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Abstract:

Experience shows that there is a strong parallel between metrization theory for com-
pact spaces and for linearly ordered spaces in terms of diagonal conditions. Recent the-
orems of Gruenhage, Pelant, Kombarov, and Stepanova have described metrizability of
compact (and related) spaces in terms of the off- diagonal behavior of those spaces, i.e., in
terms of properties of X2 −∆. In this paper, we show that these off-diagonal results have
no analogs for linearly ordered topological spaces by constructing a non- metrizable, first
countable LOTS X that is paracompact off of the diagonal, has a locally finite rectangular
open cover of X2 − ∆, and admits a collection U of subsets of X2 − ∆ that is σ-locally
finite in X2 −∆, covers X2 −∆, and consists of co-zero subsets of X2. Provided b = ω1,
our example contains a Lindelöf subspace Y that has a countable rectangular open cover of
Y 2 −∆ and yet does not have a Gδ-diagonal, thereby answering a question of Kombarov.
In addition, we consider the role of much stronger off-diagonal covering conditions such as
the Lindelöf property and hereditary paracompactness.
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1. Introduction.

Experience has shown that there is a parallelism between certain metrization theorems
for compact Hausdorff spaces and for linearly ordered topological spaces. The best known
example is: if X is a compact Hausdorff space or a linearly ordered space then X is
metrizable if it has a Gδ-diagonal ([S], [L1]). Another example is: if X is paracompact
and can be p-embedded in a compact space or in a LOTS, then X is metrizable if it has a
Gδ-diagonal ([Bo],[O],[L1]). A more recent example is: if X has a small diagonal, then X

is metrizable if X is a Lindelöf linearly ordered space [BL], or if the Continuum Hypothesis
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holds and X is a compact Hausdorff space [JS]. Theorems of this type might well be called
“diagonal metrization theorems” and an attempted explanation of the parallelism appears
in [L2].

Recently, there have been metrization results that involve the bevavior of a compact
space X off of the diagonal, i.e., that involve properties of the subspace X2−∆ = {(x, y) ∈
X2 : x 6= y} of X2. For example, Gruenhage ([G]) proved that a compact Hausdorff space
is metrizable if it is paracompact off of the diagonal, i.e., if the subspace X2 −∆ of X2 is
paracompact. This result was generalized to the class of paracompact Σ-spaces in [GP].
A related result, due to Kombarov [K], shows that a paracompact Σ-space X has a Gδ-
diagonal if and only if there is an open cover of X2 − ∆ that is locally finite in X2 − ∆
and consists of rectangular open sets, i.e., sets of the form G × H where G and H are
open in X and disjoint. In what follows, we will refer to such an open cover of X2 − ∆
as a Kombarov cover. Finally, E. Stepanova [St] proved that a paracompact p-space X is
metrizable if and only if some familty of subsets of X2−∆ is a σ-locally finite (in X2−∆)
cover of X2 −∆ by functionally open (i.e., co- zero) subsets of X2.

Based upon the parallelism between compact and linearly ordered spaces for diagonal
metrization theorems, it is reasonable to ask whether the off-diagonal results of Gruenhage,
Pelant, Kombarov, and Stepanova have analogs for linearly ordered spaces with the usual
open interval topology. The bottom line is that they do not, as we show in Sections 2 and 3,
below. There are two primary examples in our paper. Each is a linearly ordered topological
space, is paracompact off of the diagonal, has a Kombarov cover and a functionally open
cover of the type studied by Stepanova, and is non-metrizable. The first is extremely
simple – it is a reordered version of the usual space of ordinals less than or equal to ω1,
with all countable ordinals made discrete. Unfortunately that space is not first countable,
and to obtain a first countable example one must work harder. Our second example is a
linearly ordered space M∗ constructed from the familiar Michael line (see 2.2, below). In
addition to the properties mentioned above, under CH or b = ω1, this space contains a
subspace L∗ that gives a consistent answer to a question posed by Kombarov in [K]: L∗ is
regular, Lindelöf, and admits a countable recangular open cover of (L∗)2−∆, and yet does
not have a Gδ-diagonal. It is interesting to note that, even though they do not guarantee
metrizability in a LOTS, the special covers studied by Kombarov and Stepanova are of
interest in ordered space theory because they do yield paracompactness. (Indeed, they yield
paracompactness in the larger class of monotonically normal spaces – see 3.4.) Finally,
Section 4 begins the study of stronger off-diagonal conditions for an ordered space X, e.g.,
that X is Lindelöf off of the diagonal or hereditarily paracompact off of the diagonal.

By a linearly ordered topological space (LOTS) we mean a linearly ordered set with
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the usual open interval topology of the given ordering. Subspaces of a LOTS might fail to
be linearly ordered spaces because their subspace and order topologies might not coincide.
Such spaces are called generalized ordered spaces and can be characterized internally as
Hausdorff spaces with a linear order that have a base for their topology consisting of convex
sets. There is a significant difference between metrization theory for LOTS and for GO-
spaces. For example, the Gδ-diagonal metrization theorems for compact Hausdorff spaces
and for linearly ordered spaces have no analogs for generalized ordered spaces.

A note on notation: Because the underlying linearly ordered sets in this paper are often
lexicographic products whose points are ordered pairs, familiar interval notation will be
a special problem. For example, there seems to be no right way to denote the interval
stretching from one ordered pair in a lexicographic product to another. In this paper, we
will adopt a suggestion of K.P. Hart and use the symbol < a, b > to denote an ordered
pair, reserving symbols such as (a, b) and [a, b) to denote intervals in linearly ordered sets.
Thus, [< a, b >,< c, d >) might denote a half open interval in the lexicographic square.

2. A non-metrizable LOTS that is paracompact off of the diagonal

We begin with a very easy example showing that the results of Gruenhage and Pelant
have no analog for linearly ordered spaces in general.

2.1 Example: There is a Lindelöf LOTS that is non-metrizable and hereditarily paracom-
pact off of the diagonal.

Proof: Let Z denote the usual set of all integers. Consider the lexicographically ordered set
X = ([0, ω1)× Z) ∪ {< ω1, 0 >} with its open interval topology. This space is a Lindelöf,
non-metrizable LOTS and one easily checks that it is paracompact (and even hereditarily
paracompact) off of the diagonal.

Unfortunately the space in (2.1) is not first countable. To get a first countable example,
we let P, Q, and R denote, respectively, the usual sets of irrational, rational, and real
numbers, and we consider an extension of the familiar Michael line M .

2.2 Example There is a first countable, non-metrizable LOTS that is paracompact off of
the diagonal.

Proof: Consider the lexicographically ordered set M∗ = (R×{0})∪ (P ×Z). This linearly
ordered space contains the usual Michael line M as the closed subspace R×{0}, and M∗ is
first countable, hereditarily paracompact, and even quasi-developable. However, it is not
perfect and not metrizable.
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To see that the space M∗ is paracompact off of the diagonal, we invoke the following
easily proved result. In the next proposition, we will use Xd to denote the derived set of
a space X, i.e., the set of all non- isolated points of X.

2.3 Proposition: Suppose X is a hereditarily paracompact space in which points are Gδ-
sets. If Xd is the union of countably many closed, discrete subsets of X, then X is para-
compact off of the diagonal.

Proof: Let U be any open cover of X2 − ∆. For each p ∈ Xd, U is an open cover
of Yp = ({p} × X) − {< p, p >}. Because X − {p} is paracompact and is an Fσ in
X, there is a locally finite (in X) collection Vp(n) of open subsets of X such that if
Vp =

⋃
{Vp(n) : n ≥ 1}, then {{p}×V : V ∈ Vp} refines U and covers Yp. For each V ∈ Vp

choose U(p, V ) ∈ U with {p} × V ⊂ U(p, V ).
Write Xd =

⋃
{D(n) : n ≥ 1} where each D(n) is a closed, discrete subset of X. Find

open sets G(p, n) of X such that p ∈ G(p, n) and such that {G(p, n) : p ∈ D(n)} is a
discrete collection in X. Let W(n) = {(G(p, n) × V ) ∩ U(d, V ) : p ∈ D(n), V ∈ Vp(n)}.
Then

⋃
{W(n) : n ≥ 1} is the required σ-locally finite open cover of X2 −∆ that refines

U .

2.4 Corollary: If X is a GO-space that is first countable and paracompact, and if Xd is
the union of countably many closed, discrete subsets of X, then X is paracompact off of
the diagonal. In particular, the space M∗ in (2.2) is paracompact off of the diagonal.

Proof: If a GO-space is first countable and paracompact, then it is hereditarily paracom-
pact, so that (2.3) yields the desired conclusion.

2.5 Remark: Given suitable set theory, we can sharpen Example (2.2). If CH holds, or
if b = ω1, then there is a set P

′ ⊂ P that is concentrated on the rationals ([vD, Theorem
10.2]). Then topologize L = Q∪ P ′ as a subspace of M and construct L∗ as in (2.2). The
resulting space L∗ is a non-metrizable, first countable, Lindelöf LOTS that is paracompact
off of the diagonal. (The GO-space L is due to E. Michael [M]. See (3.6) below for further
details.)

The property of paracompactness off of the diagonal combines in interesting ways with
other properties of linearly ordered spaces. A result due to Gruenhage and Pelant [GP]
shows:

2.6 Proposition: Suppose X is a Lindelöf LOTS that is paracompact off of the diagonal.
Then X has a point-countable base.
Proof: Gruenhage and Pelant [GP] have shown that if X is any space that is Lindelöf and
paracompact off of the diagonal, then X admits a point- countable open cover U with the
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property that if a 6= b are points of X, then some U ∈ U has a ∈ U ⊂ X − {b}. If X is a
LOTS, then we can assume that members of U are order-convex. Let B = {U1 ∩U2 : Ui ∈
U}. Then B is the required point-countable base for the LOTS X.

The space in (2.5), constructed under CH or b = ω1, is Lindelöf and paracompact
off of the diagonal, and it has a base that is point countable in a very strong way – the
base is actually σ- disjoint. That makes one wonder whether, with suitable set theoretic
hypotheses, one could strengthen the conclusion of (2.6) to “X has a σ-point finite base.”
One approach would be to determine whether such a space has Property III (see [BL2]),
a necessary and sufficient condition for an ordered space with a point countable base to
have a σ-point-finite base. A related question would be to determine whether there can
be a Souslin space (i.e., a non-separable LOTS with the countable chain condition) that
is paracompact off of the diagonal. Such a space would be a Souslin space with a point-
countable base, but could not have a σ-point-finite base. It is already known that the
existence of a Souslin space with a point-countable base is consistent with ZFC ([B],[P]).

3. A non-metrizable LOTS with special covers of X2 −∆

Neither the existence of a Kombarov cover for a LOTS X (i.e., a locally finite cover
of X2−∆ by open sets of the form U ×V where U and V are disjoint open sets in X) nor
the existence of a co- zero cover of X2 −∆ of the type studied by Stepanova (see Section
1) forces X to be metrizable or (equivalently) to have a Gδ-diagonal. The easiest example
is:

3.1 Example: The non-metrizable space X of (2.1) is a LOTS that admists a Kombarov
cover and a σ-locally finite open cover of X2 − ∆ by subsets of X2 − ∆ that are co-zero
sets in X2.

Proof: For each α < ω1, let H(α) = (α, ω1] × {α} and V (α) = {α} × (α, ω1]. Let
W = {H(α), V (α) : α < ω1}. Then W is a locally finite open cover of X2−∆ by sets that
are both rectangular and are co-zero subsets of X2.

As noted before, the space in (3.1) is not first countable. M∗ gives a first-countable
example.

3.2 Example: The non-metrizable LOTS M∗ of (2.2) admits a Kombarov cover but does
not have a Gδ-diagonal. In addition, there is a σ-locally finite cover of (M∗)2−∆ by open
subsets of (M∗)2 −∆ that are co-zero subsets of (M∗)2.

Proof: Throughout this proof we will write X = M∗. Because X is a non-metrizable
LOTS, it cannot have a Gδ-diagonal. It remains to show that X has a locally finite,
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rectangular open cover of X2−∆ and a σ-locally finite (in X2−∆) cover by open co-zero
subsets of X2.

Husek and Pelant [HP] have proved that every metrizable space Y has a Kombarov
cover of Y 2 − ∆. In particular, if Y = R is the usual space of real numbers, there is a
family C = {C(α) : α ∈ A} that is locally finite in Y 2−∆, has

⋃
C = Y 2−∆, and consists

of sets of the form C(α) = G(α) ×H(α) where G(α) and H(α) are disjoint open sets in
the usual topology of the real numbers. Note that the index set A must be countable.

Write G(α) as the union of its convex components, say G(α) =
⋃
{G(α, i) : i ≥ 1}

where the sets G(α, i) = (a(α, i), b(α, i)) are pairwise disjoint open intervals. Similarly,
H(α) =

⋃
{H(α, j) : j ≥ 1} where the sets H(α, j) = (c(α, j), d(α, j)) are pairwise disjoint

open intervals. Notice that G(α, i) ∩H(α, j) = ∅ for every choice of i and j.
For each real number x, define u(x) = 0 = v(x) if x is rational, and for any irrational

x let u(x) = +∞ and v(x) = −∞. For irrational x, the ordered pairs < x, u(x) > and
< x, v(x) > are gaps of the lexicographically ordered space X = M∗ of (2.2), while for a
rational number x, the pair < x, u(x) > = < x, 0 > = < x, v(x) > is a point of X. We
will use these gaps or points as ends of certain convex subsets of X = M∗. For example,
(< 2, u(2) >,< π, v(π) >) = {< x, k >∈ X : 2 < x < π}. We begin with the following
easily verified fact:

Claim 1: For any real numbers a < b, (< a, u(a) >,< b, v(b) >) is a covex open set in X

and a point < x, k >∈ X belongs to (< a, u(a) >,< b, v(b) >) if and only if a < x < b.

Next, for α ∈ A and i, j ≥ 1, let

G∗(α, i) = (< a(α, i), u(a(α, i)) >,< b(α, i), v(b(α, i) >);

G∗(α) =
⋃
{G∗(α, i) : i ≥ 1};

H∗(α, j) = (< c(α, j), u(c(α, j)) >,< d(α, j), v(d(α, j)) >);

and
H∗(α) =

⋃
{H∗(α, j) : j ≥ 1}.

Let C∗ = {G∗(α)×H∗(α) : α ∈ A}. Then one easily verifies:

Claim 2: G∗(α) and H∗(α) are disjoint open subsets of X so that
⋃
C∗ ⊂ X2 −∆.

Claim 3: Let << x,m >,< y, n >>∈ X2 − ∆. Then << x,m >,< y, n >>6∈
⋃
C∗ if

and only if x = y ∈ P . To verify “⇒,” suppose that << x,m >,< y, n >>6∈
⋃
C∗ and

yet x 6= y. Then for some α ∈ A and i, j ≥ 1 we have < x, y >∈ G(α, i) × H(α, j). It
follows from Claim 1 that << x,m >,< y, n >>∈ G∗(α, i) × H∗(α, j) ⊂

⋃
C∗, contrary
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to << x,m >,< y, n >>6∈
⋃
C∗. Thus, x = y. But then we have << x,m >,< x, n >>

= << x,m >,< y, n >> ∈ X2 − ∆ which forces m 6= n so that x ∈ P . Conversely, if
x = y ∈ P then in the light of Claim 1, << x,m >,< x, n >>6∈ G∗(α, i) × H∗(α, j) for
each α ∈ A because G(α, i) ∩H(α, j) = ∅.

Claim 4: The collection C∗ is locally finite in X2−∆. To verify that claim, we first consider
a point << x,m >,< y, n >>∈ X2 −∆ with x 6= y. Because C is locally finite in Y 2 −∆,
there are rational numbers p, q, r, s with p < x < q and r < y < s such that the set
N = (p, q)× (r, s) ⊂ M2 −∆ and meets only a finite number of members of C. But then
the set

N∗ = (< p, 0) >,< q, 0 >)× (< r, 0 >,< s, 0 >)

meets only a finite number of members of C∗. Next consider a point << x,m >,<

x, n >>∈ X2−∆. Then x ∈ P and, because of Claim 3, << x,m >,< x, n >> belongs to
no member of C∗. Then N∗ = {<< x,m >,< x, n >>} is a neighborhood of << x,m >

,< x, n >> meeting no member of C∗. This establishes Claim 4.

It now follows that S = C∗ ∪ {{<< x,m >,< x, n >>} : x ∈ P and m 6= n} is a
locally finite rectangular open cover of X2 −∆, as required.

To prove the final assertion in (3.2), we will construct a collection D of subsets of
X2 −∆ such that:

a) D is σ-locally finite in X2 −∆;
b) each member of D is a co-zero set in X2;
c) D covers X2 −∆.

For each α ∈ A and i, j ≥ 1 let D(α, i, j) = {G∗(α, i) × H∗(α, j)}. Being a product
of two co-zero sets in X, each G∗(α, i) × H∗(α, j) is a co-zero set in X2. Because A is
countable, the collection

⋃
{D(α, i, j) : α ∈ A, i, j ≥ 1} is a σ-locally finite collection in

X2 − ∆. Furthermore,
⋃
{G∗(α, i) × H∗(α, j) : α ∈ A, i, j ≥ 1} =

⋃
C∗. We now let

D(0) = {{<< x,m >,< x, n >>} ⊂ X2 −
⋃
C∗ : x ∈ P and m, n are distinct integers }.

Then D(0) is a locally finite collection in X2−∆ whose members are open co-zero subsets
of X2, so that

⋃
{D(α, i, j) : α ∈ A, i, j ≥ 1} ∪ D(0) is the required open cover of X2 −∆.

Even though the special covers of X2 −∆ as in (3.2) do not yield a Gδ-diagonal for
a LOTS X, they do have interesting consequences. We begin with a technical proposition
about certain stationary sets with their usual topologies.

3.3 Proposition: Let S be a stationary subset of an uncountable regular cardinal κ. Then
there is no Kombarov cover of S2 −∆ and no σ-locally finite open cover of of S2 −∆ by
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subsets of S2 −∆ that are co-zero sets (or even Fσ-sets) in S2.

Proof: In this proof, if L ⊂ S then the term “convex component of L” will mean “convex
component of L in the set S.” As a first step in the proof the reader can apply the Pressing
Down Lemma to the stationary set Sd of all non-isolated points of S to prove:

(*) If L is a σ-locally finite open cover of S, then the family of all L ∈ L that have a
convex component that is cofinal in S is non-empty and finite.

Now, for contradiction, suppose that C = {U(α) × V (α) : α ∈ A} is a locally finite open
cover of S2 − ∆ where U(α) and V (α) are disjoint open subsets of S. For each s ∈ Sd,
apply (*) to the subspace (S − {s}) × {s} of S2 − ∆ to find some α(s) ∈ A such that
s ∈ V (α(s)) and some convex component of U(α(s)) is cofinal in S. For each s ∈ Sd, there
is a point f(s) ∈ S with f(s) < s and S ∩ (f(s), s] ⊂ V (α(s)). Apply the Pressing Down
Lemma to the function f to find a point s0 ∈ S and a stationary subset T ⊂ Sd such that
f(t) = s0 for each t ∈ T .

Let t0 be the first element of T . Then t0 > s0, and local finiteness of C forces the set
F = {α ∈ A : t0 ∈ V (α), and U(α) has a convex component that is cofinal in S} to be
nonempty and finite. Furthermore, if t ∈ T − {t0} then we have t0 ∈ (s0, t] = (f(t), t] ⊂
V (α(t)) so that α(t) ∈ F for every t ∈ T . Because F is finite, for some β ∈ F we conclude
that the set T ∗ = {t ∈ T : α(t) = β} is stationary in S.

Because U(β) contains a convex component that is cofinal in S, we may choose x1 ∈
U(β) ∩ (s0,→). Because T ∗ is stationary in S we may choose t1 ∈ T ∗ with t1 > x1. But
then we have x1 ∈ (s0, t1] = (f(t1), t1] ⊂ V (α(t1)) = V (β) so that < x1, x1 >∈ U(β)×V (β)
and that is impossible because U(β)× V (β) ⊂ S2 −∆. That contradiction completes the
proof that no Kombarov cover of S2 −∆ can exist.

For the second half of the proof, suppose that U is a σ- locally finite collection of
subsets of S2−∆ that covers S2−∆ and whose members are each Fσ-subsets of S2. Write
U =

⋃
{U(n) : n ≥ 1} where each U(n) is locally finite in S2 − ∆. The Pressing Down

Lemma shows:

(**) if K is an Fσ-subset of S2 with K ⊂ S2−∆, then for some β < κ, K ∩ ((β,→))2 = ∅.

For each α ∈ S, let H(α) = (S ∩ (α,→)) × {α}. In the light of (*) above, for each
α ∈ S there is an n = n(α) such that some member U(α) ∈ U(n) contains a tail of H(α),
i.e., contains ([γ,→) ∩ S) × {α} for some γ ∈ S. Define S(k) = {α ∈ S : n(α) = k}.
Then for some k ≥ 1, S(k) is stationary in [0, κ). Fix such a k. For each α ∈ S(k),
choose U(α) ∈ U(k) such that U(α) contains a tail of H(α) and then, using (**), choose
β(α) ∈ (α, κ) such that U(α) ∩ ((β(α), κ))2 = ∅.
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By a β interlaced net we will mean a strictly increasing, well ordered net {αµ : µ < M}
such that αµ ∈ S(k) and if µ < ν < M then αµ < β(αµ) < αν . Let C = {γ < κ : γ is
the supremum of some β-interlaced net }. It is easy to see that C is a closed, unbounded
subset of [0, κ) so that, S(k) being stationary, we may choose δ ∈ C ∩ S(k). Let M be
the cofinality of δ and find a β- interlaced net {αµ : µ < M} having δ as supremum. For
each µ < M , as noted above, U(αµ) contains a tail of H(αµ), say ([ηµ, κ) ∩ S) × {αµ} ⊂
U(αµ). Because δ < κ and κ is regular, η∗ = sup{ηµ : µ < M} is less than κ. Thus
([η∗, κ)∩S)×{αµ} ⊂ U(αµ) so that each point of the set H∗ = ([η∗, κ)∩S)×{δ} is a limit
point of

⋃
{([η∗, κ)∩S)×{αµ} : µ < M} and hence also a limit point of

⋃
{U(αµ) : µ < M}.

But that is impossible because the sets U(αµ) are all chosen from U(k) which is a locally
finite collection and no point of H∗ is a limit point of any set U(αµ).

3.4 Corollary: Suppose X is monotonically normal and admits a Kombarov cover of
X2 − ∆ or a σ-locally finite collection of subsets of X2 − ∆ that covers X2 − ∆ and
consists of open Fσ-subsets of X2 . Then X is hereditarily paracompact. In particular,
any GO space X that admits such a cover of X2 −∆ is hereditarily paracompact.

Proof: IfX is not hereditarily paracompact, then (by a result of Balogh and Rudin [BR]),X
contains a subspace S that is homeomorphic to a stationary set in some regular uncountable
cardinal. Restricting the given covering of X2−∆ to S2−∆ yields a contradiction of (3.3).
The second assertion of the corollary now follows, because every GO-space is monotonically
normal [HLZ].

In his paper [K], Kombarov pointed out that a regular hereditarily Lindelöf space X
will have a Gδ-diagonal provided there is a countable open cover of X2−∆ by rectangular
open sets. (It is enough to know that X is perfect for Kombarov’s assertion to hold.) He
then asked whether the same result holds for spaces that are Lindelöf, but not hereditarily
so. Using the Continuum Hypothesis (CH) or the weaker hypothesis b = ω1, we will
construct a subspace of the space M∗ in Example (2.2) that answers Kombarov’s question
in the negative.

We begin by constructing a countable open cover of (M∗)2 −∆ by rectangular open
sets. This contrasts with the rectangular open cover constructed in (3.2) which was not
countable.

3.5 Lemma: Let M∗ be the space of (2.2). Then there is a countable cover of (M∗)2 −∆
by rectangular open sets.

Proof: LetR, P, Q, and Z denote, respectively, the usual space of real numbers and the sets
of irrational numbers, rational numbers, and integers. Because R2 is hereditarily Lindelöf,



10

there is a countable rectangular open cover {Un×Vn : n ≥ 1} of R2−∆ where each Un and
Vn is an open interval in R with rational endpoints. Write Un = (an, bn) and Vn = (cn, dn),
and in the space M∗ define U∗n = (< an, 0 >,< bn, 0 >) and V ∗n = (< cn, 0 >,< dn, 0 >).
For each n ∈ Z define Gn = {< x, n >: x ∈ P}. Then Gn is an open subset of X and it is
easy to verify that the collection

{U∗n × V ∗n : n ≥ 1} ∪ {Gm ×Gn : m,n ∈ Z and m 6= n}

is the required countable, rectangular open cover of (M∗)2 −∆.

3.6 Example: Assume CH or b = ω1. Then there is a Lindelöf linearly ordered space
Y that admits a countable rectangular open cover of Y 2 − ∆ and yet does not have a
Gδ-diagonal.
Proof: Recall that, assuming the Continuum Hypothesis (or even the weaker hypothesis
that b = ω1), there is an uncountable dense-in-itself subset L of R that contains and is
concentrated on the set Q. As Michael noted [M], when topologized as a subspace of M, L

is a Lindelöf non- metrizable space. Starting with L, one creates the lexicographically
ordered set L∗ = (L × {0}) ∪ ((P ∩ L) × Z). With its usual open interval topology, L∗

is a Lindelöf LOTS and is a subspace of the space M∗ of (2.2). It is easy to see that L∗

inherits a countable rectangular open cover from M∗. Because the LOTS L∗ contains the
non-metrizable subspace L, we know that L∗ cannot have a Gδ- diagonal.

4. Stronger off-diagonal properties.

There are two natural ways to strengthen the property “paracompact off of the di-
agonal.” One is to strengthen the covering condition from paracompact to a stronger
property such as Lindelöf, and the other is to consider hereditary paracompactness off of
the diagonal.

For a regular space to be Lindelöf off of the diagonal is a very strong hypothesis and
immediately gives a Gδ-diagonal. It is easy to prove:

4.1 Lemma: A regular space X is Lindelöf off of the diagonal if and only if X2 is Lindelöf
and X has a Gδ- diagonal.

Proof: First, suppose X is Lindelöf off of the diagonal. Fix p ∈ X. Because X − {p}
embeds in X2 − ∆ as a closed subset, we see that X is a Lindelöf space. Because ∆ is
homeomorphic to X, we see that X2 = (X2−∆)∪∆ is the union of two Lindelöf subspaces,
so that X2 is Lindelöf. Next observe that because X2 is regular and X2 −∆ Lindelöf, we
may cover X2−∆ with countably many open subsets of X2 whose closures in X2 miss ∆.
Hence ∆ is a Gδ-subset of X2.
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Conversely, if X has a Gδ-diagonal and X2 is Lindelöf, then X2 −∆ is an Fσ-subset
of a Lindelöf space, so that X is Lindelöf off of the diagonal.

4.2 Proposition: Suppose X is a LOTS or is a generalized ordered space that can be
p-embedded in some LOTS. If X is Lindelöf off of the diagonal, then X is metrizable and
there is a monotonic homeomorphism from X onto a subspace of the real line.

Proof: According to (4.1), X has a Gδ-diagonal and it is known that a generalized ordered
space that can be p-embedded in a LOTS and has a Gδ-diagonal is metrizable [L1]. Lemma
4.1 also establishes that X is a Lindelöf space, so X is separable and metrizable. To
complete the proof, recall that any separable metrizable LOTS embeds in the real line by
a monotonic homeomorphism.

Certain local conditions on a LOTS X combine with the property “X is paracompact
off of the diagonal” to give metrization theorems. For example:

4.3 Corollary: A linearly ordered space X is metrizable if it is paracompact off of the
diagonal and is one of:

a) locally compact
b) locally connected
c) locally separable.

Proof: Because b) implies a), it will be enough to verify that a) and c) each yield metriz-
ability. If X is paracompact off of the diagonal then it is paracompact, so that it is enough
to prove local metrizability in each case. If a) holds, then Gruenhage’s theorem gives local
metrizability. So suppose c) holds. Because a space that is separable and paracompact
off of the diagonal is actually Lindelöf off of the diagonal, we know that locally the space
X is a LOTS that is Lindelöf off of the diagonal. Then (4.2) yields local metrizability, as
required.

From 4.2 we obtain a structure theorem for arbitrary generalized ordered spaces that
are Lindelöf off of the diagonal, namely:

4.4 Lemma: Let X be any generalized ordered space that is Lindelöf off of the diagonal.
Then X is homeomorphic to a space obtained by modifying a subspace of the real line by
isolating certain points and by making Sorgenfrey modifications at certain other points.

Proof: Let T be the given topology of X and let I be the open interval topology of the given
ordering of X. Then the LOTS (X, I) is Lindelöf off of the diagonal, so that (4.2) gives
a monotonic homeomorphism from (X, I) onto a subspace S of the real line. Examining
the way that T is obtained from I completes the proof.
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Proposition 4.2 and Lemma 4.4 raise as many questions as they answer. For example,
one might wonder whether the hypothesis that the GO-space X can be p-embedded in some
LOTS is actually necessary in (4.2). Might it be true that any generalized ordered space
that is Lindelöf off of the diagonal must be metrizable? Lemma (4.3) reduces the problem
to asking about certain generalized ordered modifications of certain subspaces of the real
line. For such special GO-spaces, could one show that if X is a GO-space constructed on
the real line and X is Lindelöf off of the diagonal, then X must be separable? As our next
examples show, both of those questions have axiom-sensitive answers.

4.5 Examples: Assuming CH, there is a non-metrizable GO-space that is Lindelöf off of
the diagonal.

Proof: E. Michael [M] showed that, assuming CH, there is an uncountable subset X of
what is now called the Michael line such that X ×X is a Lindelöf space. This space X is
a GO-space and, because X2 has a Gδ- diagonal, (4.1) shows that X is Lindelöf off of the
diagonal. This example shows that the hypothesis about p-embedding is essential in (4.2)
and that one cannot prove separability for a GO-space that is Lindelöf off of the diagonal.

Isolated points are at the heart of Example 4.5. But even without any isolated points,
there is plenty of pathology.

4.6 Example: The existence of separable, non-metrizable GO- spaces that are Lindelöf off
of the diagonal is axiom-sensitive.

Proof: Under CH, Michael [M] showed that there is an uncountable dense-in-itself subset
X of the Sorgenfrey line such that X2 is Lindelöf but X3 is not normal. This X is a
GO-space that is Lindelöf off of the diagonal and is not metrizable, showing once again the
need for the p-embedding hypothesis in (4.2). On the other hand, Baumgartner [Ba] and
Todorčević [T] proved (respectively) that, under PFA and OCA, X2 cannot be Lindelöf
for any uncountable subset X of the Sorgenfrey line. A more extensive discussion of this
issue appears in [BMo], near their Theorem 3.5.

A second very strong covering hypothesis for X2 −∆ is hereditary paracompactness.
At the present time, the ramifications of that hypothesis are not well understood. We
begin with an easy example showing that one will need additional assumptions such as
first countability if interesting results are to be obtained.

4.7 Example: The non-first countable space X of (2.1) is a non-metrizable LOTS and is
hereditarily paracompact off of the diagonal.
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In contrast to (4.7), ordered spaces that are first countable and hereditarily paracompact
off of the diagonal do have certain strong properties. For example, it is well known that
if X is any topolgical space such that the product of X with the convergent sequence
{ 1
n : n ≥ 1} ∪ {0} is hereditarily normal, then X is perfectly normal. Essentially the same

proof shows:

4.8 Proposition: Suppose X is a first-countable GO space such that X2−∆ is hereditarily
normal. Then X is perfectly normal.

Proposition 4.8 shows that the space M∗, used several times above when a first countable
example was needed, will not be useful in the study of hereditary paracompactness off of
the diagonal, because M∗ is certainly not perfectly normal. It is possible to give a more
direct proof that M∗ is not hereditarily paracompact off of the diagonal, as follows.

4.9 Example: The space M∗ of (2.2) is not hereditarily paracompact off of the diagonal.

Proof: Let Q,P be the usual sets of rational and irrational numbers, respectively. To verify
that M∗ is not hereditarily paracompact off of the diagonal, it will be enough to prove that
if M denotes the usual Michael line, then Y = M2 −∆ is not hereditarilty paracompact,
because Y can be embedded in (M∗)2 −∆.

Fix a rational number q and let Z = {< x, y >∈ Y : if x = q, then y ∈ P}. Let
W0 = Z − ({q} ×M) and for each x ∈ P let Wx = (M × {x}) ∩ Z. Then W = {Wx : x =
0 or x ∈ P} is an open cover of Z. For contradiction, suppose there is a locally finite open
cover U of Z that refinesW. For each x ∈ P choose U(x) ∈ U with (q, x) ∈ U(x). Because
Wx is the only member of W that contains (q, x), we know that U(x) ⊂ Wx so there is a
positive e(x) such that (q − e(x), q + e(x)) × {x} ⊂ U(x). Let Pn = {x ∈ P : e(x) ≥ 1

n}.
Because P =

⋃
{P (n) : n ≥ 1}, some set P (n) has a rational limit point s in the usual

topology of the real numbers. Choose a rational number t ∈ (q − 1
n , q) with t 6= s.

Then (s, t) is a limit point of the set
⋃
{U(x) : x ∈ P (n)} in the space Z even though

(s, t) 6∈ cl(U(x)) for every x ∈ P (n), and that is impossible because U is locally finite in
Z.

One of the first questions that one encounters when studying hereditary paracompact-
ness off of the diagonal in linearly ordered spaces is suggested by the result of Gruenhage
and Pelant (see 2.6, above):

4.10 Question: Suppose X is a LOTS that is first countable and hereditarily paracompact
off of the diagonal. Must X have a point-countable base?

Perhaps Souslin spaces – linearly ordered topological spaces that are not separable and
yet have countable cellularity – might be a source of examples in the study of hereditary
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paracompactness off of the diagonal. (Note that no connectedness or completeness is
assumed for Souslin spaces.) Such spaces are always first countable, Lindelöf, and perfect,
and it is known that such spaces can have point countable bases ([B] and [P]). It would be
interesting to know:

4.11 Question: Is it possible that a Souslin space can be hereditarily paracompact off of
the diagonal?

The techniques that Mary Ellen Rudin used in [Ru] can be slightly modified to show
that a Souslin space whose order is complete cannot be hereditarily paracompact, or even
hereditarily normal, off of the diagonal, and this limits the kinds of examples that one
might find.

The distinction between LOTS and GO-spaces is likely to be important in studying
the role of hereditary paracompactness off of the diagonal. The consistent example of
Michael described in (4.6) makes it clear that for GO- spaces, the hypothesis of hereditary
paracompactness off of the diagonal (or even the property of having a hereditarily Lindelöf
square) gives almost nothing in terms of special base properties such as point-countable
bases or metrizability.
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