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function spaces.

Keywords: regular filterbase, subcompact space, function space, discrete space

Classification: 54B10, 54C05, 54D30

0. Introduction.

Historically, completeness properties were designed to represent some facets of
compactness in non-compact spaces so all of them are primarily generalizations of
compactness. The real line gives a clear idea of the fact that local compactness
also has strong completeness properties. Other generalizations which nowadays are
classical, are Čech-completeness and the Baire property.

However, there are plenty of important spaces (pseudocompact ones or prod-
ucts of the real lines, for example) which are not necesarily Čech-complete but still
have some intuitively clear completeness properties. To capture the quintessence
of completeness in products, Oxtoby introduced in [Ox] the notion of pseudocom-
pleteness; its importance can be seen from the fact that it is preserved by arbitrary
products and that a metrizable space is pseudocomplete if and only if it has a dense
Čech-complete subspace. Choquet used strategies of topological games to define
two classes of complete spaces (called nowadays Choquet spaces and strong Cho-
quet spaces) [Ch]; these classes are productive and have many other nice categorical
properties, in particular, all Choquet spaces are Baire.

The school of de Groot, on the other hand, tried to express in more general
terms the fact that, apart from completeness, any Čech-complete space is an ab-
solute Gδ; this, evidently, required properties stronger than pseudocompleteness.
After proving to be very useful, they were baptized Amsterdam properties (the
reader can find all definitions and technicalities in Notation and Terminology).

Next, all well-known classes of spaces were to be checked for some (or all)
completeness properties. The turn of spaces Cp(X) came in 1980 when Lutzer and
McCoy characterized in [LM] the Baire property in Cp(X) and proved that Čech-
completeness of Cp(X) takes place if and only if X is countable and discrete. It
turned out that pseudocompleteness of Cp(X) does not imply discreteness of X but
does imply that each countable subset of X is closed and discrete. They also gave
equivalences of pseudocompleteness of Cp(X) for wide classes of spaces.

1 Research supported by Consejo Nacional de Ciencia y Tecnoloǵıa (CONACYT) de México, Grant
400200-5-38164-E
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However, if Cp(X) is homeomorphic to some power of the reals then X is
discrete [Tk1]. It is folklore (and easy to see) that if Cp(X) is complete as a
uniform space or is a continuous linear image of a power of the real line then X is
also discrete.

Additional results on discreteness of X have been proved given some complete-
ness property of Cp(X). For example, if Cp(X) is an Fσ-subset of R

X or Gδ or even
Gδσ in R

X then X is discrete (see [LM], [DGLM] and [vM]). The space X also has
to be discrete if Cp(X) is a closed continuous image of R

X (see [Tk3]) or if it is
pseudocomplete and realcompact (see [Tk2]).

Following the mentioned line of research in this paper, we prove that if Cp(X)
is subcompact then X is discrete; since subcompactness is the weakest of the Am-
sterdam properties, every one of those in Cp(X) implies discreteness of X. This
result shows that it is time to see what happens if Cp(X) has a dense complete
subspace. It is not even clear whether X has to be discrete if Cp(X) contains a
dense copy of a power of the real line. This was formulated as an open question in
[Tk3]. We only succeeded to prove that, under Martin’s Axiom, if Cp(X) contains
some dense copy of R

κ for κ < c, then X is discrete.

1. Notation and terminology.

All spaces are assumed to be Tychonoff. If X is a space then τ(X) is its
topology and τ∗(X) = τ(X)\{∅}. The set R is the real line with its usual topology
and I = [0, 1] ⊂ R. Given Tychonoff spaces X and Y , the symbol Cp(X, Y ) stands
for the set of all continuous functions from X to Y endowed with the pointwise
convergence topology; if Y = R then we write Cp(X) instead of Cp(X, Y ). See [Ar]
for a systematic presentation.

A space Y is called pseudocomplete if it has a sequence {Bn : n ∈ ω} of π-bases
such that for any family {Bn : n ∈ ω} with Bn ∈ Bn and Bn+1 ⊂ Bn for each n ∈ ω,
we have

⋂
n∈ω Bn �= ∅. Two sets A, B ⊂ Y are said to be completely separated if

there exists a continuous function f : Y → R such that f(a) � 0 for any a ∈ A while
f(b) � 1 for each b ∈ B; we consider that the empty set is completely separated
from any subset of Y .

A family U ⊂ τ∗(Y ) is called a regular filterbase if, for any U, V ∈ U there is
W ∈ U such that W ⊂ U ∩ V . A space Y is subcompact if it has a base B ⊂ τ∗(Y )
such that every regular filterbase U ⊂ B has non-empty intersection. The space
Y is base-compact if it has a base B such that

⋂{U : U ∈ U} �= ∅ for any family
U ⊂ B with the finite intersection property. If

⋂{U : U ∈ U} �= ∅ for any U ⊂ B
such that {U : U ∈ U} has the finite intersection property then Y is called regularly
co-compact. Regular co-compactness, base compactness and subcompactness are
also called Amsterdam properties.1

The rest of our notation is standard and follows [En] and [AL1].

1 There is another property, called co-compactness, that is usually included in the list of Amsterdam
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2. Amsterdam properties in function spaces.

It turns out that even subcompactness of Cp(X) implies that X is discrete. We
will also establish that it is consistent that if Cp(X) contains a dense copy of R

ω1

then it is homeomorphic to R
ω1 .

2.1. Theorem. Suppose that there is a subcompact subspace C ⊂ Cp(X) with
the following properties:
(i) if f, g ∈ C then f · g ∈ C, max{f, g} ∈ C and min{f, g} ∈ C;
(ii) if A and B are completely separated subspaces of X then there exists f ∈ C
such that f(A) ⊂ {0} and f(B) ⊂ {1}.
Then the space X is discrete.

Proof. Let B be a base which witnesses subcompactness of C. Given a function
g ∈ C, a finite set F ⊂ X and ε > 0 let O(g, F, ε) = {h ∈ C : |h(x) − g(x)| < ε for
any x ∈ F}; the sets O(g, F, ε) form a local base at g in the space C.

Our plan is to prove first that any two disjoint countable sets are completely
separated and then establish the same for all pairs of disjoint sets of higher cardi-
nalitites. The reasonings are similar but, unfortunately, there are some technical
obstacles which do not allow us to give the same proof for all cardinalities at once.

Lemma 1. With hypotheses and notation as in 2.1, suppose that Q is a countable
subset which is completely separated from any finite subset of X\Q. Then Q is
completely separated from any countable subset of X\Q.

Proof of Lemma 1. Observe that the set Q may be finite in which case it is trivially
completely separated from any finite subset of X\Q.

Note that, to say that Q is completely separated from each finite subset of
X\Q is equivalent to saying that Q is a closed subset of X, because X is completely
regular. Our formulation of Lemma 1 is chosen to emphasize the analogy between
Lemma 1 and the uncountable cases considered below.

So, take any countably infinite set P ⊂ X\Q and let {pn : n ∈ ω} be a faithful
enumeration of P . Let us also fix some enumeration {qn : n ∈ ω} (maybe with
repetitions) of the set Q. There is a function f0 ∈ C such that f0(p0) = 1 and
f0(Q) ⊂ {0}; passing from f0 to (f0)2 if necessary, we can assume that f0(x) � 0
for any x ∈ X. Pick any U0 ∈ B with f0 ∈ U0; there exists a finite set F0 ⊂ X and
ε0 ∈ (0, 1) such that {p0, q0} ⊂ F0 and O(f0, F0, ε0) ⊂ U0.

Choose g0 ∈ C for which g0(F0\Q) ⊂ {1} and g0(Q) ⊂ {0}; again, there is no
loss of generality to assume that g0 � 0. Fix a set V0 ∈ B with g0 ∈ V0; there exists
a finite set H0 ⊂ X such that F0 ⊂ H0 and O(g0, H0, η0) ⊂ V0 for some η0 ∈ (0, 1).

Suppose that n ∈ ω and we have chosen elements U0, V0, . . . , Un, Vn of the base
B together with finite subsets F0, H0, . . . , Fn, Hn of the space X as well as non-

properties. Every regularly co-compact space is co-compact, but the Sorgenfrey line shows that the
converse is false. The Sorgenfrey line also shows that co-compactness does not imply base-compactness.
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negative functions f0, g0, . . . , fn, gn ∈ C and real positive numbers ε0, η0, . . . , εn, ηn

with the following properties:
(a) O(fk, Fk, εk) ⊂ Uk and O(gk, Hk, εk) ⊂ Vk for every k � n;
(b) Hk ⊂ Fk+1, Uk+1 ⊂ O(fk, Fk, εk) and Vk+1 ⊂ O(gk, Hk, ηk) whenever k < n;
(c) {p0, q0, . . . , pk, qk} ⊂ Fk ⊂ Hk and εk, ηk ∈ (0, 2−k) for every k � n;
(d) fk+1((Hk\Fk)\Q) ⊂ {1} for every k < n;
(e) fk(Q) ⊂ {0}, gk(Q) ⊂ {0} and gk((Fk\Hk−1)\Q) ⊂ {1} (where H−1 = ∅) for

every k � n;
(f) fk+1|Fk = fk and gk+1|Hk = gk for every k < n.

Apply (i) to find a non-negative ϕ0 ∈ C such that ϕ0((Hn\Fn)\Q) ⊂ {1} and
ϕ0(Q) ⊂ {0}. There exists a non-negative function ϕ1 ∈ C such that ϕ1(Fn) ⊂ {0}
and ϕ1((Hn\Fn)\Q) ⊂ {1}. The function ϕ0 · ϕ1 is equal to zero on Fn ∪ Q and
equals 1 on (Hn\Fn)\Q. We will also need a non-negative function ϕ ∈ C such that
ϕ(Fn) ⊂ {1} and ϕ((Hn\Fn)\Q) ⊂ {0}.

It is clear that the function fn+1 = max{fn · ϕ, ϕ0 · ϕ1} ∈ C is non-negative
and fn+1|Fn = fn while fn+1((Hn\Fn)\Q) ⊂ {1} and fn+1(Q) ⊂ {0}. Take
Un+1 ∈ B such that fn+1 ∈ Un+1 ⊂ O(fn, Fn, εn). There exists a finite set
Fn+1 ⊂ X and εn+1 ∈ (0, 2−n−1) such that Hn ∪ {p0, q0, . . . , pn+1, qn+1} ⊂ Fn+1
and O(fn+1, Fn+1, εn+1) ⊂ Un+1.

Analogously, we can construct a non-negative function gn+1 ∈ C such that
gn+1|Hn = gn while gn+1((Fn+1\Hn)\Q) ⊂ {1} and gn+1(Q) ⊂ {0}. Take Vn+1 ∈ B
such that gn+1 ∈ Vn+1 ⊂ O(gn, Hn, ηn). There exists a finite set Hn+1 ⊂ X and
ηn+1 ∈ (0, 2−n−1) such that Fn+1 ⊂ Hn+1 and O(gn+1, Hn+1, ηn+1) ⊂ Vn+1.

It is straightforward that, after step n + 1, we still have all properties (a)–(f)
for the relevant sets and functions so our inductive procedure gives us sequences
{fn, gn : n ∈ ω} ⊂ C, {Un, Vn : n ∈ ω} ⊂ B as well as families {Fn, Hn : n ∈ ω}
and {εn, ηn : n ∈ ω} for which the properties (a)–(f) hold for all n ∈ ω.

It follows from the properties (a) and (b) that the families U = {Un : n ∈ ω}
and V = {Vn : n ∈ ω} are regular filterbases so we can pick f ∈ ⋂ U and g ∈ ⋂ V.
The properties (a)–(f) imply that P ⊂ f−1(1)∪ g−1(1) and Q ⊂ f−1(0)∩ g−1(0) so
the function max{f2, g2} ∈ C separates P and Q, i.e., Lemma 1 is proved.
Lemma 2. With hypotheses and notation as in 2.1, any two countable disjoint
subsets of X are completely separated.
Proof of Lemma 2. Let P be a finite subset of X; since it is completely separated
from any finite Q ⊂ X\P , we can apply Lemma 1 to see that it is completely
separated from any countable subset of X\P . This means that any countable subset
of X is completely separated from any finite set from its complement. Applying
Lemma 1 once more we conclude that any two disjoint countable subsets of X are
completely separated.

For any set A ⊂ X and f ∈ C, let G(A, f) = {g ∈ C : g|A = f |A}; if A = ∅
then we consider that G(A, f) = C for any f ∈ C.
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Lemma 3. With hypotheses and notation as in 2.1, for any f ∈ C, if V ⊂ B and
f ∈ ⋂ V then there exists a regular filterbase V ′ ⊂ B such that |V ′| � |V| · ω while
V ⊂ V ′ and f ∈ ⋂ V ′.

The proof can be easily derived from the fact that, for any U, V ∈ V there is
W ∈ B for which f ∈ W ⊂ W ⊂ U ∩ V .
Lemma 4. With hypotheses and notation as in 2.1, suppose that U ⊂ B and
f ∈ ⋂ U . Then, for any set A ⊂ X we can find a set A′ ⊂ X with A ⊂ A′ and a
regular filterbase U ′ ⊂ B with U ⊂ U ′ such that max{|U ′|, |A′|} � |A| · |U| · ω and⋂ U ′ = G(A′, f).
Proof of Lemma 4. Let μ = |A| · |U| · ω; since the sets O(f, F, ε) form a local base
at f , for any B ∈ B with f ∈ B there is a finite F (B) ⊂ X and n(B) ∈ N for which
O(f, F (B), 1

n(B) ) ⊂ B.
For every finite F ⊂ A the set O(f, F, 1

n ) is an open neighbourhood of f in
the space C for each n ∈ N. Therefore there exists a set W (F, n) ∈ B such that
f ∈ W (F, n) ⊂ O(f, F, 1

n ).
Let A0 = A; the family U0 = U ∪ {W ({y}, k) : y ∈ A0, k ∈ N} ⊂ B contains

f in its intersection and |U0| � μ. Proceeding inductively assume that we have a
set An ⊂ X and a family Un ⊂ B such that |An| · |Un| � μ and f ∈ ⋂ Un. By
Lemma 3 there exists a regular filterbase F ⊂ B such that f ∈ ⋂ F while |F| � μ
and Un ⊂ F .

Let An+1 =
⋃{F (B) : B ∈ F} and Un+1 = F∪{W ({y}, k) : y ∈ An+1, k ∈ N}.

It is easy to see that |An+1| · |Un+1| � μ so our inductive construction gives us
increasing sequences {An : n ∈ ω} and {Un : n ∈ ω}. If we let A′ =

⋃{An : n ∈ ω}
and U ′ =

⋃{Un : n ∈ ω} then A′ and U ′ are as promised.
Lemma 5. With hypotheses and notation as in 2.1, suppose that κ is an uncount-
able cardinal and any two disjoint subsets of X of cardinality < κ are completely
separated and a set P ⊂ X of cardinality � κ is completely separated from any
Q ⊂ X\P with |Q| < κ. Then P is completely separated from any set R ⊂ X\P
with |R| = κ.
Proof of Lemma 5.

Fix R ⊂ X\P of cardinality κ and take a faithful enumeration {zα : α < κ} of
the set R. We can also choose an increasing family P = {Pα : α < κ} of subsets
of P such that |Pα| � |α| · ω for any α < κ and

⋃ P = P . Define f0 and g0 to be
the functions which are identically zero on X; it follows from (ii) that {f0, g0} ⊂ C.
Let A0 = E0 = D0 = F0 = ∅; we will also need empty families U0, V0 ⊂ B.

Proceeding by transfinite induction assume that β < κ and we have constructed
a set {fα, gα : α < β} of non-negative elements of C, a β-sequence {Uα, Vα : α < β}
of regular filterbases contained in B and a family {Aα, Eα, Dα, Fα : α < β} of
subsets of X with the following properties:
(1) Aα ⊂ (Eα\P )\(

⋃{Eγ : γ < α}), Dα ⊂ (Fα\P )\(
⋃{Fγ : γ < α}) and we have

|Eα ∪ Fα| � |α| · ω for any α < β;
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(2) |Uα ∪ Vα| � |α| · ω for any α < β;
(3) zγ ∈ (

⋃{Aμ : μ � α}) ∪ (
⋃{Dμ : μ � α}) whenever γ < α < β;

(4) fα|Eγ = fγ and gα|Fγ = gγ whenever γ < α < β;
(5) fα(Aγ) ⊂ {1} and gα(Dγ) ⊂ {1} while fα(P ) ⊂ {0} and gα(P ) ⊂ {0} whenever

γ < α < β;
(6) Eγ ⊂ Eα, Uγ ⊂ Uα and Fγ ⊂ Fα, Vγ ⊂ Vα if γ < α < β;
(7) Fγ ⊂ Eα ⊂ Fα whenever γ < α < β;
(8) if E′

α = (Eα\P )\(
⋃

Fγ : γ < α}) and F ′
α = (Fα\P )\Eα then E′

α ⊂ Dα and
F ′

α ⊂ Aα+1 whenever α + 1 < β;
(9)

⋂ Uα = G(Eα, fα),
⋂ Vα = G(Fα, gα) and Pγ ⊂ Eα if γ < α < β.

If β is a limit ordinal then let Eβ =
⋃

α<β Eα, Fβ =
⋃

α<β Fα. Analogously,
consider the families Uβ =

⋃
α<β Uα and Vβ =

⋃
α<β Vα. It follows from (6) that

both Uβ and Vβ are regular filterbases so there exist fβ ∈ ⋂ Uβ and gβ ∈ ⋂ Vβ .
An immediate consequence of (4) and (9) is that we have

⋂ Uβ = G(Eβ , fβ) and⋂ Vβ = G(Fβ , gβ). If we let Aβ = ∅ and Dβ = ∅ then all properties (1)–(9) trivially
hold for all α � β.

Now, assume that β = λ + 1 and let γ < κ be the minimal ordinal such that
zγ /∈ ⋃{Aμ ∪ Dμ : μ � λ}. If F ′

λ = (Fλ\P )\Eλ then the set F ′
λ ∪ {zγ} ⊂ X\P

has cardinality less than κ so there exists a non-negative function ϕ0 ∈ C such that
ϕ0(P ) ⊂ {0} and ϕ0(F ′

λ∪{zγ}) ⊂ {1}. The sets F ′
λ∪{zγ} and Eλ\P have cardinality

< κ so we can find a non-negative function ϕ1 ∈ C such that ϕ1(Eλ\P ) ⊂ {0} and
ϕ1(F ′

λ ∪{zγ}) ⊂ {1}. The function ϕ = min{ϕ0, ϕ1} is equal to zero on P ∪Eλ and
to 1 on F ′

λ ∪ {zγ}. Choose a non-negative function δ ∈ C such that δ(Eλ) ⊂ {1}
and δ(F ′

λ ∪ {zγ}) ⊂ {0}.
Then h = fλ · δ ∈ C coincides with fλ on Eλ and h(P ∪ F ′

λ ∪ {zγ}) ⊂ {0}.
Therefore fβ = max{h, ϕ} ∈ C is non-negative and coincides with fλ on Eλ while
fβ(F ′

λ ∪ {zγ}) ⊂ {1} and fβ(P ) ⊂ {0}; let Aβ = F ′
λ ∪ {zγ}.

Apply Lemma 4 to find a set Eβ ⊂ X and a regular filterbase Uβ ⊂ B such that
Uλ ⊂ Uβ , Fλ ∪ Aβ ∪ Pλ ⊂ Eβ ,

⋂ Uβ = G(Eβ , fβ) and, besides, |Uβ | · |Eβ | � |β| · ω.
Let Dβ = (Eβ\P )\Fλ; reasoning analogously, we can find a non-negative

function gβ ∈ C such that gβ |Fλ = gλ while gβ(Dβ) ⊂ {1} and gβ(P ) ⊂ {0}.
By Lemma 4 there is a set Fβ ⊂ X and a regular filterbase Vβ ⊂ B such that
Eβ ∪ Pλ ⊂ Fβ and Vλ ⊂ Vβ while

⋂ Vβ = G(Fβ , gβ) and |Fβ | · |Vβ | � |β| · ω. It
is easy to see that the properties (1)–(9) are satisfied for the relevant families for
all α � β. Therefore our inductive procedure can be continued to obtain a set
{fα, gα : α < κ} of non-negative elements of C, a κ-sequence {Uα, Vα : α < κ} of
regular filterbases contained in B and a family {Aα, Eα, Dα, Fα : α < κ} of subsets
of X for which the properties (1)–(9) hold for all β < κ.

It is easy to see that both families U =
⋃

α<κ Uα and V =
⋃

α<κ Vα are regular
filterbases so there are functions f ∈ ⋂ U and g ∈ ⋂ V. It follows from (9) and (5)
that f(P ) ⊂ {0} and g(P ) ⊂ {0}.
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Let A =
⋃

α<κ Aα and D =
⋃

α<κ Dα; the properties (4) and (5) show that
f(A) ⊂ {1} and g(D) ⊂ {1}. The property (3) guarantees that R ⊂ A ∪ D so the
function h = max{f2, g2} ∈ C separates P from R, i.e., Lemma 5 is proved.

To finally establish that X is discrete it suffices to prove that any two disjoint
subsets A, B ⊂ X are completely separated (actually, it suffices to show that any
point is completely separated from its complement). We already saw that this is
true if A and B are countable. Suppose that κ is a cardinal and we proved that
any disjoint A, B ⊂ X with |A| < κ, |B| < κ are completely separated. If A ⊂ X
and |A| < κ then A is completely separated from any B ⊂ X\A with |B| < κ so we
can apply Lemma 5 to see that A is completely separated from any B ⊂ X\A with
|B| � κ. Thus, every set A of cardinality � κ is completely separated from any
disjoint set B of cardinality < κ. This shows that we can apply Lemma 5 again to
conclude that A is completely separated from any disjoint set of cardinality � κ. In
other words, any two disjoint sets of cardinality at most κ are completely separated
so our inductive proof can go on to establish that any two disjoint subsets of X are
completely separated and hence X is discrete.

2.2. Corollary. If Cp(X) is subcompact then X is discrete.

2.3. Corollary. If Cp(X, [0, 1]) is subcompact then X is discrete.

Proof. It is easy to see that the set C = Cp(X, [0, 1]) satisfies the conditions (i)
and (ii) of Theorem 2.1.

2.4. Corollary. If either Cp(X) or Cp(X, [0, 1]) is regularly co-compact or base-
compact then X is discrete.

Proof. This is because subcompactness is the weakest from our list of Amsterdam
properties so Corollaries 2.2 and 2.3 do the rest.

2.5. Proposition. Under MA+¬CH, if κ < c is a cardinal, a space Y contains a
dense copy C of R

κ and Y \C is dense in Y then R
κ does not embed densely in

Y \C.

Proof. We can identify R
κ with the subspace (0, 1)κ of the compact space I

κ. If
πα : I

κ → I is the projection of I
κ onto its α-th factor for any α < κ then the set

I
κ\(0, 1)κ =

⋃{π−1
α ({0, 1}) : α < κ} is the union of κ-many compact subsets of I

κ.
It is standard to show that this implies that R

κ is a Gκ-subset of any space which
contains it as a dense subspace.

Now assume that C and D are dense homeomorphic copies of R
κ in a space Y .

By our observation there is a family K = {Kα : α < κ} of compact subsets of βY
such that βY \C =

⋃ K. Every set Lα = Kα ∩ D is nowhere dense and closed in D
so D is a union of at most κ-many nowhere dense subspaces. The space C being
homeomoprhic to D there exists a family C of nowhere dense subspaces of C such
that |C| � κ and C =

⋃ C.
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It is evident that K′ = K ∪ C is a family of at most κ-many of nowhere dense
subsets of βY such that

⋃ K′ = βY . However, c(βY ) � c(D) = ω (recall that the
space D is dense in βY and homeomorphic to R

κ) so Martin’s Axiom is applicable
to βY to conclude that it cannot be represented as a union of < c-many nowhere
dense sets, a contradiction.

2.6. Theorem. Under Martin’s Axiom and the negation of CH, if Cp(X) has a
dense subspace homeomorphic to R

κ for some cardinal κ < c then X is discrete.

Proof. If Cp(X) has a dense copy of R
κ and X is not discrete then take a discon-

tinuous function ϕ on the set X. Then ϕ+Cp(X) is a dense disjoint copy of Cp(X)
in R

X so we also have two dense disjoint copies of R
κ in R

X which contradicts
Proposition 2.5.

3. Open questions.

We give below the list of question we could not solve while working on this
paper. They might be simple or difficult but all of them will require new methods
for their solution.

3.1. Question. Is it consistent with ZFC that there exists a Tychonoff space X
such that X = X0 ∪ X1 where every Xi is dense in X, homeomorphic to R

ω1 and
X0 ∩ X1 = ∅?

3.2. Question. Is it true in ZFC that if Cp(X) contains a dense copy of R
ω1 then

X is discrete?

3.3. Question. Suppose that Cp(X) has a dense regularly co-compact subspace.
Must X be discrete?

3.4. Question. Suppose that Cp(X) has a dense base-compact subspace. Must X
be discrete?

3.5. Question. Suppose that Cp(X) has a dense subcompact subspace. Must X
be discrete?

3.6. Question. Suppose that X is a zero-dimensional space such that Cp(X, {0, 1})
is subcompact. Must X be discrete?

3.7. Question. Assume that Cp(X) is a countable union of its closed subcompact
subspaces. Must X be discrete?

3.8. Question. Assume that Cp(X) is a countable union of its closed base-compact
subspaces. Must X be discrete?

3.9. Question. Suppose that Cp(X, [0, 1]) has a dense base-compact subspace.
Must X be discrete?
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3.10. Question. Suppose that Cp(X, [0, 1]) is a countable union of its closed base-
compact subspaces. Must X be discrete?

REFERENCES

[AL1] J.M. Aarts and D.J. Lutzer, Completeness properties designed for recognizing Baire spaces,
Dissertationes Mathematicae 116(1974), 1–48.

[Ar] A.V. Arhangel’skii, Topological Function Spaces, Kluwer Acad. Publ., Dordrecht, 1992.
[Ch] G. Choquet, Letures on Analysis, Benjamin, New York, 1969.
[En] R. Engelking, General Topology, PWN, Warszawa 1977.
[Ju] I. Juhász, Cardinal Functions in Topology — Ten Years Later, Mathematical Centre Tracts,

123, Amsterdam, 1980.
[LM] D.J. Lutzer, R.A. McCoy, Category in function spaces, I, Pacific J. Math., 90:1(1980), 145–168.
[Ox] J. Oxtoby, Cartesian products of Baire spaces, Fund. Math., 49(1961), 157-166.
[Tk1] V.V. Tkachuk, Duality with respect to the functor Cp and cardinal invariants of the type of the

Souslin number, Math. Notes, 37:3(1985), 247–252.
[Tk2] V.V. Tkachuk, The spaces Cp(X): decomposition into a countable union of bounded subspaces

and completeness properties, Topology Appl., 22:3(1986), 241–253.
[Tk3] V.V. Tkachuk, Mapping metric spaces and their products onto Cp(X), New Zealand J. Math.,

27:1(1998), 113–122.
[DGLM] J. Dijkstra, T. Grillot, D.J. Lutzer, J. van Mill, Function spaces of the low Borel complexity,

Proc Amer. Math. Soc., 94:4(1985), 703–710.
[vM] J. van Mill, Cp(X) is not Gδσ: a simple proof, Bull. Polon. Acad. Sci. Ser. Math. Astronom.

Phys. 47(1999), 319-323.

David J. Lutzer Jan van Mill
Mathematics Department Department of Mathematics,
College of William and Mary Vrije Universiteit, De Boelelaan 1081
Williamsburg, VA 23187-8795, U.S.A. HV Amsterdam, the Netherlands
e-mail: lutzer@math.wm.edu e-mail: vanmill@cs.vu.nl

Vladimir V. Tkachuk
Departamento de Matematicas,
Universidad Autónoma Metropolitana,
Av. San Rafael Atlixco, 186, Iztapalapa,
A.P. 55-532, C.P. 09340, Mexico, D.F.
e-mail: vova@xanum.uam.mx

9


