
The Monotone Lindelöf Property and Separability in Ordered Spaces

by
H. Bennett, Texas Tech University, Lubbock, TX 79409

D. Lutzer, College of William and Mary, Williamsburg, VA 23187-8795
M. Matveev, Irvine, CA 92612

Abstract
In this paper we investigate the relation between separability and the monotone Lindelöf property in

generalized ordered (GO)-spaces. We examine which classical examples are or are not monotonically
Lindelöf. Using a new technique for investigating open covers of GO-spaces, we show that any sepa-
rable GO-space is hereditarily monotonically Lindelöf. Finally, we investigate the relation between the
hereditarily monotonically Lindelöf property and the Souslin problem.
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1 Introduction

A topological spaceX is monotonically Lindel̈of [2] if for each open coverU of X there is a countable
open coverr(U) of X that refinesU and has the property that if an open coverU refines an open coverV,
thenr(U) refinesr(V). In this case,r will be called amonotone Lindelöf operatorfor the spaceX. The
role of the monotone Lindelöf property in the theory of generalized ordered spaces is far from clear, and
this paper we present the basic results and pose a family of open questions.

We show that the compact LOTS[0, ω1] is not monotonically Lindel̈of and deduce that a compact,
monotonically Lindel̈of LOTS is first countable. We show that there is a monotonically Lindelöf LOTS
that is not first countable, that there is a compact monotonically Lindelöf LOTS that is not perfect (i.e.,
some closed set is not aGδ-set). We prove that the branch space of certain Aronszajn trees must be
monotonically Lindel̈of and that the branch space of certain Souslin trees must be hereditarily monotoni-
cally Lindelöf. Finally, we show that any separable GO-space is monotonically Lindelöf and discuss the
relation between the Souslin problem and the question of whether separability is equivalent to the hered-
itary monotone Lindel̈of property in GO-spaces. Several of these results depend on a new technique for
investigating open covers of GO-spaces.

Recall that ageneralized ordered space(GO-space) is a triple(X, T , <) where< is a linear ordering
of X andT is a Hausdorff topology onX that has a base of order-convex sets. IfT is the open interval
topology of the given ordering, then(X, T , <) is alinearly ordered topological space(LOTS). It is known
that the generalized ordered spaces are exactly those spaces that can be homeomorphically embedded in
some LOTS.

In this paper, we reserve the symbolsZ, Q, andR for the sets of all integers, rational numbers, and
real numbers, respectively. For a setS and a collectionU of sets, we will writeS ≺ U to mean thatS is a
subset of some member ofU .
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2 Classical Examples and the Monotone Lindelöf Property

In this section, we investigate the monotone Lindelöf property in several familiar ordered spaces –[0, ω1],
the lexicographic square, and a branch space of anω-branching Aronszajn tree.

Lemma 2.1 Any separable metric space is monotonically Lindelöf.

Proof: LetB be a countable base for the spaceX. For any open coverU of X, let r(U) = {B ∈ B : ∃U ∈
U with B ⊆ U} 2

There exist countable regular spaces that are not monotonically Lindelöf [3], but (of course) these
examples are not GO-spaces.

Example 2.2 There is a monotonically Lindelöf LOTS that is not first countable.

Proof: LetX be the lexicographically ordered LOTS given by

X = ([0, ω1)× Z) ∪ {(ω1, 0)}.

For any open coverU of X, there is a first ordinalα = α(U) such that the interval((α, 0), (ω1, 0)] is a
subset of some member ofU . Definer(U) = {((α, 0), (ω1, 0)]} ∪ {{(β, k)} : β < α and k ∈ Z or β =
α and k < 0}. 2

The space of Example 2.2 is nothereditarilymonotonically Lindel̈of because it is not even hereditarily
Lindelöf. GO-spaces that are hereditarily monotonically Lindelöf will be studied in the next section.

Example 2.3 The ordinal space[0, ω1] is a compact LOTS that is not monotonically Lindelöf.

Proof: For contradiction, suppose thatr is a monotone Lindelöf operator for[0, ω1]. For eachα < ω1 let

Uα = {[0, β) : β < ω1} ∪ {(α, ω1]}.

Note that ifα < β thenUβ refinesUα so thatr(Uβ) refinesr(Uα).

For eachα < ω1 some members ofr(Uα) will be countable, while others will not. Define

β(α) = sup
(⋃
{V ∈ r(Uα) : |V | ≤ ω}

)
+ 1

and note thatβ(α) < ω1.

Claim 1: We claim thatα < β(α). Choose anyV1 ∈ r(Uα) with α ∈ V1. ChooseU1 ∈ Uα with V1 ⊆ U1.
Then eitherU1 = (α, ω1] or elseU1 is countable. Becauseα ∈ U1, the first option is impossible, soU1,
and hence alsoV1, is countable. Thereforeα ∈ V1 ⊆ [0, β(α)), as claimed.

Claim 2: If α < γ andV ∈ r(Uγ), then eitherV ⊆ [0, β(α)) or elseV ⊆ (α, ω1]. We know thatr(Uγ)
refinesr(Uα), so we may choose someW ∈ r(Uα) and someU ∈ Uα with V ⊆ W ⊆ U . If U is countable,
then so isW and thenV ⊆ W ⊆ [0, β(α)). If U is not countable, thenU = (α, ω1] so thatV ⊆ (α, ω1],
as claimed.
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Let α0 = ω and chooseα1 = β(α0) + 1. Recursively defineαn so thatαn+1 = β(αn) + 1. Let
γ = sup{αn : n < ω}. Thenγ is a limit ordinal.

Claim 3: If αn ∈ V ∈ Uγ, thenαn+1 6∈ V . Note thatαn < γ and apply Claim 2 to conclude that
eitherV ⊆ [0, β(αn)) or elseV ⊆ (αn, ω1]. The second option is impossible becauseαn ∈ V , so that
V ⊆ [0, β(αn)). But αn+1 > β(αn) so thatαn+1 6∈ V , as claimed.

To complete the proof, choose anyV ∈ r(Uγ) that containsγ. Becauseγ = sup{αk : k < ω} there
must be somen such that bothαn andαn+1 belong toV , contradicting Claim 3.2

In Example 2.2 we described a monotonically Lindelöf LOTS that is not first countable. By way of
contrast, an immediate corollary of Example 2.3 is:

Corollary 2.4 Any monotonically Lindelöf compact LOTS is first countable.

Proof: If a compact LOTSX is not first countable, it contains a closed subsetY that is homeomorphic to
[0, ω1]. Being closed inX, the subspaceY inherits the monotone Lindelöf property, and that is impossible
in the light of Example 2.3.2

Example 2.2 shows that the previous corollary does not hold for GO-spaces that are not compact.

Example 2.5 The lexicographic square[0, 1] × [0, 1] is compact and monotonically Lindelöf but is not
perfect.

Proof: Parts of this proof closely parallel the detailed proof of Proposition 3.1 in the next section. Conse-
quently, some details of this proof are omitted.

It is well-known that the lexicographic square is compact and not perfect. To verify the monotonic
Lindelöf property, it will be notationaly convenient to show that the lexicographic rectangleX = R×[0, 1]
is monotonically Lindel̈of. Then so is its closed subspace[0, 1]× [0, 1].

Let E = Q×{0} and for eachx ∈ R, let rx be a monotonic Lindelöf operator for the separable metric
subspaceV (x) = {x} × (0, 1) of X (see 2.1).

For any open coverU of X, let r1(U) = {(e1, e2) : ei ∈ E, e1 < e2, and (e1, e2) ≺ U}. Observe
that if (x, t) ∈ X and some member ofU contains both points(x, 0) and(x, 1), then(x, t) is covered
by r1(U). Let S(U) = {x ∈ R : no member of U contains both (x, 0) and (x, 1)}. Because any
uncountable subset ofR contains a limit point of itself, one can show that the setS is countable. Let
r2(U) =

⋃
{rx(U|V (x)) : x ∈ S(U)}. Thenr2(U) is countable, andr1(U) ∪ r2(U) covers all ofX except

for certain points(x, i) with i ∈ 0, 1.

For eachx ∈ R, let

RF (x,U) = {e ∈ E : (x, 1) < e and ∃m ≥ 1 with ((x, 1− 1

m
), e) ≺ U},

RG(x,U) = {e ∈ E : (x, 1) < e and ∃y < x with ((y, 0), e) ≺ U}.

ThenRG(x,U) ⊆ RF (x,U). Let RD(U) = {x ∈ R : RG(x,U) 6= RF (x,U)}. Let

r3(U) = {((x, 1− 1

m
), e) : x ∈ RD(U), e ∈ RF (x,U), m ≥ 1, and ((x, 1− 1

m
), e) ≺ U}.
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Thenr3(U) is countable.

For eachx ∈ R, defineLF (x,U) = {e ∈ E : e < (x, 0) and ∃m ≥ 1 with (e, (x, 1
m

)) ≺ U} and
analogously defineLG(x,U), LD(U) and

r4(U) = {(e, (x,
1

m
)) : x ∈ LD(U), e ∈ LF (x,U), (e, (x,

1

m
)) ≺ U}.

Thenr(U) =
⋃
{ri(U) : 1 ≤ i ≤ 4} is a countable open cover ofX that refinesU , and as in the proof of

Proposition 3.1, the operatorU → r(U) is monotonic.2

The previous example is the first step in an inductive proof that for all finiten ≥ 1, the lexicographic
hypercube[0, 1]n is monotonically Lindel̈of. Part of the induction step fromn to n + 1 involves knowing
that the open setV (x) = {(x, t2, · · · , tn+1) : ti ∈ [0, 1]} − {(x, 0, 0, · · · , 0), (x, 1, 1, · · · , 1)} of [0, 1]n+1

is monotonically Lindel̈of. That follows from the general fact that if a spaceY =
⋃
{Yn : n < ω} =⋃

{intY (Yn) : n < ω}, where eachYn is monotonically Lindel̈of, thenY is also monotonically Lindelöf.

Example 2.6 Let (T,≤T ) be anω-branching Aronszajn tree with the property that nodes at limit levels
are singletons. Order each non-limit-level node to make it a copy ofZ and letX be the resulting branch
space. ThenX is monotonically Lindel̈of.

Proof: We know that the branch spaceX is Lindelöf [1]. For eacht ∈ T , the set[t] = {b ∈ X : t ∈ b}
is a closed and open set. For any open coverU of X, we will say that an elementt ∈ T is U-minimal if
[t] is a subset of some member ofU and if for eachs <T t, the set[s] is not a subset of any member ofU .
Then the setM(U) = {t ∈ T : t is U −minimal} is an antichain and[t1] ∩ [t2] = ∅ whenevert1 andt2
are distinct andU-minimal. Letr(U) = {[t] : t ∈ M(U)}. Thenr(U) is a pairwise disjoint open cover of
the Lindel̈of spaceX, sor(U) is countable. It is clear that ifU refinesV, thenr(U) refinesr(V). 2

3 Separability and the Hereditary Monotone Lindelöf Property

Proposition 3.1 Any separable GO-space is hereditarily monotonically Lindelöf.

Proof: LetX be a separable GO-space. Because any subspace ofX is again a separable GO-space, it is
enough to show thatX is monotonically Lindel̈of. Fix a countable dense subsetE of X. Let I be the set
of all isolated points ofX. LetR = {x ∈ X−I : [x,→) is open} andL = {x ∈ X−I : (←, x] is open}.

For a setS and an open coverU of X, we will write S ≺ U to mean thatS ⊆ U for someU ∈ U . For
any open coverU of X, we will define the refinementr(U) in four steps. Letr1(U) = {{x} : x ∈ I} and

r2(U) = {(e1, e2) : ei ∈ E and (e1, e2) ≺ U}.

For anyx ∈ R define

RF (x,U) = {q ∈ E : x < q and [x, q) ≺ U}

and
RG(x,U) = {q ∈ E : ∃y < x with (y, x) 6= ∅ and (y, q) ≺ U}.
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ThenRG(x,U) ⊆ RF (x,U). Let RD(x,U) = RF (x,U)−RG(x,U) and define

r3(U) = {[x, q) : x ∈ R and RD(x,U) 6= ∅ and q ∈ RF (x,U)}.

Thenr3(U) is a collection of open subsets ofX.

We claim thatr3(U) is countable. BecauseE is countable, it will suffice to show that the setR(U) =
{x ∈ R : RD(x,U) 6= ∅} is countable. For eachq ∈ E let W (q) = {x ∈ R : q ∈ RD(x,U)}.
ThenR(U) ⊆

⋃
{W (q) : q ∈ E} so our claim will be verified if we show that|W (q)| ≤ 2 for each

q ∈ E. For contradiction, suppose there existx1, x2, x3 in some setW (q). We may assumex1 < x2 < x3.
Thenq ∈ RF (x1,U) implies that[x1, q) ≺ U . But thenx2 ∈ (x1, x3) and (x1, q) ≺ U showing that
q ∈ RG(x3,U) soq 6∈ RD(x3,U). Thus|W (q)| ≤ 2 for eachq ∈ E.

Using L in place ofR, for eachx ∈ L we define setsLF (x,U), LG(x,U), andLD(x,U) and a
countable collectionr4(U) = {(q, x] : q < x, q ∈ E, and LD(x,U) 6= ∅} of open subsets ofX. Define

r(U) = r1(U) ∪ r2(U) ∪ r3(U) ∪ r4(U).

Thenr(U) is countable.

We claim thatr(U) coversX. For supposex ∈ X. If x ∈ I thenx is covered byr1(U). If x ∈
X − (I ∪ R ∪ L), then choose anyU ∈ U with x ∈ U . Then there are pointse1 < x < e2 with ei ∈ E
and(e1, e2) ≺ U , so that(e1, e2) ∈ r1(U) and hencex is covered byr(U). It remains to consider points
of R ∪ L. Supposex ∈ R, the other case being analogous, and supposex is not covered byr1(U). Then
RG(x,U) = ∅ so thatRD(x,U) 6= ∅. Choose anyU ∈ U with x ∈ U . Becausex ∈ R ⊆ X − I we know
that someq ∈ E hasx < q and[x, q) ⊆ U . Then[x, q) ∈ r3(U) so thatr(U) coversx.

Finally, supposeU andV are open covers ofX and thatU refinesV. Clearly ri(U) ⊆ ri(V) for
i = 1, 2, so suppose[x, q) ∈ r3(U). Thenx ∈ R, RD(x,U) 6= ∅ and[x, q) ≺ U . If RD(x,V) 6= ∅ then
[x, q) ∈ r3(V), as required. IfRD(x,V) = ∅ thenRF (x,V) = RG(x,V). Note thatq ∈ RF (x,U) ⊆
RF (x,V) so we know thatq ∈ RG(x,V). Hence there is somey < x with (y, x) 6= ∅ and(y, q) ≺ V.
Choose anye1 ∈ E ∩ (y, x). Then(e1, q) ≺ V so that[x, q) ⊆ (e1, q) ∈ r1(V) ⊆ r(V). Similarly, any set
(q, x] ∈ r4(U) is either a member or, or a subset of some member of,r(V). Thereforer(U) refinesr(V),
as required.2

The proof above actually shows more. If we modify the definition of monotone Lindelöf to refer to the
existence of refinements of cardinalityκ and call the resulting propertymonotoneκ-Lindelöf, the proof of
Proposition 3.1 shows that ifX is a GO-space withd(X) = κ, thenX is monotonicallyκ-Lindelöf.

An often-used technique for constructing examples is to begin with a LOTS(X, <,S), select three
disjoint subsetsR,L andI of X, and then isolate all points inI while changing the neighborhood systems
of points ofx ∈ R andy ∈ L to make sets of the form[x, b) and(a, y] open in a new topologyT on
X. This process is calledconstructing a GO-space on(X, <,S). The construction of the Sorgenfrey line
and the Michael line are perhaps the best known examples of this construction. The above proof can be
modified to show:

Proposition 3.2 Suppose that the LOTS(X, <,S) is separable and thatT is a GO-topology constructed
on (X, <,S). Then the following are equivalent:
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a) (X, T ) is Lindel̈of;

b) for anyT -open setU containing the setXd of all non-isolated points of(X, T ), the set
X − U is countable;

c) (X, T ) is monotonically Lindel̈of. 2

Does the converse of Proposition 3.1 hold? Is it true that the monotone Lindelöf property character-
izes separability among GO-spaces? It is no surprise to find that this is a Souslin problem issue so that
consistent answers are the best we can hope for.

Proposition 3.3 LetM be any model ofZFC. If M contains a Souslin line, thenM has a GO-space that
is hereditarily monotonically Lindelöf but not separable, and ifM does not contain a Souslin line, then
separability is equivalent to the hereditary monotone Lindelöf property for any GO-space inM .

Proof: First, supposeM contains a Souslin line. ThenM contains anω-branching Souslin treeT . Order
each node ofT making it a copy ofZ and letX be the resulting branch space. For eacht ∈ T , the set
[t] = {b ∈ X : t ∈ b} is closed and open inX. Let Y be any subspace ofX and letU be any relatively
open cover ofY . We will say that at ∈ T isU-minimal if [t]∩Y is contained in some member ofU and if
s <T t, then[s]∩ Y is not contained in any member ofU . Then the setM(U) consisting of allU-minimal
points ofT is an anti-chain ofT , so thatM(U) is countable. Definingr(U) = {[t] ∩ Y : t ∈ M(U)}, we
obtain a countable relatively open cover ofY , and clearlyr has the required monotone property.

Second, supposeM contains no Souslin line. Proposition 3.1 shows that ifX is a separable GO-
space, thenX is hereditarily monotonically Lindelöf. For the converse, supposeX is a GO-space that is
hereditarily monotonically Lindelöf. ThenX has countable cellularity so that because no Souslin lines
exist inM , X must be separable.2

4 Open Questions

There are several examples (or theorems) still needed to round out the elementary theory of the monotone
Lindelöf property in GO-spaces.

1) Is there a compact first countable GO-space that is not monotonically Lindelöf?

2) If there is a Souslin line, is there a compact Souslin line that is (hereditarily) monotonically
Lindelöf?

3) If there is a Souslin line, is there a Souslin line that is not monotonically Lindelöf?
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