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Abstract
In this paper we investigate the relation between separability and the monotoneE poglerty in
generalized ordered (GO)-spaces. We examine which classical examples are or are hot monotonically
Lindelof. Using a new technique for investigating open covers of GO-spaces, we show that any sepa-
rable GO-space is hereditarily monotonically LinafelFinally, we investigate the relation between the
hereditarily monotonically Lindéff property and the Souslin problem.
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1 Introduction

A topological spaceX is monotonically Lindedf [2] if for each open covet/ of X there is a countable
open cover(U) of X that refineg/ and has the property that if an open coMerefines an open covét,
thenr(U/) refinesr(V). In this caser will be called amonotone Lindélf operatorfor the spaceX. The

role of the monotone Lindéf property in the theory of generalized ordered spaces is far from clear, and
this paper we present the basic results and pose a family of open questions.

We show that the compact LOT8, w;] is not monotonically Lindélf and deduce that a compact,
monotonically Lindebf LOTS is first countable. We show that there is a monotonically LigideOTS
that is not first countable, that there is a compact monotonically Laid€DTS that is not perfect (i.e.,
some closed set is not@;-set). We prove that the branch space of certain Aronszajn trees must be
monotonically Lindedf and that the branch space of certain Souslin trees must be hereditarily monotoni-
cally Lindelof. Finally, we show that any separable GO-space is monotonically lohdeld discuss the
relation between the Souslin problem and the question of whether separability is equivalent to the hered-
itary monotone Lindeif property in GO-spaces. Several of these results depend on a new technique for
investigating open covers of GO-spaces.

Recall that ayeneralized ordered spa¢&0O-space) is a tripléX, 7, <) where< is a linear ordering
of X and7 is a Hausdorff topology oX that has a base of order-convex setsT lis the open interval
topology of the given ordering, theéiX', 7, <) is alinearly ordered topological spag@ OTS). It is known
that the generalized ordered spaces are exactly those spaces that can be homeomorphically embedded in
some LOTS.

In this paper, we reserve the symb@ls(Q, andR for the sets of all integers, rational numbers, and
real numbers, respectively. For a seand a collectiori/ of sets, we will writeS < U/ to mean thats' is a
subset of some member &t



2 Classical Examples and the Monotone Lindéif Property

In this section, we investigate the monotone Liridgroperty in several familiar ordered spaceé |,
the lexicographic square, and a branch space af-Branching Aronszajn tree.

Lemma 2.1 Any separable metric space is monotonically Liridel
Proof: LetB be a countable base for the spaceFor any open cover of X, letr(Ud) = {B € B:3U €
Uwith BCU}DO

There exist countable regular spaces that are not monotonically bing] but (of course) these
examples are not GO-spaces.

Example 2.2 There is a monotonically Lindél LOTS that is not first countable.
Proof: LetX be the lexicographically ordered LOTS given by
X = ([0,&)1) X Z) U {(WhO)}.

For any open covel of X, there is a first ordinalv = «(¢/) such that the interval(a, 0), (w1, 0)] is @
subset of some member &f Definer() = {((a,0), (w1,0)]} U{{(B,k)} : B < aandk € Zor =
aandk < 0}. 0

The space of Example 2.2 is nwgreditarilymonotonically Lindebf because it is not even hereditarily
Lindelof. GO-spaces that are hereditarily monotonically Litd&lill be studied in the next section.
Example 2.3 The ordinal spacé0, w,| is a compact LOTS that is not monotonically Liriifel

Proof: For contradiction, suppose thas a monotone Lindéff operator for{0, w;]. For eachy < w; let

Uy, =1{[0,8) : B < wi} U{(a,w1]}.

Note that ifa < 3 thenlds refinesi4,, so thatr (i) refinesr(U,,).

For eachh < w; some members of(i,) will be countable, while others will not. Define

B(a) = sup (U{v erUy): V| < w}) +1

and note thaB(a) < w;.

Claim 1 We claim thatv < («). Choose any; € r(U,) with « € V;. Choose/; € U,, with V; C Uj.
Then eitherl/; = (a,w;] or elsel; is countable. Because € Uj, the first option is impossible, 96,
and hence alsbj, is countable. Therefore € V; C [0, 5(«)), as claimed.

Clam2 If « < yandV € r(U,), then eithed/ C [0, («)) or elseV C (a,w;]. We know that-(l4,)
refinesr(U,,), so we may choose som€ < r(U,) and somé/ € U, withV C W C U. If U is countable,
then so isV and thent” C W C [0, B(«)). If U is not countable, theti = (a,w;| so thatV C (o, w;],
as claimed.



Let oy = w and choosey; = f[(«g) + 1. Recursively definey, so thata,,.1 = B(«,) + 1. Let
v = sup{a, : n < w}. Theny is a limit ordinal.

Clam3 If a,, € V € U, thena, 1 ¢ V. Note thate,, < v and apply Claim 2 to conclude that
eitherV' C [0, 3(«,)) or elseV C (a,,w;|. The second option is impossible becaugec V, so that
V C0,B(ay)). Butay,1 > B(a,) so thatw,; ¢ V, as claimed.

To complete the proof, choose ahye (U4, ) that containgy. Becausey = sup{cy, : kK < w} there
must be some such that bothy,, anda,,; belong tol/, contradicting Claim 30

In Example 2.2 we described a monotonically LirafdlOTS that is not first countable. By way of
contrast, an immediate corollary of Example 2.3 is:

Corollary 2.4 Any monotonically Lindélf compact LOTS is first countable.

Proof: If a compact LOTSX is not first countable, it contains a closed sulis¢hat is homeomorphic to
[0, wq]. Being closed inX, the subspac¥ inherits the monotone Lindél property, and that is impossible
in the light of Example 2.30

Example 2.2 shows that the previous corollary does not hold for GO-spaces that are not compact.

Example 2.5 The lexicographic squar, 1] x [0, 1] is compact and monotonically Lindélbut is not
perfect.

Proof: Parts of this proof closely parallel the detailed proof of Proposition 3.1 in the next section. Conse-
guently, some details of this proof are omitted.

It is well-known that the lexicographic square is compact and not perfect. To verify the monotonic
Lindelof property, it will be notationaly convenient to show that the lexicographic rectafgieR x [0, 1]
is monotonically Lindedf. Then so is its closed subspdbel] x [0, 1].

Let E = Q x {0} and for eachr € R, letr, be a monotonic Lindéff operator for the separable metric
subspacé’(z) = {z} x (0,1) of X (see 2.1).

For any open covell of X, letri(U) = {(e1,e2) : €; € E, €1 < ey, and (ey,e2) < U}. Observe
that if (z,¢) € X and some member &f contains both point$z,0) and(x, 1), then(z,t) is covered
by ri(U). Let S(U) = {x € R : no member of U contains both (x,0) and (x,1)}. Because any
uncountable subset & contains a limit point of itself, one can show that the Set countable. Let
ro(U) = U{r-Ulvw) : © € S(U)}. Thenry(U) is countable, and, (I/) U (1) covers all ofX except
for certain pointgz, i) with ¢ € 0, 1.

For eachr € R, let
1
RF(x,U) ={e € E: (x,1) < eandIm > 1 with ((z,1 — E),e) < U,
RG(z,U) ={e€ FE: (x,1) < eand Iy < z with ((y,0),e) <U}.
ThenRG(z,U) C RF(z,U). LetRD(U) = {x € R: RG(x,U) # RF(x,U)}. Let

rs(U) = {((z,1— l),e) :x € RD(U), e € RF(x,U), m > 1, and ((z,1 — %),e) < U}.

m
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Thenrs(U) is countable.

For eachr € R, defineLF(z,U) = {e € E : e < (z,0) and Im > 1 with (e, (z,=)) < U} and
analogously definéG(z,U), LD(U) and

ro(U) = {(e, (z, %)) cx € LDU), e € LF(z,U), (e, (x, %)) <U}.

Thenr(U) = | J{r:(UU) : 1 < i < 4} is a countable open cover &f that refines/, and as in the proof of
Proposition 3.1, the operatf — (1) is monotonic.0

The previous example is the first step in an inductive proof that for all finite 1, the lexicographic
hypercub€0, 1]" is monotonically Lindedf. Part of the induction step fromto n + 1 involves knowing
that the open sét' (z) = {(z,t2, -, tn1) : t; € [0,1]} — {(2,0,0,---,0), (x,1,1,---,1)} of [0, 1]"*
is monotonically Lindedf. That follows from the general fact that if a space= (J{Y,, : n < w} =
U{inty(Y,) : n < w}, where eacly;, is monotonically Lindedf, thenY” is also monotonically Lindéf.

Example 2.6 Let (7, <r) be anw-branching Aronszajn tree with the property that nodes at limit levels
are singletons. Order each non-limit-level node to make it a cof® afid let.X be the resulting branch
space. TherX is monotonically Lindeif.

Proof: We know that the branch spa&eis Lindelof [1]. For eacht € T, the seflt] = {b € X : t € b}

is a closed and open set. For any open coverf X, we will say that an elemerite T is U-minimal if
[t] is a subset of some memberiafand if for eachs <1 t, the sefs| is not a subset of any memberidf
Thenthe sef(U) = {t € T : tisU — minimal} is an antichain anft;] N [to] = 0 whenevert; andt,
are distinct and/-minimal. Letr(U) = {[t| : t € M(U)}. Thenr(U) is a pairwise disjoint open cover of
the Lindebf spaceX, sor (i) is countable. It is clear thatif refinesV, thenr (i) refinesr(V). O

3 Separability and the Hereditary Monotone Lindelof Property

Proposition 3.1 Any separable GO-space is hereditarily monotonically Libélel

Proof: LetX be a separable GO-space. Because any subspacesofgain a separable GO-space, it is
enough to show thaX’ is monotonically Lindebf. Fix a countable dense subdef X. Let I be the set
of all isolated points o. LetR = {zx € X — 1 : [x,—)isopen}andL = {z € X — 1 : («, ] is open}.

For a setS and an open covér of X, we will write S < U to mean thatt C U for someU € U. For
any open cove¥/ of X, we will define the refinement(l{) in four steps. Let () = {{z} : x € I} and

ro(U) = {(e1,€2) : ¢; € Eand (e1,e3) < U}.

For anyz € R define
RF(zx,U)={q€e E:x<qgand|z,q) <U}

and
RG(z,U) ={q € FE: Jy < z with (y,x) # 0 and (y,q) < U}.
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ThenRG(z,U) C RF(z,U). Let RD(z,U) = RF(z,U) — RG(z,U) and define
r3(U) ={[z,q) : € Rand RD(x,U) # 0 and ¢ € RF(x,U)}.

Thenrs(U) is a collection of open subsets &f.

We claim that;(L/) is countable. Becausg is countable, it will suffice to show that the setl/) =
{r € R : RD(x,U) # 0} is countable. Foreach € EletW(q) = {x € R: q € RD(z,U)}.
ThenR(U) C J{W(q) : ¢ € E} so our claim will be verified if we show thatV (¢)| < 2 for each
q € E. For contradiction, suppose there existz,, x3 in some setV (¢). We may assume; < z; < x3.
Theng € RF(x1,U) implies that[z,,q) < U. But thenzy € (x1,x3) and(xy1,q) < U showing that
q € RG(z3,U) soq & RD(xs,U). Thus|W(q)| < 2 for eachg € E.

Using L in place of R, for eachz € L we define setd.F(x,U), LG(z,U), and LD(z,U) and a
countable collectiom, () = {(q,z] : g < x, ¢ € E, and LD(z,U) # (0} of open subsets oX. Define

r(U) =rU)Ury(U) Urs(U) UryU).

Thenr (i) is countable.

We claim thatr(i/) coversX. For suppose: € X. If z € [ thenz is covered by (U). If z €
X — (IURU L), then choose any € U with z € U. Then there are points < = < e; Withe; € F
and(ey, e2) < U, so that(ey, e2) € r(U) and hencer is covered by (/). It remains to consider points
of RU L. Supposer € R, the other case being analogous, and suppaseot covered by (i/). Then
RG(x,U) = () sothatRD(x,U) # (). Choose any/ € U with z € U. Because: € R C X — I we know
that some; € E hasz < g and[z,q) C U. Thenz, q) € r3(U) so thatr(U/) coversz.

Finally, supposé/ and) are open covers ok and that/ refinesV. Clearlyr;(Ud) C r;(V) for
i = 1,2, 50 supposér, q) € r5(U). Thenz € R, RD(z,U) # 0 and[z,q) < U. If RD(z,V) # () then
[z,q) € r3(V), as required. IfRD(z,V) = 0 thenRF(x,V) = RG(z,V). Note thaty € RF(z,U) C
RF(x,V) so we know that € RG(z,V). Hence there is some < z with (y,z) # 0 and(y,q) < V.
Choose any; € EN (y,z). Then(e;,q) < V so that[z, q) C (e, q) € m (V) C (V). Similarly, any set
(q,z] € r4(U) is either a member or, or a subset of some member(df). Thereforer (i) refinesr(V),
as requiredd

The proof above actually shows more. If we modify the definition of monotone Lafttetefer to the
existence of refinements of cardinalityand call the resulting propertponotones-Lindelof, the proof of
Proposition 3.1 shows that X is a GO-space with(X ) = x, thenX is monotonicallyx-Lindelof.

An often-used technique for constructing examples is to begin with a LOT S, S), select three
disjoint subsetsk, L and/ of X, and then isolate all points ihwhile changing the neighborhood systems
of points ofxr € R andy € L to make sets of the forrfx, b) and(a, y| open in a new topology” on
X. This process is callecbnstructing a GO-space g, <, S). The construction of the Sorgenfrey line
and the Michael line are perhaps the best known examples of this construction. The above proof can be
modified to show:

Proposition 3.2 Suppose that the LOTS(, <, S) is separable and thal is a GO-topology constructed
on (X, <,S8). Then the following are equivalent:



a) (X, 7) is Lindebf;
b) for any7-open setU containing the sef? of all non-isolated points ofX, 7), the set
X — U is countable;

¢) (X, T) is monotonically Lindeif. O

Does the converse of Proposition 3.1 hold? Is it true that the monotone &frtelperty character-
izes separability among GO-spaces? It is no surprise to find that this is a Souslin problem issue so that
consistent answers are the best we can hope for.

Proposition 3.3 Let M be any model of F'C'. If M contains a Souslin line, theld has a GO-space that
is hereditarily monotonically LindéF but not separable, and i#/ does not contain a Souslin line, then
separability is equivalent to the hereditary monotone Lidflptoperty for any GO-space i/ .

Proof: First, supposé/ contains a Souslin line. ThelW contains anv-branching Souslin tre€. Order
each node of” making it a copy ofZ and letX be the resulting branch space. For each 7', the set
[t] = {b e X : t € b} is closed and open iX. LetY be any subspace df and letZ/ be any relatively
open cover of". We will say that & € T" ist/-minimal if [t{] NY is contained in some memberifand if

s <r t, then[s|NY is not contained in any member&f Then the sed/(l{/) consisting of all/-minimal

points of7" is an anti-chain of’, so that)M (/) is countable. Defining(i/) = {[t{|NY : t € M(U)}, we

obtain a countable relatively open covenoéfand clearly- has the required monotone property.

Second, suppos#&/ contains no Souslin line. Proposition 3.1 shows thakiis a separable GO-
space, therX is hereditarily monotonically LindéF. For the converse, supposéis a GO-space that is
hereditarily monotonically Lindéf. Then X has countable cellularity so that because no Souslin lines
existin M, X must be separablé&]

4 Open Questions

There are several examples (or theorems) still needed to round out the elementary theory of the monotone
Lindelof property in GO-spaces.

1) Is there a compact first countable GO-space that is not monotonically bffadel

2) If there is a Souslin line, is there a compact Souslin line that is (hereditarily) monotonically
Lindelof?

3) If there is a Souslin line, is there a Souslin line that is not monotonically Lifidel
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