = ω1. Let
W = U ∪ (S2 − (S0)2). Then W is open in S2, contains ∆(S), and has
T −W = T − (U ∩ (S0)2).

We note that one can consistently obtain a non-paracompact LOTS
with a small diagonal and having cardinality ω2. One begins with an E(ω2)
set (something that consistently exists), i.e., a stationary subset S ⊂ [0, ω2[
such that cf(α) = ω for each α ∈ S and if λ < ω2 has cf(λ) = ω1, then
the set [0, λ[ ∩S is not stationary in [0, λ[. One proves by induction that
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[0, λ[ ∩S is actually metrizable for every such λ and it follows that [0, λ]∩S
is an open metrizable subspace of S for each λ < ω2.

Now consider any set T ⊂ S×S − ∆(S) having cardinality ω1. For
some λ < ω2 we have T ⊂ (S ∩ [0, λ])2−∆(S ∩ [0, λ]). Because S ∩ [0, λ] is
metrizable, there is an open set W0 ⊂ (S ∩ [0, λ])2 containing ∆(S ∩ [0, λ])
and having |T − W0| = ω1. Let W = W0 ∪ (]λ, ω2[ ∩S)2. Then W is
open in S2, contains ∆(S), and has |T −W | = ω1. Hence S has a small
diagonal.

Because S is stationary in ω2, the space S is not paracompact. There-
fore, (5.3) implies that ω2 /∈ D(S) so that S does not have an H-diagonal.
As with the ZFC example given above, there is a reordering of S under
which S is a LOTS.

6.4) Example: There is a Lindelöf GO-space X with a Gδ-diagonal (and

hence an H-diagonal) that has c(X) = 2ω, and a Lindelöf LOTS with a

σ-disjoint base that does not have a small diagonal.

Proof: Let B be a Bernstein set in the usual space R of real numbers, i.e.,
an uncountable set such that both B and C = R−B meet every uncount-
able closed subset of R [Ox]. Define a GO space X by retopologizing R in
such a way that all points of B have their usual neighborhoods, and so that
each point of C is isolated. Then X is a GO- space with a Gδ-diagonal.
Let Y = (B × {0}) ∪ (C × Z). Lexicographically ordering Y , we obtain a
Lindelöf LOTS with a σ-disjoint base. Because of (4.1), Y cannot have a
small diagonal.

7. A non-metrizable Čech-compete LOTS with an H-diagonal

In this section, we use a familiar technique of “splitting points” to-
gether with a metric space constructed by A. H. Stone [St] to construct the
space described in (1.7). We want to thank R. Pol for mentioning Stone’s
space to us.

7.1) Construction: Let Y be a subset of a linearly ordered set X where
|Y | is an uncountable regular cardinal number. Let

E(Y,X) = ((X − Y )×{0}) ∪ (Y×{−1, 1})

and order E(Y,X) lexicographically. Let E(Y,X) have the usual open
interval topology of that order.

7.2) Proposition: Let X be a metrizable LOTS and suppose Y ⊂ X. Let

κ be a regular uncountable cardinal. Then the following are equivalent:
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a) κ ∈ D(E(Y,X))
b) whenever S ⊂ Y has |S| = κ, then there is a set S0 ⊂ S such that

|S0| = κ and S0 is discrete and closed in X.

Proof: Write Z = E(Y,X) and define π : Z2 → X2 by π((x, i), (y, j)) =
(x, y). Then π is continuous so that the set ∆∗ = π−1[∆(X)] is a Gδ-subset
of Z2. Note that ∆∗ = {((x, 0), (x, 0)) : x ∈ X − Y } ∪ {((y, i), (y, j)) : y ∈
Y and i, j ∈ {−1, 1}}.

Suppose a) holds, and suppose T ⊂ Z2−∆(Z) has regular uncountable
cardinality κ. Either |T ∩∆∗| < κ or else |T ∩∆∗| = κ. In the first case we
replace T by T −∆∗ and complete the proof under the assumption that
T ∩∆∗ = ∅. In the second case, we replace T by T ∩∆∗ and complete the
proof under the assumption that T ⊂ ∆∗.

If T ∩ ∆∗ = ∅, then the fact that ∆∗ is a Gδ-subset of Z2 yields an
open set W ⊂ Z2 that contains the diagonal and has |T −W | = κ, as
required.

Next, suppose that T ⊂ ∆∗. Because T ∩ ∆(Z) = ∅ we know that
T ⊂ {((y, i), (y, j)) : y ∈ Y and {i, j} = {−1, 1}}. Then there is a subset
S ⊂ Y of cardinality κ such that T = {((y,−1), (y, 1)) : y ∈ S} or else
T = {((y, 1), (y,−1)) : y ∈ S}. The two cases are analogous, and we
consider only the first.

Because S has cardinality κ, there is a set S0 ⊂ S that is closed in X
and has cardinality κ. For each y ∈ S0 there is an open interval I(y) in X
such that I(y) ∩ S0 = {y}. In addition, the open set X − S0 is the union
of the pairwise disjoint collection {Iα : α ∈ A} of its convex components.

For an open convex set I ⊂ X, define J(I) = {(x, i) ∈ Z : x ∈ I}.
Then J(I) is an open convex subset of Z. Using that notation, define V =⋃
{J(Iα) : α ∈ A} and for each y ∈ S0 let K−(y) = J(I(y))∩ ]←, (y,−1)]

and K+(y) = J(I(y))∩ [(y, 1),→ [ . The resulting sets cover Z so that the
set W = V 2 ∪ (

⋃
{(K−(y))2 ∪ (K+(y))2 : y ∈ S0}) is a neighborhood of

the diagonal ∆(Z) for which W ∩ T = ∅. Thus b) holds.

Conversely, suppose b) holds. Let S ⊂ Y have cardinality κ. Let T =
{(y,−1), (y, 1)) : y ∈ S}. Then there must be an open neighborhood W of
∆(Z) in Z2 such that |T −W | = κ. Let S0 = {y ∈ S : ((y,−1), (y, 1)) ∈
T −W}

With the exception of endpoints of Z (to be treated separately by
analogous arguments), for each z ∈ Z there are points (a(z), i(z)), (b(z), j(z)) ∈
Z such that, with G(z) = ](a(z), i(z)), (b(z), j(z))[ , we have (G(z))2 ⊂W .

If x ∈ X − Y let H(x) = ]a(x, 0), b(x, 0)[ and if x ∈ Y let H(x) =
]a(x,−1), b(x,+1)[ . Observe that if x ∈ X − Y then H(x) ∩ S0 = ∅.
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Further, if x ∈ Y , then |H(x)∩S0| ≤ 1, for otherwise, choose y ∈ H(x)∩S0

with y 6= x. In case y < x then (a(x,−1), i(x,−1)) < (y,−1) < (y, 1) <
(x,−1) so that ((y,−1), (y, 1)) ∈ (G(x,−1))2 ⊂ W , contrary to y ∈ S0.
And if x < y then ((y,−1), (y, 1)) ∈ (G(x,+1))2 ⊂W , again contradicting
y ∈ S0. Therefore, S0 is a closed and discrete subset of X, as required.

7.3) Corollary: Let Y ⊂ X where X is any metrizable LOTS. Then

E(Y,X) has an H-diagonal if and only if for every regular, uncountable

cardinal κ ≤ |X| and any subset S ⊂ Y with cardinality κ, there is a set

S0 ⊂ S that is closed in X, discrete-in-itself, and has |S0| = κ.

The next result allows us to recognize when the space E(Y,X) con-
structed in (7.1) will be metrizable.

7.4) Proposition: Let X be a metrizable LOTS and let Y ⊂ X have un-

countable regular cardinality. Then the space E(Y,X) of (7.1) is metriz-

able if and only if Y is the union of countably many subspaces, each of

which is discrete in itself.

Proof: First suppose that Z = E(Y,X) is metrizable. Let B =
⋃
{B(n) :

n ≥ 1} be a σ-discrete base for Z. For each pair (m,n) of natural numbers,
let Y (m,n) be the set of all points y ∈ Y such that for some B ∈ B(m)
and some C ∈ B(n), we have (y,−1) ∈ B ⊂ ]←, (y,−1)] and (y, 1) ∈ C ⊂
[(y, 1),→ [ . It is easy to check that each Y (m,n) is discrete in itself.

Conversely, suppose Y is the union of countably many subspaces,
each discrete in itself. Because X is a metric space, it follows that Y =⋃
{Y (n) : n ≥ 1} where each Y (n) is discrete in itself and closed in X.

Recall the notation of (7.2). We have a Gδ-subset ∆∗ of Z2 consisting
of all points ((x, 0), (x, 0)) for x ∈ X − Y together with all points of the
form ((y, i), (y, j)) where y ∈ Y and i, j ∈ {−1, 1}. Clearly ∆(X) ⊂ ∆∗.
In the remainder of the proof, we will define open sets W (n) ⊂ Z2 such
that ∆(Z) = ∆∗ ∩ (

⋂
{W (n) : n ≥ 1}. Once that is done, then we will

know that Z is a LOTS with a Gδ-diagonal and is, therefore, metrizable
[L1].

For each n and each y ∈ Y (n), choose an open interval I(n, y) of X
with I(n, y)∩Y (n) = {y}. In addition, write the open set U(n) = X−Y (n)
as the union of its convex components, say U(n) =

⋃
{U(n, α) : α ∈ A(n)}.

Recall from the proof of (7.2) that for each convex open subset I ⊂ X, we
have a convex open subset J(I) = {(x, i) ∈ Z : x ∈ I} of Z.

Define K(n, y) = J(I(n, y)) and V (n, α) = J(U(n, α)). Then de-
fine L(n, , y,−1) = J(I(n, y))∩ ] ←, (y,−1)] and L(n, y, 1) = K(n, y) ∩
[(y, 1),→ [. Let V (n) =

⋃
{V (n, α) : α ∈ A(n)}. The resulting sets cover
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Z so that the set W (n) = (V (n))2 ∪ (
⋃
{(L(n, y,−1))2 ∪ (L(n, y, 1)2 : y ∈

Y (n)} is open in Z and contains ∆(Z).

Consider any point p ∈ ∆∗ ∩ (
⋂
{W (n) : n ≥ 1}). For contradiction,

suppose p /∈ ∆(Z). Then p = ((y, i), (y, j)) for some y ∈ Y and i 6= j.
Choose n so that y ∈ Y (n). By assumption, p ∈ W (n). Because U(n) ∩
Y (n) = ∅ we conclude p /∈ (V (n))2. Hence there is a y′ ∈ Y (n) such that
p ∈ (L(n, y′,−1))2∪(L(n, y′, 1))2 ⊂ (K(n, y′))2. But then y ∈ I(n, y′) and
therefore y ∈ I(n, y′)∩ Y (n) = {y′} so that y = y′. But that is impossible
because i 6= j guarantees that ((y, i), (y, j)) /∈ (L(n, y,−1))2∪(L(n, y, 1))2.
Therefore p ∈ ∆(Z) as required.

Many properties of E(Y,X) are derived from X via the natural pro-
jection mapping, and we have:

7.5) Lemma: The natural projection mapping π : E(Y,X) → X given by

π((x,m)) = x is a perfect mapping.

To apply (7.2) to the construction of our example, we must start with
a very special completely metrizable LOTS X. The following example was
constructed by A.H. Stone in his paper [St].

7.6) Example: There is a completely metrizable LOTS X having a sub-

space Y that satisfies the hypotheses of (7.2).

Proof: Let D be a discrete space with cardinality ω1 and let Z = Dω carry
the product topology. It is proved in ([St]) that there is a subspace Y ⊂ Z
with the following properties:

a) |Y | = ω1

b) Y is not the union of countably many subspaces, each discrete in itself;
c) if S is a countable subset of Y , then the closure of S in Y is also

countable.

Let X be the closure of Y in the complete metric space Z. Suppose
S ⊂ Y has uncountable regular cardinality κ. Then κ = ω1. Being a
metrizable space, S contains a dense subset D =

⋃
{D(n) : n ≥ 1} such

that each D(n) is discrete in itself. For each n, let U(n) be the union of all
open subsets V of X such that |V ∩D(n)| ≤ 1. Then D(n) is a relatively
closed subset of U(n) and U(n), being open in X, is and Fσ-subset of X.
Write U(n) =

⋃
{F (n,m) : m ≥ 1} where each F (n,m) is closed in X. Let

E(n,m) = F (n,m) ∩ D(n). Then E(n,m) is closed in X and is discrete
in itself. If every E(n,m) were countable, then so would be the set D and
then the closure of D in Y would also be countable. But that is not the
case, because the closure of D in Y contains the uncountable set S. Hence,
some set S0 = E(n,m) is uncountable and closed in X.
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We next show that X is a linearly ordered space in some ordering.
But that follows from a theorem of Herrlich ([H]; see also [E, Problem
6.3.2]) stating that any metrizable space with all of its dimensions (dim,
ind, and Ind) equal to 0 carries the open interval topology of some linear
ordering. Because X is a closed subspace of the strongly zero dimensional
metric space Z, we have ind(X) = Ind(X) = dim(X) = 0. Therefore, X
is a LOTS in some ordering.

7.7) Example: There is a non-metrizable, Čech-complete LOTS with an

H-diagonal.

Proof: Use the metric space X and its subspace Y from (7.6) in the
construction of E(Y,X) outlined in (7.1). Apply (7.6) to see that X and Y
fit the hypotheses of (7.2) and conclude that E(Y,X) has an H- diagonal.
Apply the special properties of Y combined with (7.4) to see that E(Y,X)
is not metrizable. Apply (7.5) to see that E(Y,X) is a perfect pre- image
of a complete metric space, i.e., that E(Y,X) is Čech-complete. Being a
non-metrizable LOTS, E(Y,X) cannot have a Gδ-diagonal [L1].

7.8)Remark: In (5.12) we proved that if X is a Čech- complete space (or a
p-space) with an H-diagonal, then X has a dense metrizable subspace. In
that proof, there was a certain open, metrizable subspace M, andX−cl(M)
was the union of open convex components. Closer examination will show
that if X is a p-space, then each of those convex components will look very
much like a subspace of some E(Y,X) and that if X is Čech-complete, then
each of those convex components will be a space of the type E(Y,X), for
appropriately chosen X and Y .

7.9) Remark: Notice that the space E(Y,X) in (7.7) does not have a small
diagonal, but does have c ∈ D(E(Y,X)) in the light of (7.2) whenever
ω1 < c.

8. The Michael line construction, base properties, and diagonal
conditions.

In this section, R, P, Q, and Z denote, respectively, the sets of real,
irrational, and rational numbers, and the set of all integers. When we say
“the usual real line R” we will mean the set R endowed with its usual
Euclidean topology. We will consider certain Michael line constructions
using various subsets S of P.

8.1) Construction: Suppose S ⊂ P . Let M(S) be the set Q∪S topologized
so that a basic neighborhood of any point q ∈ Q has the form ]a, b[ ∩M(S)
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where a < q < b are rational numbers, and where each point of S is isolated
in M(S). Define M∗ to be the lexicographically ordered set

M∗(S) = (Q×{0}) ∪ (S×Z).

Topologize M∗(S) by using the usual open interval topology of that lexi-
cographic ordering.

We can summarize the main results of this section as follows: M∗(P )
is a LOTS with a σ-disjoint base. Under CH, or under (MA + ¬CH),
M∗(P ) does not have an H-diagonal. Whether or not M∗(P ) has a small
diagonal is undecidable in ZFC, as is the question of whether or not c ∈
D(M∗(P )).

8.2) Lemma: For each S ⊂ P , the space M(S) is a closed subspace of

the LOTS M∗(S), and M∗(S) has a σ-disjoint base of open sets, is first

countable, and is hereditarily paracompact.

8.3) Lemma: For any S ⊂ P , the following are equivalent:

a) M∗(S) is metrizable;

b) M(S) is metrizable;

c) S is an Fσ-subset of M(S);
d) There is an Fσ subset E of the usual real line such that S ⊂ E ⊂ P .

Proof: The equivalence of (a) and (b) is found in [L2] and the equivalence
of (c) and (d) is clear. That (b) implies (c) follows from the fact that S
is open in M(S) so that if M(S) is metrizable, then S must be an Fσ-set.
That (c) implies (b) follows from the fact that if S is and Fσ-set in M(S),
then M(S) has a σ-discrete base for its topology.

8.4) Proposition: Let S ⊂ P have uncountable regular cardinality κ. The

following are equivalent:

a) κ ∈ D(M∗(S));
b) For each S1 ⊂ S with |S1| = κ, there is a closed subset S0 of M(S)

with |S0| = κ and S0 ⊂ S1

c) For each S1 ⊂ S with |S1| = κ, there is a subset S0 ⊂ S1 with

cardinality κ and such that the closure of S0 in the usual real line is

contained in P .

Proof: The equivalence of (c) and (b) is straightforward. We prove that
(a) and (b) are equivalent. Write M = M(S) and M∗ = M∗(S).

Suppose (a) holds, i.e., κ ∈ D(M∗), and suppose S1 ⊂ S has car-
dinality κ. Let T ∗ = {((x, 0), (x, 1)) : s ∈ S1}. Because |T ∗| = κ
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and T ∗ ∩ ∆(X) = ∅, there is an open set W ∗ ⊂ (M∗)2 that contains
∆(M∗) and has |T ∗ −W ∗| = κ. For each x ∈ Q choose rational numbers
a(x), b(x) such that ((x, 0), (x, 0)) ∈ ( ](a(x), 0), (b(x), 0)[ )2 ⊂ W ∗. Let
G(x) = ]a(x), b(x)[ for each x ∈ Q. Define G =

⋃
{G(x) : x ∈ Q} and let

S0 = S1−G. Then S0 is closed in M and if ((x, 0), (x, 1)) ∈ T ∗−W ∗ then
x ∈ S0 so that |S0| = κ. Hence (b) holds.

Conversely, suppose (b) holds and suppose T ∗ ⊂ (M∗)2−∆(M∗) has
cardinality κ. Define π : (M∗)2 →M2 by π((x,m), (y, n)) = (x, y). There
are two cases to consider:

case 1: Suppose |π[T ∗]−∆(M)| = κ. Because M has a Gδ-diagonal, there
is an open set W ⊂M2 that contains the diagonal of M and has |π[T ∗]−
W | = κ. For each x ∈ Q find rational numbers a(x), b(x) such that (x, x) ∈
(]a(x), b(x)[)2 ⊂ W . Let G∗(x, 0) = ](a(x), 0), (b(x), 0)[ and for any x ∈ S
and any k ∈ Z let G∗(x, k) = {(x, k)}. Let W ∗ =

⋃
{(G∗(x, k))2 : (x, k) ∈

M∗}. Then |T ∗ −W ∗| = |π[T ∗] −W | = κ as required to complete the
proof of case 1.

case 2: Suppose |π[T ∗] − ∆(M)| < κ. Then |π[T ∗] ∩ ∆(M)| = κ. Let
S1 = {x ∈ P : (x, x) ∈ π[T ∗]} and use (b) to find a set S0 ⊂ S1 that is
closed in M and has cardinality κ. For each z ∈ Q find rational numbers
a(z), b(z) such that a(z) < z < b(z) and ]a(z), b(z)[ ∩ S0 = ∅. If z ∈ Q
define G∗(z, 0) = ](a(z), 0), (b(z), 0)[ and for z ∈ P let G∗(z, k) = {(z, k)}.
Letting W ∗ =

⋃
{(G∗(z, k))2 : (z, k) ∈ M∗} we obtain an open subset

of (M∗)2 that contains ∆(M∗) and has |T ∗ − W ∗| = |S0| = κ. That
completes case 2.

It is not surprising, given (8.3) and (8.4), that set theory plays a role
in deciding whether a given κ belongs to M∗(P ). Recall that a subset
S ⊂ P is said to be concentrated on Q provided |S − U | ≤ ω whenever U
is an open subset of R that contains Q.

8.5) Corollary: M∗(P ) has a small diagonal if and only if no uncountable

subset of P is concentrated on Q.

Proof: In this proof, cl(S) will denote the closure of a set S in the usual
space of real numbers. First, suppose that M∗(P ) has a small diagonal and
yet some uncountable S ⊂ P is concentrated on Q. Apply (8.4) to find an
uncountable set S0 ⊂ S such that cl(S0) ⊂ P . But then W = R−cl(S0) is
an open subset of R that contains Q, and yet S−W must be uncountable
because it contains S0. Hence, no uncountable set S ⊂ P is concentrated
on Q.

Next suppose that no uncountable subset of P is concentrated on Q.
Let S ⊂ P be uncountable. Because S cannot be concentrated on Q, there
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must be an open subset U with Q ⊂ U ⊂ R and having |S−U | = ω1. Let
S0 = S − U . Then cl(S0) ⊂ P . According to (8.4), M∗(P ) has a small
diagonal.

8.6) Corollary:Under CH, M∗(P ) does not have a small diagonal.

Proof: In [M2], Michael uses CH to construct an uncountable subset of P
that is concentrated on Q. Now invoke (8.5).

8.7) Proposition: Assume MA + ¬CH. If κ is an uncountable regular

cardinal with κ < c, then κ ∈ D(M∗(P )). In particular, M∗(P ) has a

small diagonal.

Proof: Let M = M(P ) and M∗ = M∗(P ). Suppose T ∗ ⊂ (M∗)2−∆(M∗)
has cardinality κ where κ is an uncountable regular cardinal with κ < c.
Let S be the set of all x ∈ P such that for some m, n ∈ Z and some
y ∈ R, either ((x,m), (y, n)) ∈ T ∗ or ((y, n), (x,m)) ∈ T ∗. Then |S| = κ

and T ∗ ⊂ (M∗(S))2. Because every subset of R with cardinality less that
c is a Q-set under MA + ¬CH [Ml], it follows from (8.3) that M∗(S) is
metrizable. Hence there is an open subset U∗ ⊂ (M∗(S))2 that contains
∆(M∗(S)) and has |T ∗−U∗| = κ. Because M∗(S) is a subspace of M∗(P )
we may find an open set V ∗ ⊂ (M∗(P ))2 such that V ∗ ∩ (M∗(S))2 = U∗.
Define

W ∗ = V ∗ ∪ {((x, k), (x, k)) ∈ (M∗(P ))2 : x ∈ P}.

Then W ∗ is open in (M∗(P ))2, contains ∆(M∗(P )) and has T ∗ −W ∗ =
T ∗ − U∗. Hence κ ∈ D(M∗(P )).

8.8) Proposition: Suppose c is a regular cardinal. Then the following are

equivalent:

a) c ∈ D(M∗(P ));
b) P is the union of some family L of compact subsets of P

having |L| < c;

c) d < c, where d is the smallest cardinality of a cofinal family of compact

subsets of P .

Proof: We know from [vD, Theorem 8.2] that d equals the least possible
cardinality of a collection of compact subsets whose union is P . Hence b)
and c) are equivalent. Thus, it will be enough to prove that a) and b) are
equivalent.

Suppose that a) holds and, for contradiction, suppose that P is not
the union of any family of compact sets with cardinality less than c. Let
C be the family of all compact subsets of P . Then |C| = c so we may well
order C as {Cα : α < c}. For each α < c we have P −

⋃
{Cβ : β ≤ α} 6= ∅
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because P is not the union of fewer than c compact sets. Choose a point
x(α) ∈ P −

⋃
{Cβ : β ≤ α}

Let S1 = {x(α) : α < c}. According to (8.4), because c ∈ D(M∗(P ))
there is a set S0 ⊂ S1 with cardinality c and having cl(S0) ⊂ P , where cl
denotes closure in the usual real line topology. Let T (n) = cl(S0)∩ [−n, n].
Each T (n) is a compact subset of P and for some m, |T (m) ∩ S0| = c

because c is regular. Choose β < c such that T (m) = Cβ . Because
T (m)∩S0 has cardinality c, there is a point x(γ) ∈ T (m)∩S0 with γ > β.
But that is impossible because γ > β forces x(γ) ∈ P − (

⋃
{Cδ : δ ≤ γ}) ⊂

P − Cβ . Therefore, P can be written as a union of fewer than c compact
sets, so that (b) follows from (a).

To show that b) implies a), suppose that L is a family of fewer than
c compact sets and that P =

⋃
L. Suppose S1 ⊂ P has cardinality c.

Because c is regular, |L| < c, and S1 =
⋃
{L ∩ S1 : L ∈ L}, there must be

an L1 ∈ L with |L1 ∩ S1| = c. Let S0 = L1 ∩ S1. Then cl(S0) ⊂ L1 ⊂ P ,
as required in (8.4) to show that c ∈ D(M∗(P )).

8.9) Corollary: If either CH or (MA+¬CH) holds, then c /∈ D(M∗(P )).

Proof: If c = ω1 then the assertion follows directly from (8.6). Next
suppose that MA + ¬CH holds. Then c is regular. If P were the union
of fewer than c compact sets, then the intersection of fewer than c dense
Gδ-subsets of the usual real line R would be empty, and that is impossible
under MA+ ¬CH.

8.10) Proposition: There is a model of set theory in which c ∈ D(M∗(P )).

Proof: In [vD, Theorem 5.1], van Douwen shows that there is a model of
ZFC in which c = ω2 and P is the union of ω1 compact subsets of P . Then
c = ω2 is certainly regular, so that (8.8) applies to give c ∈ D(M∗(P )).

8.11 Remark: As will be proved in (9.4) below, M∗(P ) does not have an
H-diagonal. That can be proved in van Douwen’s model in a different way.
As noted in (8.10), in M there is a collection L of compact subsets of P
with |L| = ω1 and

⋃
L = P . Well order L as {Lα : α < ω1} and for each

α < ω1 choose x(α) ∈ P − (
⋃
{Lβ : β < α}. Let S = {x(α) : α < ω1} and

consider M∗(S). It follows from (8.4) that ω1 /∈ D(M∗(S)) so that M∗(S)
does not have an H-diagonal. But then, by (5.2), neither does M∗(P ).
Indeed, ω1 /∈ D(M∗(P )), i.e., M∗(P ) does not have a small diagonal.
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9. Additional remarks on M∗(P )

K. P. Hart pointed out the following extensions of our results in Sec-
tion 8. In what follows, we will use the fact that the usual space P of irra-
tional numbers is homeomorphic to the product space ωω. For f, g ∈ ωω
we will write f ≤ g to mean that f(n) ≤ g(n) for every n, and f ≤∗ g to
mean that f(n) ≤ g(n) for all but finitely many values of n. The cardinal
functions b and d will be as defined in [vD].

The first result is a translation of (8.4) into the language of ωω and
≤∗.

9.1 Proposition: Let κ be a regular uncountable cardinal. Then κ 6∈
D(M∗(P )) if an only if there is a subset A ⊂ P such that:

a) |A| = κ;

b) for each f ∈ ωω, the set {a ∈ A : a ≤∗ f} has cardinality less than κ.

Proof: First suppose that the set A ⊂ P exists, as described above, and
for contradiction suppose κ ∈ D(M∗(P )). According to (8.4) there is a
set B ⊂ A with |B| = κ and such that the closure of B in the usual real
line is a subset of P . Hence there is an open set U containing the rational
numbers and having U ∩B = ∅. But then B is contained in the σ-compact
set R − U = P − U . As in [vD] there is a single function f ∈ ωω such
that B ⊂ {a ∈ A : a ≤∗ f}. But that is impossible because |B| = κ and
|{a ∈ A : a ≤∗ f}| < κ. Therefore κ 6∈ D(M∗(P )).

Conversely, suppose κ 6∈ D(M∗(P )). We will find the required subset
A ⊂ ωω. By (8.4) there is a subset S1 ⊂ P such that |S1| = κ and
whenever S0 ⊂ S1 has cardinality κ, then the closure of S0 in the real line
meets Q. Fix a homeomorphism ψ from the usual space P of irrationals
onto the product space ωω and let A = ψ[S1]. To verify that A has the
required properties, fix any f : ω → ω and note that the set F = {g ∈
ωω : g =∗ f} is countable. For each g ∈ F , the set A(g) = {a ∈ A :
a(n) ≤ g(n) foreach n ∈ ω} is contained in the compact set K(g) =
{h ∈ ωω : h(n) ≤ g(n) for all n}. The the set S(g) = ψ−1[A(g)] is a
subset of the compact subset ψ−1[K(g)] of P . The special properties of
S1 guarantee that |S(g)| cannot be greater than or equal to κ so that
|A(g)| = |S(g)| < κ. Because the set F is countable and κ is regular and
{a ∈ A : a ≤∗ f} =

⋃
{A(g) : g ∈ F}, we see that |{a ∈ A : a ≤∗ f}| < κ

as required.

9.2 Corollary: Suppose κ is a regular uncountable cardinal and ωω con-
tains a subset that is well ordered by ≤∗ and has cardinality κ. The
κ 6∈ D(M∗(P ).
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9.3 Corollary: The cardinal b does not belong to D(M∗(P )).

Proof: According to [vD, Theorem 3.3],

b = min{|B| : B ⊂ ωω, B is unbounded, and B is well− ordered by ≤∗}.

Choose A ⊂ ωω that is unbounded, well-ordered by ≤∗ and has cardinality
b. Fix f ∈ ωω and consider the set A(f) = {a ∈ A : a ≤∗ f}. If A(f) were
cofinal in A, then A would be bounded by f . Hence A(f) is not cofinal in
A so that because b is a regular cardinal [vD, Theorem 3.1 (d)], we have
|A(f)| < b. According to (9.1), b /∈ D(M∗(P ) as claimed.

9.4 Corollary: In ZFC, M∗(P ) does not have an H-diagonal.

Proof: Because b ≤ c = |M∗(P )| and b is regular [vD, 3.1 (d)] and has
b /∈ D(M∗(P )), we see that M∗(P ) does not have an H- diagonal.

9.5 Corollary: If κ is regular and larger than d, then κ 6∈ D(M∗(P )).

Proof: In [vD] it is proved that there is a set D of size d that is ≤-
dominating for ωω. Therefore, if T ⊂ P has size κ then there must be
some x ∈ D such that {t ∈ T : t ≤∗ x} has size κ.

9.6 Proposition: Suppose B is a finite nonempty subset of [ω1, c] that
consists of regular cardinals. Then there is a generic extension such that
a regular cardinal λ ∈ [ω1, c] has λ 6∈ D(M∗(P )) if and only if λ ∈ B.

Proof: Index B = {κ1, κ2, ...κn} where κ1 < κ2 < ... < κn. Let C =
{(α1, α2, ..., αn) : αi < κi for 1 ≤ i ≤ n} with the coordinatewise partial
order. Each countable subset of C is bounded above so that a theorem of
Hechler [Hc] yields a ccc-forcing of size c that introduces a cofinal subset
of ωω that is order isomorphic to C. For each x ∈ C, let fx be the element
of ωω that corresponds to x under that isomorphism.

Fix i. The set Ci = {(β1, ..., βn) ∈ C : βj = 0 if j 6= i} is well-ordered
and unbounded, and hence the set {fx : x ∈ Ci} is well-ordered by ≤∗ and
unbounded. By (9.2), κi 6∈ D(M∗(P )).

Conversely, suppose λ is a regular cardinal in [ω1, c] such that λ 6∈
D(M∗(P )). According to (9.1) there is a subset A ⊂ ωω such that |A| = λ

and for each f ∈ ωω, |{a ∈ A : a ≤∗ f}| < λ. For contradiction, suppose
λ 6∈ B. For each a ∈ A choose xa ∈ C with a ≤∗ fxa . Write xa =
(xa(1), xa(2), ..., xa(n)). There are three cases to consider.

Case 1: Suppose λ < κ1. Because λ < κj = cf(κj) for each j and
|A| = λ, there is a βj < κj such that xa(j) < βj for each a ∈ A. Then
y = (β1, ..., βj) ∈ C and for each a ∈ A, a ≤∗ fxa ≤∗ fy. Therefore
{a ∈ A : a ≤∗ fy} has cardinality λ, contrary to our choice of A.
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Case 2: Suppose there is a j with j + 1 ≤ n and κj < λ < κj+1. For
j + 1 ≤ i ≤ n choose βi < κi such that xa(i) < βi for each a ∈ A. For
each (γ1, ..., γj) ∈ [0, κ1[ ×...× [0, κj [ , let A(γ1, ..., γj) = {a ∈ A : xa(i) =
γi for 1 ≤ i ≤ j}. Because |[0, κ1[ ×... × [0, κj [ | = κj < λ and λ is
regular, we can choose γi < κi such that |A(γ1, ..., γj)| = λ. Define y ∈ C
by setting yi = γi if 1 ≤ i ≤ j and yi = βi if j + 1 ≤ i ≤ n. Then for each
a ∈ A(γ1, ..., γj) we have xa ≤ y so that a ≤∗ fxa ≤∗ fy in ωω. But then
{a ∈ A : a ≤∗ fy} has cardinality λ, contrary to our choice of A.

Case 3: Suppose κn < λ. Then regularity of λ guarantees that for some
choice of γi < κi, the set A(γ1, ..., γn) = {a ∈ A : xa(i) = γi for 1 ≤ i ≤ n}
has cardinality λ. Let y = (γ1, ..., γn). Then a ∈ A(γ1, ..., γn) implies
a ≤∗ fxa ≤∗ fy so that |{a ∈ A : a ≤∗ fy}| = λ, once again contradicting
our choice of A.
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