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1. Introduction.

In this paper we provide necessary and sufficient conditions for a perfect gen-
eralized ordered space (GO-space) to have a σ-closed-discrete dense subset, and
we prove a new metrization theorem for such spaces using the notion of a weak
monotone ortho-base.

To understand the context of our results, recall that any GO-space with a
σ-closed-discrete dense subset must be perfect, i.e., closed sets in the space must
be Gδ-sets. The converse is consistently false: if there is a Souslin space (a non-
separable linearly ordered topological space that has countable cellularity), then
there is a perfect GO-space that does not have a σ-closed-discrete dense subset.
An old question due to Maurice and van Wouwe [vW] asks whether there is a ZFC
example of a perfect GO-space without a σ-closed-discrete dense set.

We now know that several open questions in ordered space theory are closely
related to the Maurice-van Wouwe question. The first is due to Heath. After
Ponomarev [P] and Bennett [B1] independently proved that if there is a Souslin
space, then there is a Souslin space with a point-countable base, Heath asked for
a ZFC example of a perfect GO-space that has a point-countable base and yet
is non-metrizable. In the light of a result of Bennett and Lutzer [BL1], such a
space could not have a σ-closed-discrete dense subset (see (3.1-c), below). The
second question, posed by Lutzer [L], asked whether every perfect GO-space can be
topologically embedded in a perfect linearly ordered topological space, and recent
work of Shi [S] has shown that if there is a counterexample, then it is perfect and
does not have a σ-closed-discrete dense subset. A third example is the question of
Nyikos [N1] asking whether there is a ZFC example of a perfect, non-metrizable,
non-archimedean space. Such a space would also be a perfect GO-space not having
a σ-closed-discrete dense subset. Readers should consult the recent paper by Qiao
and Tall [QT] for further information on this family of inter-related problems.
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In Section 2, we will charactertize those perfect GO-spaces that have a σ-
closed-discrete dense subset by proving the following structure theorem:

1.1 Theorem: The following properties of a perfect GO-space X are equivalent:
a) X has a σ-closed-discrete dense subset;
b) there is a sequence 〈Gn〉 of open covers of X such that for each p ∈ X, the set⋂

{St(p,Gn) : n ≥ 1} has at most two points;
c) there is a sequence 〈Gn〉 of open covers of X such that for each p ∈ X, the set⋂

{St(p,Gn) : n ≥ 1} is separable;
d) X is the union of two subspaces, each having a Gδ-diagonal in its relative

topology;
e) X is the union of countably many subspaces, each having a Gδ-diagonal in its

relative topology;
f) there exist a perfect, paracompact GO-space Y with a Gδ-diagonal and a closed

continuous mapping f : X → Y with |f−1[y]| ≤ 2 for each y ∈ Y ;
g) there exist a metrizable GO-space Y and a continuous mapping f : X → Y

with |f−1[y]| ≤ 2 for each y ∈ Y ;
h) there exist a topological space Z with a Gδ-diagonal and a continuous s-mapping

g : X → Z, i.e., a continuous mapping such that g−1[z] is separable for each
z ∈ Z.

In Section 3, we prove a new metrization theorem for GO-spaces, using the
notion of a weak monotone ortho-base. Recall [N2] that a base B for a space is a
weak monotone ortho-base if, for any monotonic subcollection M ⊆ B (i.e., where
M is linearly ordered by ⊆), either the set

⋂
M is open or else

⋂
M consists of a

single point q and M is a local base at q. We will prove:

1.2 Theorem: A GO-space is metrizable if and only if it has a σ-closed-discrete
dense subset and a weak monotone ortho-base.

That theorem is consistently false for perfect GO-spaces without a σ-closed-discrete
dense subset, because if there is a Souslin space, then then there is a Souslin space
with a weak monotone ortho-base. See (3.2), below.

Recall that a generalized ordered space (GO-space) is a triple (X, T , <) where
T is a Hausdorff topology on X and < is a linear ordering of X such that T has a
base consisting of open, convex sets. In case T is the usual open interval topology of
the ordering <, we say that (X, T , <) is a linearly ordered topological space (LOTS).
It is known that the GO-spaces are precisely the topological subspaces of LOTS
[L].

In what follows, it will be important to distinguish between relatively discrete
subsets of a space (i.e., those subsets that contain no limit points of themselves) and
subsets that are both closed and discrete (i.e., subsets that have no limit points in
the entire space). This leads us to use the somewhat cumbersome term “σ-closed-
discrete” to describe a set that is the countable union of subspaces that are both
closed and discrete.

We want to thank a group of colleagues for helpful conversations concerning
Section 3 of this paper. At the George Mason Topology and Dynamics Conference
in March, 1998, Dennis Burke, Joe Mashburn, Steven Purisch, and Adrian Stanley
met with the three authors of this paper for an informal seminar on ordered spaces,
and the resulting discussions were enlightening.

2. Perfect spaces with σ-closed-discrete dense subsets.
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As noted above, any GO-space with a σ-closed-discrete dense subset is perfect,
while the converse is consistently false, and it not known whether there is a ZFC
example of a perfect GO-space without a σ-closed-discrete dense subset. The goal
of this section is to characterize (in ZFC) those perfect GO-spaces that do have a
σ-closed-discrete dense set.

2.1 Theorem: Let X be a perfect GO-space. Then the following are equivalent:
a) X has a σ-closed-discrete dense subset;
b) there are open covers Gn of X such that for each p ∈ X, the set

⋂
{St(p,Gn) :

n ≥ 1} has at most two points;
c) there are open covers Gn of X such that for each p ∈ X the set

⋂
{St(p,Gn) :

n ≥ 1} is countable;
d) there are open covers Gn of X such that for each p ∈ X the set

⋂
{St(p,Gn) :

n ≥ 1} is a separable subspace of X;
e) X = X1 ∪X2 where each Xi has a Gδ-diagonal for its relative topology;
f) X =

⋃
{Xn : n ≥ 1} where each Xn has a Gδ-diagonal for its relative topology;

g) X has a dense subspace Y =
⋃
{Yn : n ≥ 1} where each Yn has a Gδ-diagonal

for its relative topology;
h) there exist a perfect, paracompact GO-space Y with a Gδ-diagonal and a closed

continuous mapping f : X → Y such that |f−1[y]| ≤ 2 for each y ∈ Y ;
i) there exist a metrizable GO-space Y and a continuous mapping g : X → Y

such that for each y ∈ Y, |g−1[y]| ≤ 2;
j) there exist a topological space Z with a Gδ-diagonal and a continuous g : X →
Z such that g−1[z] is separable for each z ∈ Z.

Outline of Proof: We will use a sequence of lemmas to show that
Step 1: a)⇒ b)⇒ c)⇒ d)⇒ g)⇒ a);
Step 2: a)⇒ b)⇒ e)⇒ f)⇒ g)⇒ a);
Step 3: b)⇒ h)⇒ i)⇒ j)⇒ b).

Because it is immediate that b) ⇒ c) ⇒ d), e) ⇒ f) ⇒ g) and i) ⇒ j), it will be
enough to show:

a)⇒ b) in Lemma 2.2;
d)⇒ g) in Lemma 2.3;
g)⇒ a) in Lemma 2.4; and
b)⇒ e) in Lemma 2.3;
b)⇒ h)⇒ i)⇒ j)⇒ b) in Lemma 2.5.

2.2 Lemma: In Theorem 2.1, a)⇒ b).
Proof: Suppose that D =

⋃
{Dn : n ≥ 1} is dense in X, where each Dn is a closed

discrete subset of X. We may assume that Dn ⊆ Dn+1 for each n. Because X is
collectionwise normal, for each x ∈ Dn there is a convex open set U(x, n) such that

1) the collection {U(x, n) : x ∈ Dn} is pairwise disjoint and U(x, n) ∩Dn = {x}.
Because X is perfect, X is first countable, so that we may assume

2) if x ∈ Dn then {U(x, n+ k) : k ≥ 1} is a local base at x.

For each p ∈ X −Dn, let V (p, n) be the convex component of X −Dn to which p
belongs and let Hn = {U(x, n) : x ∈ Dn} ∪ {V (p, n) : p ∈ X −Dn}. Observe that

3) if p ∈ Dn then St(p,Hn) = U(p, n) and if p ∈ X −Dn then either St(p,Hn) =
V (p, n) or else there is a unique x ∈ Dn such that p ∈ U(x, n) and St(p,Hn) =
V (p, n) ∪ U(x, n).

Let S(p) =
⋂
{St(p,Hn : n ≥ 1} and note that
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4) S(p) is a convex subset of X.

Observe that if p ∈ D then, for large enough values of n, St(p,Hn) = U(p, n) by
(3). Therefore assertion (2) yields

5) if p ∈ D, then S(p) = {p}.
We claim that

6) for each p ∈ X, the set S(p) is finite.

To verify (6), recall from (5) that if p ∈ D, then S(p) is a singleton. Hence
suppose p ∈ X−D. If S(p) is not finite, then we may choose points a, b, c, d in S(p)
with either p < a < b < c < d or d < c < b < a < p. The cases are similar, so we
consider only the first. Because Dn ⊆ Dn+1 we can find n so that Dn meets each of
the non-empty open sets ]p, b[ and ]b, d[. Choose y ∈ Dn ∩ ]p, b[ and z ∈ Dn ∩ ]b, d[.
Then V (p, n) ⊆ ]←, b[ so that d ∈ St(p,Hn) combines with (3) to yield St(p,Hn) =
V (p, n)∪U(x, n) for some unique x ∈ Dn with {p, d} ⊆ U(x, n). But then convexity
of U(p, n) gives y, z ∈ [p, d] ⊆ U(x, n) so that (1) yields {y, z} ⊆ U(x, n)∩Dn ⊆ {x}
which is impossible. That contradiction establishes assertion (6).

Recall that X is perfect and that any perfect GO space is paracompact [L].
Therefore, for each n we can find open covers Gn of X such that

7) each member of Gn is convex, Gn refines Hn, and Gn+1 star refines Gn.

Then for each n and p ∈ X, St(p,Gn) ⊆ St(p,Hn) so that the set T (p) =⋂
{St(p,Hn) : n ≥ 1} is a subset of S(p). From (6) we conclude

8) for each p ∈ X, T (p) is a finite convex subset of X.

We claim that

9) If q ∈ T (p), then T (q) = T (p).

To verify (9), suppose q ∈ T (p) and x ∈ T (q). Fix n ≥ 1. Because q ∈ T (p) ⊆
St(p,Gn+1) some G

′ ∈ Gn has {p, q} ⊆ G
′
. Because x ∈ S(q), some G

′′ ∈ Gn+1

has {x, q} ⊆ G
′′
. Because Gn+1 star refines Gn we know that some G ∈ Gn has

G
′ ∪ G′′ ⊆ St(q,Gn+1) ⊆ G. But then {p, q, x} ⊆ G so that x ∈ St(p,Gn). Thus,

x ∈ T (p) so that T (q) ⊆ T (p). A similar argument gives T (p) ⊆ T (q).
Next we claim that

10) for each p ∈ X, |T (p)| ≤ 2.

To prove (10), recall from (8) that each T (p) is a finite convex subset of X. If
some p has |T (p)| ≥ 3, then T (p) must contain an isolated point q of X. From (9),
T (p) = T (q). Being isolated, q ∈ D so that (5) yields T (q) ⊆ S(q) = {q} which is
impossible because |T (q)| = |T (p)| ≥ 3.

2.3 Lemma: In Theorem 2.1, d)⇒ g) and b)⇒ e).
Proof: First consider d)⇒ g). Because X is a perfect GO-space, X is paracompact
[L]. As in the proof of (2.2), we can refine the open covers Gn given by (d) to obtain
open covers Hn such that

1) for each n ≥ 1, Hn is a convex open cover of X that refines Gn, and Hn+1

star-refines Hn.

Then
⋂
{St(p,Hn) : n ≥ 1} ⊆

⋂
{St(p,Gn : n ≥ 1} for each p ∈ X so that, because

any subspace of a separable GO-space is again separable, we have:

2) for each p ∈ X, the set S(p) =
⋂
{St(p,Hn) : n ≥ 1} is a separable subset of

X.

As in the proof of (2.2) we have
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3) if q ∈ S(p), then S(q) = S(p)

so that the collection S = {S(p) : p ∈ X} is a partition of X. Choose an indexing
S = {S(pα) : α ∈ A} such that

4) if α 6= β are in A, then S(pα) 6= S(pβ).

Then for each α ∈ A, fix a countable set T (pα) that is dense in S(pα), and fix
an indexing T (pα) = {t(α, n) : n ≥ 1}, with repetitions being allowed. Let Yn =
{t(α, n) : α ∈ A} and note that

5) for each α ∈ A, T (pα) ∩ Yn = {t(α, n)}.
Let Y =

⋃
{Yn : n ≥ 1}. Then Y is a dense subspace of X. Fix n ≥ 1 and let

Lm = {H ∩ Yn : H ∈ Hm}. Then each Lm is a relatively open cover of Yn and for
each p ∈ Yn we have

⋂
{St(p,Lm) : m ≥ 1} = {p}. Thus, Yn has a Gδ-diagonal for

its relative topology, and we see that d)⇒ g).
The proof that b) ⇒ e) in Theorem 2.1 is analogous. Suppose that 〈Gn〉 is

the sequence of open covers given by (b). As in the first part of this proof, use
paracompactness of X to refine Gn to a convex open cover Hn in such a way that
Hn+1 star-refines Hn. Then the set T (p) =

⋂
{St(p,Hn) : n ≥ 1} is a convex

subset of X with at most two points, and {T (p) : p ∈ X} is a partition of X.
Define X1 = {min(T (p)) : p ∈ X} and let let X2 = {max(T (p)) : p ∈ X}. Then
X = X1 ∪X2, and both X1 and X2 have Gδ-diagonals in their relative topologies.

2.4 Lemma: In Theorem 2.1, g)⇒ a).
Proof: Let Y =

⋃
{Yn : n ≥ 1} be the dense subspace given by (g), where each Yn

has a Gδ-diagonal for its relative topology. According to [BLP], because the GO-
space Yn has a Gδ-diagonal, Yn contains a dense metrizable subspace Zn. (Alterna-
tively, use the set of isolated points of the GO-space Yn and a sigma disjoint open
convex refinement of the Gδ-diagonal sequence for Yn to find a σ-disjoint π-base for
Yn and then invoke H.E. White’s theorem [W] that any regular, first-countable space
with such a π-base must have a dense metrizable subspace.) Being metrizable, each
Zn has a dense subspace Dn =

⋃
{D(n, k) : k ≥ 1} where each D(n, k) is discrete in

its relative topology. But X is perfect, so that each D(n, k) is a union of countably
many closed, discrete subspaces of X. Then D =

⋃
{D(n, k) : n ≥ 1, k ≥ 1} is the

required σ-closed-discrete dense subset of X.

2.5 Lemma: In Theorem 2.1, b)⇒ h)⇒ i)⇒ j)⇒ b)
Proof: First, b) ⇒ h). In the light of (b), there is a sequence 〈Gn〉 of open covers
of X with the property that Gn+1 star-refines Gn and for each p ∈ X, the set
S(p) =

⋂
{St(p,Gn) : n ≥ 1} has at most two points. As in the proof of (2.3), the

collection {S(p) : p ∈ X} partitions X, and each S(p) is convex. According to [vW,
Proposition 1.2.3], if Y is the quotient space that results from collapsing each S(p)
to a single point, then Y , with its natural ordering, is a GO-space and the quotient
mapping f : X → Y is closed and continuous.

For each n and each G ∈ Gn, let G∗ =
⋃
{S(p) : p ∈ X and S(p) ⊆ G}. Let

Ln = {f [G∗] : G ∈ Gn}. Because f is a closed mapping, each member of Ln is open
in Y . It is easy to check that 〈Ln〉 is a Gδ-diagonal sequence of open covers of Y .
Because f is continuous and closed, Y is paracompact and perfect.

Next, h) ⇒ i). Suppose that we have a perfect mapping f : X → Y where
(Y, T , <) is a perfect GO-space that has a Gδ-diagonal. But then, according to a
result of Przymusinski (see [A, Theorem 2.1]), there is a metrizable GO-topology
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S on (Y,<) such that S ⊆ T . The the mapping f : X → (Y,S, <) is the mapping
required by assertion i).

Clearly i) ⇒ j), so it remains only to prove that j) ⇒ b). So suppose that
Z is a topological space and that 〈Gn〉 is a Gδ-diagonal sequence of open covers of
Z, and that g : X → Z is a continuous mapping such that for each z ∈ Z, the set
g−1[z] is separable. Letting Hn = {g−1[G] : G ∈ Gn}, we obtain open covers of X
that satisfy (d). Because d)⇒ b) by Step 1 of Theorem 2.1, the proof is complete.

Theorem 2.1 can be read in a different way: it describes situations in which a
perfect GO-space must have a σ-closed-discrete dense subset. For example:

2.6 Corollary: Suppose X is a perfect GO-space. If X has any of the following
properties, then X must have a σ-closed-discrete dense subset:

a) X is the union of countably many subspaces, each having a Gδ-diagonal in its
relative topology;

b) there is a continuous s-mapping from X onto a topological space with a Gδ-
diagonal;

c) there is a sequence 〈Gn〉 of open covers of X such that for each p ∈ X,⋂
{St(p,Gn) : n ≥ 1} is a separable subspace of X.

3. Metrization of GO-space with σ-closed-discrete dense sets.

There are metrization theorems for GO-spaces with a σ-closed-discrete dense
set that are known to be consistently false for GO-spaces that are merely perfect.
The purpose of this section is to add a new metrization theorem to that list, using
the notion of a weak monotone ortho-base defined in the introduction.

3.1 Theorem: The following properties of a GO-space (X, T , <) are equivalent:
a) (X, T ) is metrizable;
b) X has a σ-closed-discrete dense subset D such that the set {x ∈ X : [x,→[ is

open or ]←, x] is open } is a subset of D;
c) X has a σ-closed-discrete dense subset D and a point-countable base;
d) X has a σ-closed-discrete dense subset D and a weak monotone ortho-base.

Proof: The equivalence of (a) and (b) is due to Faber [F] and the equivalence of
(a) and (c) was proved in [BL1]. Because any metric space satisfies (d), it will
be enough to prove that (d) implies (a) for GO-spaces. Suppose B is a weakly
monotone ortho-base for X. (To help readers understand why certain steps in the
following argument are necessary, we note that members of B might not be convex
sets.)

Let I be the set of all isolated points of X. Let R = {x ∈ X − I : [x,→[
is open in X} and let L = {x ∈ X − I : ]←, x] is open in X}. In the light of
Faber’s metrization theorem (b), it will be enough to prove that R and L are each
σ-closed-discrete, because then D ∪ R ∪ L will be the σ-closed-discrete dense set
required in (b), where D is the dense set given in (d).

We begin with the given dense set D =
⋃
{Dn : n ≥ 1} where each Dn is closed

and discrete. We may assume that Dn ⊆ Dn+1 for each n. Because X has a σ-
closed-discrete dense set, X is perfect and hence first-countable. Let Xn = X−Dn

and let Bn = {B ∈ B : B is contained in some convex component of Xn}. Note
that Bn is a base at every point of Xn. Now suppose, for contradiction, that

(*) the set R is not σ-closed-discrete.
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Let Sn = {p ∈ R ∩ Xn : for each B ∈ Bn, if p ∈ B then conv(p,B) ⊂ [p,→[},
where for any set U, conv(p, U) denotes the convex component of U that contains
p. We claim that each Sn is relatively discrete. If not, then there is a sequence
〈pk〉 in Sn that converges to a point q of Sn. Because q ∈ R, the set [q,→[ is
open, so that we may assume that pk > pk+1 for each k. Because q ∈ Sn ⊆ Xn

we may choose Bq ∈ B with q ∈ Bq, and where Bq is a subset of conv(q,Xn).
Hence Bq ∈ Bn. Next, because q ∈ Sn we know that conv(q,Bq) ⊆ [q,→[. Choose
k so large that pk ∈ conv(q,Bq). Because pk > q we are forced to conclude that
conv(pk, Bq) = conv(q,Bq) 6⊆ [pk,→[, contradicting pk ∈ Sn. Therefore, each Sn is
relatively discrete. Because X is perfect, each Sn is σ-closed-discrete, whence so is
S =

⋃
{Sn : n ≥ 1}.

Because D ∪ S is σ-closed-discrete while, by (*), R is not, we may choose a
point r ∈ R− (D ∪ S). Let n(1) = 1 and note that r ∈ Xn(1) and r 6∈ Sn(1). Hence
there is a Bn(1) ∈ Bn(1) with r ∈ Bn(1) and such that conv(r,Bn(1)) contains points
on both sides of r. For induction hypothesis, suppose 1 = n(1) < · · · < n(k) and
we have chosen Bn(j) ∈ Bn(j) with

(i) r ∈ Bn(j);
(ii) Bn(j+1) ⊆ conv(r,Bn(j)) whenever 1 ≤ j < k;
(iii) conv(r,Bn(j)) contains points on both sides of r for 1 ≤ j ≤ k.
Consider conv(r,Bn(k)). Both conv(r,Bn(k))∩ ]←, r[ and conv(r,Bn(k))∩ ]r,→[ are
nonempty open sets, so we can find n(k+ 1) > n(k) such that Dn(k+1) meets both
sets. Choose d ∈ Dn(k+1)∩conv(r,Bn(k))∩]←, r[ and e ∈ Dn(k+1)∩conv(r,Bn(k))∩
]r,→[. Then conv(r,Xn(k+1)) is an open neighborhood of r that is contained in
]d, e[ ⊆ Bn(k). Because r 6∈ Sn(k+1), we can find Bn(k+1) ∈ Bn(k+1) such that r ∈
Bn(k+1) and such that conv(r,Bn(k+1)) contains points on both sides of r. Because
Bn(k+1) ∈ Bn(k+1) we know that Bn(k+1) is contained in some convex component of
Xn(k+1). Because r ∈ Bn(k+1) we have Bn(k+1) ⊆ conv(r,Xn(k+1)) ⊆ ]d, e[ ⊆ Bn(k).
Thus the induction continues, giving Bn(k) for each k.

Because r ∈ R, we know that r is not an isolated point of X. Hence r has
no immediate successor in X. Consequently, some sequence in the dense set D
converges monotonically to r from above. Therefore, the set

⋂
{conv(r,Bn(k)) : k ≥

1} cannot contain any point of ]r,→[ so that r ∈
⋂
{conv(r,Bn(k)) : k ≥ 1} ⊆ ]←, r].

However, as noted in the inductive construction, Bn(k+1) ⊆ conv(r,Bn(k)) ⊆ Bn(k)

so that r ∈
⋂
{Bn(k) : k ≥ 1} ⊆ ]←, r]. Thus,

⋂
{Bn(k) : k ≥ 1} is not open,

because r ∈ R yields r 6∈ L ∪ I. Because B is a weak monotone ortho-base for
X, the collection {Bn(k) : k ≥ 1} must be a local base at the point r, and that
is impossible because each Bn(k) contains points on both sides of r while the open
set [r,→[ does not. That contradiction shows that the set R is σ-closed-discrete.
Analogously, the set L is also σ-closed-discrete. According to Faber’s theorem, X
is metrizable.

3.2 Example: If there is a Souslin space, then there is a Souslin space with a weak
monotone ortho-base.
Proof: Starting with any Souslin space, construct a compact connected Souslin
space with no separable nondegenerate intervals, and discard the end points of that
space to obtain a LOTS X. In X, construct a tree (with respect to ⊆) J of closed
non-degenerate subintervals of X in such a way that

a) if I is a closed interval at level α of J , then the set of intervals in level α + 1
that are contained in I is ordered like the set of all integers by the natural
ordering inherited from X;
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(b) if L is any subcollection of J , then
⋂
L is either empty, or is a point, or is a

member of J ;
(c) if I belongs to level α of J , then the interior of I is the union of all members

of level α+ 1 that are contained in I;
(d) if I and J are distinct members of J , then either I ∩ J = ∅ or else one of I

and J is contained in the interior of the other.
Let Jα be the αth level of the tree J . For each limit ordinal λ, let Eλ be the set of all
endpoints of non-degenerate members of Jλ and let E =

⋃
{Eλ : λ is a limit ordinal

}. Let Y be the set of all points p ∈ X − E such that some nested family L ⊆ J
has {p} =

⋂
L. Then Y is a dense subspace of X, so Y is a LOTS in its relative

topology and order, and Y is perfect because X is. Finally, {IntX(J)∩ Y : J ∈ J }
is a weak monotone ortho-base for Y .

3.3 Remark: Even for first countable LOTS, the existence of a weak monotone
ortho-base is very different from the existence of a point-countable base. Burke
and Purisch pointed out that the usual space Ω = [0, ω1[ of countable ordinals has
a weak monotone orthobase, and Ω does not have a point-countable base. For an
example of a paracompact, first countable LOTS that has a weak monotone ortho-
base but not a point-countable base, one can use the extended Big Bush appearing
in section 3 of [BL2].
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