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Abstract. In this paper we study the role of cleavability and divisibility in the
topology of generalized ordered (GO-)spaces. We characterize cleavability of a GO-
space over the class of metrizable spaces, and over the spaces of irrational and
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1. Introduction

Recall that a linearly ordered topological space (LOTS) is a linearly
ordered set equiped with the usual open-interval topology of the given
order. By a generalized ordered space (GO-space) we mean a triple
(X, T , <) where < is a linear ordering of the set X and where T is
a Hausdorff topology on X that has an base of open sets that are
order-convex. It is well-known that a subspace of a LOTS may fail to
be a LOTS and that the class of GO-spaces is exactly the class of all
subspaces of linearly ordered spaces.

In this paper we study the role of cleavability and divisibility in the
class of linearly ordered and generalized ordered spaces. LetM be the
class of metrizable spaces and let S be the class of separable metrizable
spaces. To say that a topological space X is cleavable over M means
that for every subset A ⊆ X, there is a space MA ∈M and a continuous
function fA : X → MA such that if x ∈ A and y ∈ X − A, then
fA(x) 6= fA(y). The function fA is called a cleaving function for A. The
term cleavability over S is analogously defined. Cleavability over M
and over S generalize the classical properties “there is a continuous 1-1
mapping from X into a member of M (respectively, a member of S)”
which are now called absolute cleavability over M (respectively over
S). These properties have been studied extensively [Ar, Ar2], as have
the analogously defined notions of cleavability over the spaces R, P,
and Q of real, irrational, and rational numbers, respectively [Ar3].
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A property related to cleavability over S is divisibility, where we say
that a topological space X is divisible if for each A ⊆ X there is a
countable collection D of open subsets of X such that if x ∈ A and
y ∈ X − A, then some D ∈ D has x ∈ D ⊆ X − {y}. The collection
D is called a divisor for A and one can show (4.1) that a topological
space is cleavable over S if and only if each subset of X has a divisor
that consists of cozero sets of continuous, real-valued functions.

Restricting attention to the class of generalized ordered spaces allows
us to characterize several cleavability properties in more classical terms,
and raises some interesting questions. In Section 3 we show that, among
GO-spaces, cleavability overM is the same as absolute cleavability over
M and is equivalent to several other classical properties. It will follow
that a LOTS X is cleavable overM if and only if X ∈M, and that no
Souslin space (a LOTS with cellularity = ω < density) can be cleavable
over M.

In (4.1) we point out several characterizations of cleavability over S
for general topological spaces (e.g., that a topological space is cleavable
over S if and only if it is divisible by cozero sets), but we do not have any
characterizations of cleavability over S that utilize the special structure
of GO-spaces.

1.1 Open Problem: Characterize GO-spaces that are divisible; char-
acterize GO-spaces that are cleavable over S.

While we have some necessary conditions (see (4.3) and (4.4)), we know
that those conditions are not sufficient. However we do have character-
izations (see 4.7) of GO-spaces that are absolutely cleavable over S,
e.g., that a space X is absolutely cleavable over S if and only if X is
cleavable over S and has c(X) ≤ c. (Throughout this paper, we use the
symbol c to denote the cardinal 2ω and c(X) to denote the cellularity
of a space X.) Furthermore, for GO-spaces, absolute cleavability over S
is characterized by the existence of a countable, point-separating cover
by cozero sets.

We do not have a characterization of cleavability over R for GO-
spaces. As discussed in (5.3), Examples (4.6) and (5.2) can be used to
give necessary conditions for a GO-space to be cleavable over R, but
those conditions are not sufficient, and we have:

1.2 Open Problem: Characterize GO-spaces that are cleavable over
R.

In (5.5) we characterize GO-spaces that are cleavable over P, showing
that they are exactly the GO-spaces that are cleavable over S and
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have ind(X) = 0. Equivalently, they are the GO-spaces in which every
A ⊂ X has a countable clopen divisor, i.e., a countable collection C of
clopen subsets of X such that if x ∈ A ⊆ X − {y}, then some C ∈ C
has x ∈ C ⊆ X − {y}.

In (2.3) we give an easy characterization of absolute cleavability
over P that applies to any topological space, and that result allows
us to exhibit some strange linearly ordered spaces that are absolutely
cleavable over P, e.g., A.H. Stone’s metric space (5.7) and the lexico-
graphic product space [0, c[ × P, and more generally any metric space
X with cardinality ≤ c and Ind(X) = 0. As for cleavability over Q, we
show in (5.9) that a GO-space X is cleavable over Q if and only if each
subset of X is an Fσ-subset of X.

Finally, we give examples that distinguish between various types of
cleavability among GO-spaces. We show that a GO-space can be:

a) (absolutely) cleavable over M but not metrizable (e.g., both the
Sorgenfrey line and the Michael line);

b) metrizable (and hence cleavable over M) but not cleavable over S
(e.g., the lexicographic product [0, c+[× R);

c) (absolutely) cleavable over S but not cleavable over R (e.g., the
lexicographic product [0, ω1[× R) (see (5.2));

d) cleavable over R but not over P (e.g., the space R itself);

e) cleavable over P but not over Q (e.g., the space P – see (5.9)).

2. Special subsets of (X,<) and Kowalsky-type lemmas

We begin this section with two lemmas that construct four special
subsets A,B,C, andD of any linearly ordered set (X,<). These lemmas
will be the key to later characterization theorems. Two points x, y of
a linearly ordered set (X,<) are adjacent if one is the immediate
successor of the other. Let N be the set of all neighbor points of X,
i.e., N = {x ∈ X : x is adjacent to some point y ∈ X}.

2.1 Lemma: Let N be the set of all neighbor points in a linearly
ordered set (X,<). Then there are sets A,B ⊆ X such that:

a) A ∪B = N and A ∩B = ∅;

b) if x ∈ A and if y ∈ X is adjacent to x, then y ∈ B;
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c) if x ∈ B and if y ∈ X is adjacent to x, then y ∈ A.

Proof. For any subset S ⊆ X, let conv(S) denote the convex hull of
S in X. For x, y ∈ X, define x ∼ y to mean that conv({x, y}) is finite.
Then ∼ is an equivalence relation on X. Denote the equivalence class
of ∼ to which x belongs by [x] and let N = {[x] : x ∈ X and |[x]| ≥ 2}.
Observe that N =

⋃
N . Depending upon its endpoint structure, each

[x] ∈ N looks like a strictly monotone sequence, or else a copy of the
set Z of all integers.

Let L = {[x] ∈ N : [x] contains a left endpoint}. For each [x] ∈ L
there is a strictly increasing function f[x] whose domain dom(f[x]) is an
initial segment of, or perhaps all of, [0, ω[ and whose range is all of [x].
(Note that if 2 ≤ |[x]| < ω, then [x] ∈ L.)

Let R = {[x] ∈ N − L : [x] contains a right endpoint}. Then for
each [x] ∈ R there is a strictly decreasing function f[x] whose domain
is [0, ω[ and whose range is all of [x].

If [x] ∈ N − (L∪R) there is a strictly increasing function f[x] whose
domain is the usual set of all integers, and whose range is all of [x].

Now let A = {f[x](n) : [x] ∈ N , n ∈ dom(f[x]) and n is even}, and let
B = {f[x](n) : [x] ∈ N , n ∈ dom(f[x]) and n is odd}. Then A ∪ B = N
and A∩B = ∅, and it is clear that neither A nor B can contain adjacent
points of (X,<). 2

2.2 Lemma: Suppose (X,<) is an infinite linearly ordered set. Then
there exist sets C,D ⊆ X satisfying:

a) C ∩D = ∅ and C ∪D = X;

b) if u < v are points of X and if ]u, v[ is infinite, then ]u, v[ ∩ C 6= ∅
and ]u, v[ ∩D 6= ∅.

Proof. We will say that a pair (A,B) of subsets of X is interlaced
provided ]a1, a2[∩B 6= ∅ whenever a1 < a2 are points of A, and ]b1, b2[∩
A 6= ∅ whenever b1 < b2 are points of B. Because X is an infinite
linearly ordered set, X contains a strictly monotonic sequence {xn :
n ≥ 1} of points. Dividing those points into two sets based upon the
parity of n yields an interlaced pair of disjoint subsets of X. Hence
we see that the collection P = {(A,B) : A ∩ B = ∅ and (A,B) is
an interlaced pair of subsets of X} is nonempty. Partially order P by
(A1, B1) ≤ (A2, B2) if and only if A1 ⊆ A2 and B1 ⊆ B2. We apply
Zorn’s Lemma to P to choose a maximal element (C,D) ∈ P.

To verify b), suppose u < v are points of X such that ]u, v[ is infinite.
For contradiction, suppose that C ∩ ]u, v[ = ∅. Then D ∩ ]u, v[ has at
most one point, because if d1 < d2 were two points of that set, then
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by interlacing, some point of C would lie between d1 and d2, forcing
C ∩ ]u, v[ 6= ∅. If D ∩ ]u, v[ is nonempty, remove its unique point w and
replace ]u, v[ by whichever of ]u,w[ and ]w, v[ is infinite. Thus we may
assume that D ∩ ]u, v[ = ∅.

Because ]u, v[ is infinite, it contains an infinite strictly monotonic
sequence {xn : n ≥ 1}. Consider the case where xn < xn+1 for each
n, the other case being analogous. There are several cases to consider
based upon the endpoint structure of the sets C∩ ]←, u[ and D∩ ]←, u[.
Case 1: Suppose that C∩ ]←, u[ has no largest point and yet D∩ ]←, u[
does have a largest point. Then define C1 = C ∪ {xn : n ≥ 1 and n is
odd } and D1 = D ∪ {xn : n ≥ 1 and n is even }. Then (C1, D1) ∈ P
contradicting maximality of (C,D).
Case 2: Suppose that D∩ ]←, u[ has no largest point and yet C∩ ]←, u[
does have a largest point. This case parallels Case 1.
Case 3: Suppose that both C∩]←, u[ and D∩]←, u[ have largest points,
say c0 and d0 respectively. Consider the subcase where c0 < d0, the
other subcase being analogous. Define C1 and D1 as in Case 1, once
again contradicting maximality of (C,D).
Case 4: Suppose that neither C ∩ ]←, u[ nor D ∩ ]←, u[ has a largest
point. Defining C1, D1 as in Case 1, we once again violate maximality
of (C,D).

Those four cases show that C ∩ ]u, v[ = ∅ is impossible. Similarly,
D ∩ ]u, v[ = ∅ is also impossible. As a final step in the proof, replace
the set D by the larger set X − C. The resulting pair (C,D) satisfies
both (a) and (b) above. 2

We conclude this section with a collection of characterizations of
various kinds of absolute cleavability (defined in the Introduction).
Recall Kowalsky’s proof that any metric space embeds in a countable
product of suitably spiny hedgehog metric spaces ([E,4.4.9] and [Kw]).
A slight variation on that proof yields the following results, which must
be well-known.

2.3 Proposition: Let X be any topological space. Then:

a) there is a continuous 1-1 mapping from X into a metric space if
and only if there is a σ-discrete collection C of cozero subsets of X
with the property that, given distinct points x, y of X, some C ∈ C
contains exactly one of x and y;

b) there is a continuous 1-1 mapping from X into a separable metric
space if and only if there is a countable collection D of cozero
subsets of X that separates points of X as in (a);
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c) there is a continuous 1-1 mapping from X into P if and only if
|X| ≤ c and there is a σ-discrete collection E of clopen subsets of
X that separates points of X as described in (a).

d) there is a continuous 1-1 mapping from X into P if and only if there
is a countable collection F of clopen subsets of X that separates
points of X as described in (a);

Proof. We will sketch proofs of (c) and (d), the proofs of (a) and (b)
being analogous and easier.

Consider (c). If there is a continuous 1-1 mapping from X into P,
then we obtain the required point-separating clopen collection in X by
using inverse images of a countable clopen base for P. To prove the
converse assertion, write the σ-discrete collection E as

⋃
{En : n ∈ ω}

where each collection En is a discrete collection of clopen sets in X.
Because |X| ≤ c, we have κn = |En| ≤ c for each n. Index En without
repetitions as {E(n, α) : α < κn}.

Fix n ∈ ω and choose a family {Lα : α < κn} of distinct lines
in the plane, each passing through the point (π, π). Choose a point
pα ∈ (Lα ∩ P2) lying at least one unit from (π, π). Such a choice is
possible because Lα contains at most countably many points with either
coordinate rational. Now define fn : X → P

2 by the rule that fn(x) =
(π, π) if x ∈ X −

⋃
En and fn(x) = pα if x ∈ E(n, α) for some α < κn.

Because En is a discrete collection in X, the function fn is continuous.
Define f : X → (P2)ω by f(x) = 〈f0(x), f1(x), f2(x), · · ·〉. Then f is
continuous and the point-separating property of E forces f to be 1-1.
But we know that (P2)ω is homeomorphic to P, so the proof of c) is
complete.

To prove (d), suppose that there is a 1-1 continuous function from X
into P and use the inverse images of members of a countable clopen base
for P to get the required point-separating collection in X. Conversely,
given the countable, clopen, point-separating collection F = {Fn : n ∈
ω}, for each n let gn be the characteristic function of Fn, viewed as a
function from X into the usual set Z of integers, and define g : X →
Z
ω to be the function with g(x) = 〈g0(x), g1(x), g2(x), · · ·〉. Then g is

continuous and 1-1, and because Zω is homeomorphic to P, the proof
is complete. 2

3. Cleavability over M

Our next result shows that for GO-spaces, cleavability overM is equiv-
alent to several familiar properties.
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3.1 Theorem: Let (X, T , <) be a GO-space. The following are equiv-
alent:

a) X has a Gδ-diagonal;

b) there is a metrizable topology Tm ⊆ T on X such that (X, Tm, <)
is a GO-space;

c) there is a metrizable topology Tm on X with Tm ⊆ T ;

d) there is a continuous 1-1 mapping from (X, T ) into a metric space,
i.e., X is absolutely cleavable over M;

e) (X, T ) is cleavable over M;

f) (X, T ) is cleavable over a class of spaces having a Gδ-diagonal;

g) there is a σ-discrete collection C of cozero subsets of X such that if
x, y are distinct points of X then for some C ∈ C, |C ∩{x, y}| = 1.

Proof. That a) ⇒ b) in a GO-space is a result of Przymusinski (see
[Al]). Clearly b) ⇒ c) ⇒ d) ⇒ e) ⇒ f). Thus it remains only to prove
that f) ⇒ a) and that c) is equivalent to g). That f) implies a) is in
Proposition 3.2 below, and the equivalence of c) and g) is in Proposition
(2.3-a), above. 2

3.2 Proposition: Let (X, T , <) be a GO-space. If (X, T ) is cleavable
over a class of spaces each having a Gδ-diagonal, then (X, T ) has a
Gδ-diagonal.

Proof. For any point x and for any collection L of sets, we write
St(x,L) =

⋃
{L ∈ L : x ∈ L}. Let A,B,C and D be the four subsets

of X found in Lemmas (2.1) and (2.2). Let E = {A,B,C,D}. For
each E ∈ E , choose a space ME with a Gδ-diagonal and a continuous
function fE : X → ME with the property that if x ∈ E and y 6∈ E,
then fE(x) 6= fE(y). Choose a Gδ-diagonal sequence 〈HE(n)〉 of open
covers of ME . Define GE(n) = {G ⊆ X : G is a convex component of
f−1
E [H] for some H ∈ HE(n)}. Each GE(n) is an open cover of X. We

will show that the collection {GE(n) : n ≥ 1, E ∈ E} is a Gδ-diagonal
sequence for the space X.

To that end, suppose x and y are distinct points of X. We may
assume x < y. There are several cases to consider.
Case 1: Consider the case where |E ∩ {x, y}| = 1 for some E ∈ E . We
may assume that x ∈ E and y 6∈ E. Then fE(x) 6= fE(y) in the space
ME so that there is an n such that no single member of HE(n) contains
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both fE(x) and fE(y). Let G ∈ GE(n) with x ∈ G. If y ∈ G, then
fE(x) and fE(y) both belong to a single member of HE(n) and that is
impossible by our choice of n. Hence y 6∈ St(x,GE(n)) as required.

Having completed the proof if Case 1 holds, for the rest of this proof
we will assume that Case 1 does not apply. That is, we will assume:

(*) for each E ∈ E , x ∈ E if and only if y ∈ E.

It remains to consider two cases, depending upon whether the interval
[x, y] is finite or infinite.

Case 2: Suppose (*) holds and [x, y] is finite. But then [x, y] ⊆ N where
N is the set of neighbor points defined in Section 2. By (2.1), N = A∪B
so that we may assume x ∈ A. If ]x, y[ = ∅ then x and y are adjacent
so that y ∈ B (see (2.1)). But then y 6∈ A and that is impossible in the
light of (*). Therefore ]x, y[ is non-empty. Next observe that ]x, y[ ⊆ A
is impossible in the light of (2.1) because the non-empty finite set ]x, y[
must contain an immediate successor of x, and that point must lie in
B. So choose any z ∈ ]x, y[ with z 6∈ A. Then fA(x) 6= fA(z) so there
must be an n such that no single member of HA(n) contains both fA(x)
and fA(z). Consider any G ∈ GA(n) that contains x. If y ∈ G, then
convexity of G would yield z ∈ [x, y] ⊆ G so that a single member of
HA(n) contains both fA(x) and fA(z) and that is impossible by our
choice of n. Thus, in Case 2 we have y 6∈ St(x,GA(n)) as required.

Case 3: Suppose (*) holds and the interval [x, y] is infinite. Then so is
the interval ]x, y[ so that, by (2.2), we may choose p ∈ C ∩ ]x, y[ and
q ∈ D∩ ]x, y[. Without loss of generality, suppose p < q. Because p ∈ C
and q 6∈ C, we know that fC(p) 6= fC(q) so that for some n, no member
of HC(n) contains both fC(p) and fC(q). Now choose any member
G ∈ GC(n) that contains x. If y ∈ G then convexity of G would yield
p, q ∈ [x, y] ⊆ G so that fC(p) and fC(q) would both belong to a single
member of HC(n) contrary to our choice of n. Hence y 6∈ St(x,GC(n))
as required. 2

3.3 Corollary: If X is a LOTS that is cleavable over M, then X is
metrizable.

Proof. Such a space has a Gδ-diagonal (3.2) and any LOTS with a
Gδ-diagonal is metrizable [L1]. 2

3.4 Remark: It follows from (3.3) that no linearly ordered Souslin
space can be cleavable overM. A slightly more complicated argument
shows that no GO-space X can have countable cellularity, uncountable
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density, and still be cleavable over M. Such a GO-space would have a
Gδ-diagonal (3.2) and would therefore have a dense metrizable subspace
Y [BLP, Proposition 3.4]. Then Y would also have countable cellularity,
so Y would be separable. Hence X is also separable. Finally, we note
that an assertion in [K2] that a GO-space is metrizable provided it is
cleavable over the class of hereditarily p-spaces is not true. The most
one can hope for from such a space is that it has a weaker metrizable
topology. The relevant examples are the Sorgenfrey and Michael lines.

4. Cleavability over S and divisibility

By definition, for a space X to be cleavable over S means that for each
A ⊆ X one can find a separable metric space MA and a continuous
function fA : X →MA with properties as described in the introduction.
Because every separable metric space embeds in the topological product
space Rω, we may assume that each fA maps X into Rω.

Recall that a space X is divisible if for each subset A ⊆ X there is
a countable collection C of open subsets of X with the property that if
x ∈ A and y ∈ X −A, then some C ∈ C has x ∈ C and y 6∈ C. We will
say the C is a divisor for A. If for any A ⊆ X we can always arrange
that all members of the divisor C for A are cozero sets of continuous
real-valued functions, then we will say that X is divisible by cozero
sets. Example ?? will show that “divisible” and “divisible by cozero
sets” are different properties.

Also recall [Ar] that a space X is weakly normal provided for any
two disjoint closed subsets A and B of X, there is a continuous f : X →
R
ω with the property that f [A] ∩ f [B] = ∅. The following well-known

result shows that cleavability over S can be characterized by certain
divisibility-like properties.

4.1 Proposition: For any topological spaceX, the following are equiv-
alent:

a) X is cleavable over S;

b) X is divisible by cozero sets;

c) X is weakly normal and for any subset A ⊆ X there is a countable
collection H of closed sets such that if x ∈ A and y ∈ X −A, then
some H1, H2 ∈ H have x ∈ H1, y ∈ H2 and H1 ∩H2 = ∅:

Provided X is normal, each of (a), (b), and (c) implies:

nov2100.tex; 1/05/2001; 18:01; p.9



10

d) for any subset A ⊆ X there is a countable collection U of open sets
such that if x ∈ A and y ∈ X − A, then some U1, U2 ∈ U have
x ∈ U1, y ∈ U2 and U1 ∩ U2 = ∅:

Proof. The equivalence of (a) and (c) appears in [Ar, p. 148]. To
show that a) implies b), suppose that X is cleavable over S. Given
A ⊆ X, there is a continuous f : X → R

ω such that if x ∈ A and
y ∈ X − A, then f(x) 6= f(y). Let B be a countable base of open sets
for Rω and let C = {f−1[B] : B ∈ B}. Becasue any open subset of the
metric space Rω is a cozero set, each C ∈ C is a cozero set in X and so
C is a countable collection of cozero sets as required.

To see that b) implies a), suppose that A ⊆ X and suppose that
{Cn : n ∈ ω} is a countable collection of cozero sets that acts as a
divisor for A. For each n let gn : X → R be such that Cn = {x ∈
X : gn(x) 6= 0}. Define g : X → R

ω by the rule that gn(x) is the n-th
coordinate of g(x) for each x ∈ X. Then g is a continuous cleaving map
for A, as required.

To see that c) implies d) in case X is normal, suppose A ⊆ X and H
is as described in c). For each pair (H1,H2) of disjoint members of H,
choose disjoint open sets U(H1,H2), V (H1,H2) with H1 ⊆ U(H1,H2)
and H2 ⊆ V (H1,H2). Then the collection of all sets U(H1,H2) and
V (H1,H2) is the required collection of open sets. 2

4.2 Example: There is a divisible LOTS M∗ that is not cleavable over
M and hence not cleavable over S. Hence “divisible” and “divisible by
cozero sets” are different properties. Furthermore, M∗ satisfies (d) of
(4.1) but does not satisfy (c), (b), or (a).

Proof. Let M∗ be the lexicographically ordered set {(x, n) ∈ R×Z :
if x ∈ Q then n = 0} with the usual open interval topology. This LOTS
contains a copy of the Michael line and therefore is not metrizable.
Hence it does not have a Gδ-diagonal and therefore is not cleavable over
M or over S (3.1). To show that M∗ is divisible and satisfies (d) of (4.1)
we let Gn = {(x, n) : x ∈ P} and H(p, q) = {(x, n) ∈ M∗ : p < x < q}
for each p, q ∈ Q with p < q. It is clear that the countable collection
{Gn : n ∈ Z} ∪ {H(p, q) : p < q, p, q ∈ Q} separates points of M∗ in
the sense required by (d). The same countable collection shows that
M∗ is divisible. 2

4.3 Proposition: Any divisible GO-space X has a σ-disjoint open
cover H that is point-separating in the sense that if x and y are distinct
points of X, then for some H ∈ H, x ∈ H ⊆ X − {y}.
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Proof. Let A,B,C,D be the special subsets of X found in (2.1) and
(2.2). Let E = {A, B, C, D}. For each E ∈ E let GE = {G(n,E) : n ≥
1} be a countable collection of open sets such that if x ∈ E ⊆ X−{y},
then for some n we have x ∈ G(n,E) ⊆ X −{y}. Let H(n,E) = {H ⊆
X : H is a convex component of G(n,E)}. Then H =

⋃
{H(n,E) : n ≥

1, E ∈ E} is a σ-disjoint open cover.
To complete the proof, suppose that x, y are distinct points of X.

We may assume that x < y. There are three cases to consider.

Case 1: Suppose for some E ∈ E we have |E∩{x, y}| = 1. Consider the
case where x ∈ E, y 6∈ E, the other case being similar. Then for some
n, x ∈ G(n,E) ⊆ X−{y}. Let H be the convex component of G(n,E)
containing x. Then y 6∈ H, as required.

For the rest of this proof, we will assume that Case 1 does not apply,
i.e., we will assume:

(*) for each E ∈ E , x ∈ E if and only if y ∈ E.

The remaining two cases depend upon the cardinality of [x, y].

Case 2: Suppose that (*) holds and the set [x, y] is finite. Then, using
notation from Section 2, [x, y] ⊆ N ⊆ A∪B. Without loss of generality,
assume x ∈ A. By (*), y ∈ A. If ]x, y[ = ∅ then x and y are adjacent
points, so that (2.1) yields y ∈ B ⊆ X − A, contrary to y ∈ A. Hence
]x, y[ 6= ∅ so that the immediate successor z of x lies in ]x, y[. Then,
according to (2.1), z 6∈ A so that for some n, x ∈ G(n,A) ⊆ X − {z}.
Let H be the convex component of G(n,A) that contains x. If y ∈ H,
then convexity of H would force z ∈ [x, y] ⊆ H ⊆ G(n,A) contradicting
z 6∈ G(n,A). Hence y 6∈ H as required.

Case 3: Suppose that (*) holds and [x, y] is infinite. Because X = C∪D
in (2.2), we may assume that x ∈ C. Choose z ∈ ]x, y[∩D. Then z 6∈ C
so that for some n, x ∈ G(n,C) ⊆ X−{z}. Then the convex component
H of G(n,C) that contains x is the required member of H that contains
x but not y. 2

4.4 Corollary: Any divisible LOTS is quasi-developable, and any per-
fect, divisible LOTS is metrizable.

Proof. Let
⋃
{H(n) : n ≥ 1} be the σ-disjoint open collection that

separates points of X as in (4.3). Let B(m,n) = {H1 ∩ H2 : H1 ∈
H(m), H2 ∈ H(n)}. The collections B(m,n) are pairwise disjoint, and
the collection B =

⋃
{B(m,n) : m,n ≥ 1} is a base for the LOTS X.

Because X has a σ-disjoint base, X is quasi-developable [Be1]. If, in
addition, X is perfect, then X is metrizable [Be2]. 2
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4.5 Remark: Because any GO-space with countable cellularity is per-
fect [L2] Corollary 4.4 strengthens a result of Kočinac [K] who proved
that a divisible LOTS with countable cellularity must be metrizable.
(Hence no Souslin space can be divisible.) Also note that the familiar
Sorgenfrey line shows that (4.4) does not hold if we consider GO-spaces
instead of linearly ordered topological spaces.

4.6 Example: There is a metrizable linearly ordered topological space
that is not divisible. This space is a LOTS that is cleavable over M
but is not cleavable over S.

Proof. Let T be any dense in itself subset of R having no endpoints
and having 2|T | > c. For each α < c+ write Tα = {α}×T and order the
set X =

⋃
{Tα : α < c+} lexicographically. Choose a family {Sα : α <

c+} of distinct subsets of T . Let A =
⋃
{{α}×Sα : α < c+}. If X were

divisible, there would be a sequence Gn of open subsets of X such that if
(α, x) ∈ A ⊆ X−{(β, y)} then some Gn has (α, x) ∈ Gn ⊆ X−{(β, y)}.
Let π : X → T be given by π(α, x) = x and for each α < c+ let
σα = 〈π[G1 ∩ Tα], π[G2 ∩ Tα], π[G3 ∩ Tα], · · ·〉. Each σα is a sequence of
open subsets of T , and the collection of all sequences of open subsets
of the separable metric space T has cardinality c. Hence there are
distinct indices α, β < c+ such that σα = σβ. But Sα 6= Sβ . Without
loss of generality we may choose x ∈ Sα − Sβ . Then (α, x) ∈ A and
(β, x) ∈ X − A so that for some n, (α, x) ∈ Gn ⊆ X − {(β, x)}. Then
x ∈ π[Gn ∩ Tα] and x 6∈ π[Gn ∩ Tβ ] and that is impossible because
σα = σβ. Therefore X is not divisible, as claimed. Observe that by
taking T = R or T = P we obtain (respectively) an example that is
either locally compact or Čech-complete and zero dimensional. 2

It is reasonable to ask whether the characterization theorem for
cleavability over M has an analog for cleavability over S. Based upon
experience in metrization theory, one might wonder whether one could
simply replace “σ-discrete” by “countable” to obtain the desired result.
Our next result (4.7) gives such a characterization theorem for GO-
spaces with cellularity at most c, and a subsequent example (4.9) shows
that some restriction on weight, cellularity, or cardinality is needed for
(4.7) to hold.

4.7 Theorem: Let (X, T , <) be a GO-space. Then the following are
equivalent:

a) there is a continuous 1-1 mapping from X into Rω, i.e., X is
absolutely cleavable over S ;
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b) there is a separable metric topology Tm on X having Tm ⊆ T ;

c) (X, T ) is cleavable over S and c(X) ≤ c;

d) (X, T ) is divisible by cozero sets and c(X) ≤ c;

e) (X, T ) has a countable, point-separating cover by cozero sets.

Furthermore, |X| ≤ c for any GO-space satisfying one of (a) through
(e).

Proof. Assertions (a) and (e) are equivalent for any topological space
(see 2.3-b) as are assertions (c) and (d) (see 4.1) and assertions (a) and
(b). Next suppose that a) holds. Then X is cleavable over S, and if
c(X) > c, then |X| > c which is impossible, given (a). Thus, a) implies
c). Therefore it will be enough to prove (c) implies (a).

To prove that (c) implies (a), suppose that X is a GO-space with cel-
lularity at most c and suppose X is cleavable over S. Because S ⊆M,
(3.1) yields a metrizable topology Tm having Tm ⊆ T . Then c(X, Tm) ≤
c so that w(X, Tm) ≤ c. According to Kowalsky’s theorem [E, 4.4.9]
there is a homeomorphism h from (X, Tm) onto a subspace of Hω where
H is the metric hedgehog with c spines. Then the function h is a 1-1
continuous function from (X, T ) into Hω. But, as noted in [ArS], there
is a 1-1 continuous mapping from H into the Euclidean space R2 and
hence there is a 1-1 continuous mapping g from Hω into (R2)ω. The
composite mapping g ◦h is a continuous 1-1 mapping from (X, T ) into
the separable metric space (R2)ω, as required by (a). 2

4.8 Example: For each κ > c, there is a dense-in-itself metrizable
LOTS X that is cleavable over S and has |X| = κ. Hence the cellularity
restriction in (4.7) is necessary.

Proof. Let κ > c and let X be the lexicographic product [0, κ[×Q.
We will show in (5.11) that X is cleavable over Q and hence is cleavable
over S. But X cannot have a countable point-separating open cover, or
a weaker separable metric topology, because each of those conditions
implies |X| ≤ c. 2

4.9 Remark: It is tempting to suppose that if the space X of (4.7) is
a LOTS with c(X) ≤ c, then from (4.7-e) one could get a countable
base for X by taking pairwise intersections of the countable, point-
separating open cover C, as in the proof of (4.4). However, Example 4.8
shows that will not be the case. The argument in (4.4) does not apply
here because the sets in the countable point-separating open cover C
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are not necessarily convex, so that taking pairwise intersections does
not yield a base for X.

4.10 Open Problems: (a) Characterize GO-spaces that are cleavable
over S. (b) Characterize GO-spaces that are divisible. Note that a
solution for part (b) would combine with (4.1) to solve part (a).

5. Cleavability over R,P, and Q

Recall that R, P, and Q denote, respectively, the usual sets of real,
irrational, and rational numbers. We begin with an example showing
that there is a metrizable LOTS that is cleavable over S but not over
R (and hence not cleavable over P or Q either). That result needs a
lemma that might be of independent interest.

5.1 Lemma: There is a collection {A(α) : α < c} of subsets of R
satisfying:

a) for each non-empty open subset V ⊆ R and for each α < c, both
V ∩A(α) and V −A(α) have cardinality c;

b) whenever 0 ≤ α < β < c and f, g : R→ R are continuous functions
such that f [R]∩ g[R] is non-degenerate (i.e. has more than a single
point), then there are points x ∈ A(α) and x′ ∈ R − A(β) with
f(x) = g(x′).

Proof. Let C = {〈f, g, α, β〉 : 0 ≤ α, β < c, and f, g : R → R are
continuous, and |f [R] ∩ g[R]| > 1}. Then |C| = c so we may index C
as {〈fγ , gγ , αγ , βγ〉 : 0 ≤ γ < c}. Next, let R = {rη : η < c} be any
well-ordering of R and let {Vn : n ∈ ω} be any countable base for
R with V0 = R. For each α < c we will define sets of real numbers
A(α, δ), C(α, δ) and U(δ) by recursion on δ in such a way that:

1) A(α, δ) ∩ C(α, δ) = ∅;

2) A(α, δ) ∪ C(α, δ) = U(δ);

3) |U(δ)| < c and |U(δ + 1)− U(δ)| < ω;

4) if 0 ≤ η1 < η2 ≤ δ then A(α, η1) ⊂ A(α, η2) and C(α, η1) ⊆
C(α, η2);

5) if δ is a limit ordinal, then {rη : η < δ} ⊆ U(δ).
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We will use the sets A(α, δ) and C(α, δ) to build, respectively, the sets
A(α) and R− A(α), and the set U(δ) will be the set of points used in
the construction up to and including stage δ.

We initialize the recursion by letting U(0) = A(α, 0) = C(α, 0) = ∅
for every α. Now suppose that γ < c and that we have chosen sets
A(α, δ), C(α, δ) and U(δ) for each δ < γ in such a way that (1) through
(5) are satisfied for each α < c. Define A∗(α, γ) =

⋃
{A(α, δ) : δ <

γ}, C∗(α, γ) =
⋃
{C(α, δ) : δ < γ} and U∗(γ) =

⋃
{U(δ) : δ < γ}.

Because only finitely many points are added at each stage, |U∗(γ)| < c.

Because fγ [R] ∩ gγ [R] is a non-degenerate convex subset of R, we
know that fγ [R]∩gγ [R] has cardinality c, so there is a point zγ ∈ (fγ [R]∩
gγ [R]) − (fγ [U∗(γ)] ∪ gγ [U∗(γ)] ∪ U∗(γ)) and hence points xγ , x′γ ∈
R − U∗(γ) with fγ(xγ) = zγ = gγ(x′γ). (We do not know whether xγ
and x′γ are distinct, and that will lead to two cases below.)

There is a unique λ and n such that γ = λ+ n where λ = 0 or λ is
a limit ordinal, and where 0 ≤ n < ω. Let yγ and y′γ be the two points
of Vn− (U∗(γ)∪{xγ , x′γ}) having the least possible indices in the fixed
well-ordering {rη : η < c}. Note that none of the points xγ , x′γ , yγ , y

′
γ

were chosen at any earlier stage of the construction. We now define
U(γ) = U∗(γ) ∪ {xγ , x′γ , yγ , y′γ} and we define the sets A(α, γ) and
C(α, γ) by the rules:

a) if α 6∈ {αγ , βγ} then A(α, γ) = A∗(α, γ)∪{xγ , x′γ , yγ} and C(α, γ) =
C∗(α, γ) ∪ {y′γ};

The next two cases complete the recursion by defining the sets A(αγ , γ),
C(αγ , γ), A(βγ , γ) and C(βγ , γ).

b) if xγ = x′γ then

A(αγ , γ) = A∗(αγ , γ) ∪ {xγ , yγ};
C(αγ , γ) = C∗(αγ , γ) ∪ {y′γ};
A(βγ , γ) = A∗(βγ , γ) ∪ {yγ};
C(βγ , γ) = C∗(βγ , γ) ∪ {x′γ , y′γ}.

c) If xγ 6= x′γ then:

A(αγ , γ) = A∗(αγ , γ) ∪ {xγ , yγ};
C(αγ , γ) = C∗(αγ , γ) ∪ {x′γ , y′γ};
A(βγ , γ) = A∗(βγ , γ) ∪ {xγ , yγ)};
C(βγ , γ) = C∗(βγ , γ) ∪ {x′γ , y′γ}.
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It is clear that the definitions above yield sets that satisfy (1), (2),
(3), and (4). To verify that (5) is satisfied for γ, suppose γ is a limit
ordinal and {rη : η < γ} 6⊆ U(γ). Let η be the least ordinal with
η < γ and rη 6∈ U(γ). If there is a limit ordinal λ with η < λ < γ,
then the induction hypothesis would show that rη ∈ U(λ) ⊆ U(γ),
contrary to our choice of η. Hence γ has the form λ + ω where λ is a
limit ordinal, or zero, and λ ≤ η. Because rη 6∈ U(γ) we certainly have
rη 6∈ U∗(γ). Hence either rη ∈ {xγ , x′γ} or else rη is the first point of
R− (U∗(γ)∪{xγ , x′γ}) = V0− (U∗(γ)∪{xγ , x′γ}), and in the latter case
rη ∈ {yγ , y′γ}. Hence rη ∈ U(γ) contrary to our choice of η. Thus (5)
holds and the recursion continues.

Given the sets A(α, γ), C(α, γ) and U(γ) satisfying (1) - (5) for every
α, γ < c, we see that R =

⋃
{U(γ) : γ < c}. Define A(α) =

⋃
{A(α, γ) :

γ < c} and note that R−A(α) =
⋃
{C(α, γ) : γ < c}.

Assertion (a) of the lemma follows from the fact that if V is a
nonempty open subset of R, then for some n, Vn ⊆ V so that c many
points of A(α) and of R−A(α) are chosen from Vn. To verify assertion
(b) of the lemma, suppose α 6= β and f, g : R → R are continuous
functions such that f [R]∩ g[R] is non-degenerate. Then for some γ < c
we have 〈f, g, α, β〉 = 〈fγ , gγ , αγ , βγ〉 so that the points xγ and x′γ have
xγ ∈ A(α, γ) ⊆ A(α) and x′γ ∈ C(α, γ) ⊆ R−A(α), and f(xγ) = g(x′γ),
as required. 2

5.2 Example: The lexicographic product space X = [0, ω1[ × R is a
metrizable LOTS that is absolutely cleavable over S but is not cleavable
over R.

Proof. Let S ⊂ R have |S| = ω1. Then X is homeomorphic to the
lexicographic product Y = S×R and the identity function from Y into
R

2 is continuous and 1-1. Hence X is absolutely cleavable over S. To
see that X is not cleavable over R, we choose sets {A(α) : 0 ≤ α < ω1}
from among the sets constructed in (5.1). We let S =

⋃
{{α} × A(α) :

α < ω1} and we write Vα = {α} × R.

Suppose ψ : X → R is any continuous function. We will show that
there is a point p ∈ S and a point q ∈ X − S with ψ(p) = ψ(q), and
that will show that X is not cleavable over R. Define fα(x) = ψ(α, x)
for each x ∈ R. Each fα is a continuous function. If there is some α
such that the set fα[R] is a singleton, then we choose any x ∈ A(α) and
any y ∈ R−A(α) and let p = (α, x) and q = (α, y) so that ψ(p) = ψ(q)
as required. So assume that each set fα[R] is non-degenerate. Because
R is separable, we can find 0 ≤ α < β < ω1 such that fα[R] ∩ fβ[R]
is non-degenerate. Consequently, there are points x ∈ A(α) and x′ ∈
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R − A(β) with fα(x) = fβ(x′). Letting p = (α, x) and q = (β, x′), we
have p ∈ S, q ∈ X − S and ψ(p) = ψ(q), as required. Hence X is not
cleavable over R. 2

5.3 Open Problem: Characterize GO-spaces that are cleavable over
R.

We know a little about Problem 5.3. First, there are no cardinality
restrictions on a LOTS that is cleavable over R, because any discrete
space is cleavable over R, and can be ordered in such a way that it
is a LOTS. Second, a GO-space that is cleavable over R can have at
most countably many non-degenerate connected components. (Proof:
If X is a GO-space that is cleavable over R, then each non-degenerate
connected component C of X is homeomorphic to a connected subspace
of R. Removing at most two points from such a C gives us a space C ′

that is homeomorphic to R. Let Y =
⋃
{C ′ : C is a non-degenerate

connected component of X}. Because X is cleavable over R, so is Y .
Therefore, for X to have more than countably many non-degenerate
connected components would contradict (5.2).) Further information
about GO-spaces that are cleavable over R comes from Example (4.6)
which shows that such a GO-space cannot contain more that c pairwise
disjoint open sets each of which contains a topological copy of a fixed
subspace T of R, where 2|T | > c. 2

Characterizing GO-spaces that are cleavable over P is an easier
problem. Recall that ind(X) = 0 means that each point of X has a
base of clopen sets and that Ind(X) = 0 means that whenever A is
closed and U is open and A ⊆ U , then there is a clopen set V with
A ⊆ V ⊆ U . In general, these dimension functions may be different,
but for GO-spaces we have the following well-known fact:

5.4 Lemma: For a GO-space X, the following are equivalent:

a) ind(X) = 0;

b) Ind(X) = 0;

c) no connected subset of X has more than one point.

5.5 Theorem: The following are equivalent for a GO-space X:

a) X is cleavable over P;

b) X is cleavable over R and ind(X) = 0;

c) X is cleavable over S and ind(X) = 0;
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d) For every subset A ⊂ X, there is a countable collection C of clopen
subsets of X such that if x ∈ A ⊆ X − {y}, then some C ∈ C has
x ∈ C ⊆ X − {y}.

Proof. Clearly b) implies c). We will show that a) implies b), c)
implies d), and d) implies a).

To show that a) implies b), suppose that X satisfies a). Being cleav-
able over P, X is also cleavable over R. To show that ind(X) = 0, in
the light of (5.4) it will be enough to show that if C ⊆ X is connected,
then |C| ≤ 1. For contradiction, suppose there are distinct points x, y
of C. Then f [C] is a connected subset of P containing both f(x) and
f(y) whenever f : X → P is continuous, so that f(x) = f(y). Thus
there is no cleaving function for the set A = {x}. Thus a) implies b).

Next we show that c) implies d). Let A ⊆ X. Using c), choose a
continuous f : X → R

ω that is a cleaving function for A. Let {Bn : n ≥
1} be a countable base of open sets for Rω. Then each set f−1[Bn] is an
open Fσ-subset of X. Because Ind(X) = 0 (see 5.4), each f−1[Bn] can
be written as

⋃
{C(n, k) : k ≥ 1} where each C(n, k) is a clopen subset

of X. Then {C(n, k) : n, k ≥ 1} is the required clopen collection, so c)
implies d)

Finally we show that d) implies a). Let A ⊆ X and let C = {Cn : n ∈
ω} be the clopen collection given by (d). For each n, let fn : X → Z

be the characteristic function of the set Cn. Define f : X → Z
ω by

f(x) = 〈f0(x), f1(x), f2(x), · · ·〉. The f is continuous and since Zω is
homeomorphic to P, f is the desired cleaving function for A. Thus (d)
implies (a). 2

Proposition 2.3 characterizes topological spaces that can be mapped
into P by a 1-1 continuous function (i.e., are absolutely cleavable over
P). Example 5.6 will show that for GO-spaces, this class is strictly
smaller than the class of GO-spaces that are cleavable over P.

5.6 Example: (a) There is a dense-in-itself, metrizable LOTS that is
cleavable over P but not absolutely cleavable over P. (b) The lexico-
graphic product space Yκ = [0, κ[× P is cleavable over R if and only if
κ ≤ c.

Proof. To obtain the example announced in (a), we invoke (5.10),
below, to show that the lexicographically ordered LOTS X = [0, c+[×Q
is cleavable over Q and hence also over P. But the cardinality of X is
too large for there to be a 1-1 function from X into P. To obtain (b),
we apply (4.6) with T = P to show that if κ > c then Yκ is not divisible
and hence not cleavable over R. In case κ ≤ c then we can replace the
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set [0, κ[ by a subset S ⊂ R of cardinality κ and then we see a natural
1-1 continuous mapping from Yκ into R2. Thus Yκ is cleavable over S.
Now apply the equivalence of (a) and (c) in (5.5) to conclude that Yκ
is cleavable over P and hence over R. 2

As an application of (2.3) we can show that a certain strange metriz-
able space constructed by A.H. Stone in [St] is absolutely cleavable over
P.

5.7 Example: Stone’s metric space X is a LOTS satisfying:

a) |X| = ω1;

b) X is not the union of countably many discrete subspaces;

c) any separable subspace of X is countable;

d) there is a continuous 1-1 mapping from X into P.

Proof. That Stone’s metric space X satisfies a), b), and c) appears
in [St]. That X is a LOTS under some ordering follows from Herrlich’s
orderability theorem ([Hr], see also [E, 2.3.6]). Because X is constructed
as a certain subspace of Dω where D is a discrete space of cardinality
ω1, X has a σ-discrete clopen cover that separates points as in (2.3-c).
Hence, by (2.3) there is a continuous 1-1 mapping from X into P. 2

The final result in this section characterizes GO-spaces that are
cleavable over Q. It is a corollary of a more general result given by
Arhangel’skii in [Ar].

5.8 Theorem: ([Ar]) : Suppose that Ind(X) = 0 and that each subset
of the topological space X is an Fσ-subset of X. Then X is cleavable
over Q.

5.9 Corollary: Let X be a GO-space. Then X is cleavable over Q if
and only if each subset of X is an Fσ-subset of X.

Proof. The implication ⇒ is clear for any topological space. The
converse follows from (5.8) and (5.4) once we show that there are no
non-degenerate connected sets in a GO-space X in which each subset
is an Fσ-set. So suppose that C is a connected subset of X with more
than one point. As a subspace of X, the space C will be a connected,
non-degenerate LOTS in which each singleton is a Gδ-set. Thus C is
first countable. Furthermore, C has no isolated points so that, by a
theorem of Hewitt [Hw], the space C is resolvable, i.e., contains two
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disjoint dense sets D1, D2. Replacing D2 by C − D1 if necessary, we
may assume that D1∪D2 = C. Each Di is of first category in C, being
a dense and co-dense Fσ-set. But then C is first category in itself, and
that is impossible because C is a connected LOTS (and therefore locally
compact) so that C satisfies the Baire Category Theorem. Therefore,
connected subsets of X must be degenerate. 2

5.10 Corollary: Any locally countable metric space is cleavable over
Q.

Proof. Any locally countable metric space X is a topological sum of
countable metric spaces, i.e., of subspaces of Q. Thus X embeds in a
topological sum of copies of Q. But any topological sum of copies of Q
is homeomorphic to the lexicographically ordered LOTS [0, κ[×Q for
suitably large κ, and by (5.8) such a LOTS is cleavable over Q. Hence
so is its subspace X. 2
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