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that if S and T are stationary sets, then the product space S × T is normal if and only if S ∩ T
is stationary. In addition, we prove that for any X ⊆ ω1, X ×X is normal, and that if X ×X is
hereditarily normal, then X ×X is metrizable.

MathSciNet numbers: Primary 54C05 ; Secondary 54B10, 28C15, 54G99

Key words and phrases: ω1, countable ordinals, club-set, stationary set, Pressing Down Lemma,
metrizable, Borel sets, Borel measure, Ulam matrix, normality of products.

1 Introduction

In this expository paper, we explore topology inside of ω1 using set theoretic tools of stationary
sets. We make no claim of novelty for these results: any logician or topologist will know at least
half of them.

The space ω1 is the well-ordered set of all countable ordinals with the open-interval topology
of that well-ordering. It is a standard example in general topology courses, a space that is (for
example) countably compact but not compact, first countable but not second countable, normal
but not paracompact, and locally metrizable but not metrizable. In addition, the set ω1 and some
of its larger relatives are standard tools in modern set theory.

In Section 2 we begin with a whirlwind tour of club-sets, stationary sets, the Pressing Down
Lemma, and Ulam matrices. Then we show how such set-theoretic tools can be used to study some
more advanced topics in the topology of subspaces of ω1. For example, in Section 3 we prove:

a) When ω1 carries the open-interval topology of its linear order, any subspace of ω1 is
either stationary or metrizable.
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b) If two stationary sets S and T are homeomorphic as topological subspaces of ω1,
then S ∩T is stationary and S∆T is not stationary so that there are 2ω1 many different
topological types of stationary subsets of ω1.

Section 4 of our paper uses the Pressing Down Lemma to study normality of the product of two
stationary sets and we prove:

c) For two stationary subsets S and T of ω1, the product space S × T is normal if and
only if S ∩ T is stationary, and for any subset X of ω1, X ×X is normal.

We conclude with an annotated list of some other results about the topology of stationary sets.

In this paper, we give proofs using only the tools outlined in Section 2 even though shorter proofs
exist using more esoteric ideas from general topology. We thank several colleagues, and especially
N. Kemoto, for comments that substantially improved our exposition. Throughout this paper, we
assume the Axiom of Choice(AC), except where specifically noted.

2 Basic tools: the set ω1, club-sets, and stationary sets

The results in this section appear in any modern textbook on mathematical logic. Using the Axiom
of Choice(AC), it is easy to prove that there is a unique (up to order isomorphism) uncountable well-
ordered set called ω1 with the special property that for each member β of ω1 the set of predecessors
of β is countable1. By working harder one can get ω1 without AC [9]. In an abuse of notation, we
sometimes think of ω1 as the right endpoint of the set, and write things like [α, ω1) := {β ∈ ω1 :
α ≤ β}.

Any nonempty countable subset of ω1 has a least upper bound in ω1. In the open interval
topology of the given well-ordering ≤ of ω1 a subset C of ω1 is closed if and only if sup(D) ∈ C
for each countable subset D ⊆ C. The set of all limit ordinals in ω1, i.e. the set of all λ ∈ ω1

that have no immediate predecessor, is an example of a closed set that is uncountable (equivalently,
unbounded). Such sets are called “club-sets” (or sometimes “cub-sets”). The next three results
give ways to produce more complicated club-sets.

Proposition 2.1 If C0, C1, C2, · · · is a sequence of club-sets, then
⋂
{Cn : n < ω} is also a club-set.

Proof: It is clear that
⋂
{Cn : n < ω} is a closed set. To show that

⋂
{Cn : n < ω} is unbounded,

line up the sets Cn as follows:

C0, C1; C0, C1, C2; C0, C1, C2, C3; C0, · · ·

and fix any γ ∈ ω1. Choose any α0 ∈ C0 with α0 > γ. Given αn, choose αn+1 from the (n + 1)st

set in the list with αn+1 > αn. The fact that each Cn is unbounded makes this possible. Let
β = sup({αn : n < ω}). Then β ∈

⋂
{Cn : n < ω} and β > γ as required. 2

Proposition 2.2 (Diagonal Intersection) Suppose Dα is a club-set for each α < ω1. Then the set
E = {β < ω1 : β ∈

⋂
{Dα : α < β}} is also a club-set.

1Today this set is usually called ω1, but older books sometimes call it Ω (see [10])
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Proof: It is easy to check that E is closed, but upon first inspection it is not clear that the set
E is non-empty, let alone unbounded. So suppose γ0 < ω1 is fixed. By Proposition 2.1, the set⋂
{Dα : α < γ0} is a club-set, so let γ1 be the first element of

⋂
{Dα : α < γ0} with γ1 > γ0. Given

γn, the set
⋂
{Dα : α < γn} is a club-set, so we let γn+1 be the first member of that set that is

greater than γn. Let δ = sup{γn : n < ω}. Then δ ∈ E and δ > γ0, so that E is an unbounded
subset of ω1 as required. 2

Proposition 2.3 Suppose S ⊆ ω1 and f : S → ω1 has α < f(α) for all α ∈ S. Then there is a
club-set C such that if γ ∈ C and α ∈ S has α < γ, then f(α) < γ. In particular, if α1 < α2 are in
S ∩ C, then f(α1) < f(α2).

Proof: Let C := {γ ∈ ω1 : if α ∈ S and α < γ then f(α) < γ}. To show that C is nonempty
and unbounded, fix any α0 < ω1. Given αn, note that the set Fn := {f(β) : β ∈ S and β ≤ αn}
is countable, so there is some αn+1 > αn with Fn ⊆ [0, αn+1). Let γ = sup({αn : n < ω}). Note
that if α ∈ S and α < γ ∈ C, then for some n, α < αn so that f(α) < αn+1 < γ, showing that
γ ∈ C. Because γ > α0, the set C is nonempty and unbounded. A similar argument shows that if
γ0 < γ1 < · · · are points of C, then sup{γn : n < ω} ∈ C, so C is closed. Now suppose α1 < α2 are
in C ∩ S. Then f(α1) < α2 < f(α2) as required. 2

Almost any set of ordinals that one can describe will either contain a club-set, or its complement
will contain a club-set. Such sets form an important class of subsets of ω1. Recall that the family
of Borel sets in a space X, called Borel(X), is the smallest σ-algebra of subsets of X that contains
every closed set. In the case of ω1, we have:

Proposition 2.4 The collection Borel(ω1) is the collection of all sets S ⊆ ω1 where either S or
ω1 − S contains a club-set.

Proof: Write C = {S ⊆ ω1 : either S or ω1−S contains a club-set}. Using Proposition 2.1 it is easy
to check that C is a σ-algebra and that C contains every closed subset of ω1, so Borel(ω1) ⊆ C. Next
consider any subset S of ω1 where C ⊆ S for some club-set C. Then ω1−C =

⋃
{Ui : i ∈ I} where

{Ui : i ∈ I} is a pairwise disjoint collection of non-empty countable, convex2 open sets. Index each
Ui = {α(i, n) : n < ω}, with repetitions allowed in case some Ui is finite. Let Dn = {α(i, n) : i ∈ I}
and let En = cl(Dn). Both En and ω1−C are in Borel(ω1) so that Dn = En∩(ω1−C) ∈ Borel(ω1).
Therefore S = C ∪ (

⋃
{Dn : n < ω}) ∈ Borel(ω1) as claimed. Finally, if ω1− S contains a club-set,

the above argument shows that ω1 − S ∈ Borel(ω1) so that S ∈ Borel(ω1). 2

One might wonder whether there are any subsets of ω1 except for the Borel sets. Under (AC),
the answer is “Yes” as we will show below. But first, we need some terminology. A subset S ⊆ ω1

is said to be a stationary set if S ∩C 6= ∅ for each club-set C ⊆ ω1. In the light of Proposition 2.4,
the non-Borel subsets of ω1 (if there are any) are precisely the sets T ⊆ ω1 with the property that
both T and ω1−T are stationary, and such sets are said to be bi-stationary. Using AC, Mary Ellen
Rudin gave a particularly elegant proof that ω1 must have bi-stationary subsets. What follows is a
slight re-writing of Rudin’s proof.

2The set C is convex if α < β < γ and α, γ ∈ C imply that β ∈ C. A maximal convex subset of a set D is called
a convex component of D. Any subset of ω1 is the pairwise disjoint union of its maximal convex subsets, which are
called convex components of the set.
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Proposition 2.5 There is a bi-stationary subset S ⊆ ω1, i.e., a set S with the property that neither
S nor ω1 − S contains a club-set.

Proof: For contradiction, suppose that for every subset S ⊆ ω1, either S or ω1 − S contains a
club-set. In the set R of real numbers, let D0 = {[n, n + 1) : n ∈ Z} where Z is the set of all
integers. Let D1 = {[n, n+ 1

2
) : n ∈ Z} ∪ {[n+ 1

2
, n+ 1) : n ∈ Z}. Continue this bisection process,

creating for each n < ω a countable pairwise disjoint collection Dn of half-open intervals of R that
has

⋃
Dn = R, and where every member of Dn has length 1

2n
.

Because |ω1| ≤ 2ω, there is a function f : ω1 → R that is an injection (but possibly not a
surjection).

Now fix n < ω. We claim that for some D ∈ Dn, the set f−1[D] contains a club-set. If that
is not true, then for each D ∈ Dn, the set ω1 − f−1[D] must contain a club-set CD. But then⋂
{ω1 − f−1[D] : D ∈ Dn} contains the club-set

⋂
{CD : D ∈ Dn} by Proposition 2.1. Therefore⋂

{ω1 − f−1[D] : D ∈ Dn} 6= ∅. Let α be the first member of
⋂
{ω1 − f−1[D] : D ∈ Dn}. But then

f(α) ∈ R and f(α) 6∈ D for every D ∈ Dn, and that is impossible because
⋃
Dn = R.

In the light of the previous paragraph, for each n, we may choose a member Dn ∈ Dn that has
f−1[Dn] ⊇ Cn where Cn is a club-set (we note that there is exactly one such Dn). Then Proposition
2.1 shows that

⋂
{Cn : n < ω} is a club-set, so we can let α and β be the first two points of that

set. But then f(α), f(β) ∈ Dn for each n so that for each n the distance between f(α) and f(β) is
less than the length of Dn which is 1

2n
. Therefore, f(α) = f(β) and that is impossible because f is

injective. 2

Stationary sets share many properties of ω1 as can be seen from the next lemma whose proof
uses Propositions 2.1 and 2.2 and whose results will be needed in Section 4.

Lemma 2.6 Let S ⊆ ω1 be a stationary set.

a) If S =
⋃
{Sn : n < ω}, then one of the sets Sn is stationary;

b) If Cn is a relatively closed uncountable subset of S (to be called a relative club-set in
S) for each n < ω, then

⋂
{Cn : n < ω} is also a relative club-set in S;

c) If Dα is a relative club-set in S for each α ∈ S, then {α ∈ S : for all β < α, α ∈ Dβ}
is a relative club-set in S.

2

Rudin’s proof in Proposition 2.5 can be modified to show that each stationary set can be split
into two disjoint stationary sets (use an injective function from a stationary set into R), but in
the next section we need much more, so we turn to an elegant tool called an Ulam matrix. Ulam
introduced this matrix to solve a measure-theoretic problem (discussed in Remark 2.11 below) that
had nothing to do with stationary sets. An Ulam matrix is a special array of sets U(α, n) with ω1

rows and ω columns. Ulam was answering a question about measures defined in ω1 and gave his
construction [17] for the set S = ω1, but because we need a corollary about splitting stationary sets
(see Corollary 3.4 below), we present Ulam’s proof in a more general format. See [14] for a more
complete discussion.
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Lemma 2.7 (Ulam) Let S be a stationary subset of ω1. For each α ∈ S the set S∩[0, α] is countable
so there is a surjection fα : ω → S∩ [0, α]. Define U(α, n) = {β ≥ α : β ∈ S and fβ(n) = α}. Then

(i) S ∩ [α, ω1) =
⋃
{U(α, n) : n < ω}, and

(ii) if α1 6= α2 then for each n < ω,U(α1, n) ∩ U(α2, n) = ∅.

Proof: To verify (i), suppose γ ∈ S ∩ [α, ω1). Then fγ : ω → S ∩ [0, γ] is a surjection and
α ∈ S ∩ [0, γ] so there is some n < ω with fγ(n) = α. But then γ ∈ U(α, n). It is clear that every
U(α, n) ⊆ S ∩ [α, ω1) so that (i) is established.

To prove (ii), suppose γ ∈ U(α1, n) ∩ U(α2, n) with α1 6= α2. Then fγ(n) = α1 and fγ(n) = α2,
and that is impossible because fγ is a function. 2

We will need the next corollary in Section 3 when we find the number of topologically different
stationary sets.

Corollary 2.8 Given any stationary subset S of ω1, there is an uncountable pairwise disjoint col-
lection Φ of subsets of S where each member of Φ is stationary in ω1.

Proof: In the Ulam matrix above, for each α < ω1 we have S ∩ [α, ω1) =
⋃
{U(α, n) : n < ω} so

that Lemma 2.6 gives an integer nα for which U(α, nα) is stationary. There are only countably
many integers, so there is an integer k such that the set B = {β < ω1 : nβ = k} is uncountable.
Now apply (ii) in Lemma 2.7 to conclude that if β1 6= β2 in B, then U(β1, k) ∩ U(β2, k) = ∅. Then
Φ = {U(β, k) : β ∈ B} is the required pairwise disjoint uncountable collection. 2

The following result will be needed in Section 4 of our paper.

Corollary 2.9 Suppose S is a stationary subset of ω1 and suppose f : S → ω1 has α < f(α) for all
α ∈ S. Then there is a club-set C with the property that if α1 and α2 both belong to the stationary
set S ∩ C and have α1 < α2, then f(α1) < f(α2).

Proof: Find the set C as in Proposition 2.3. Then S ∩ C is also a stationary set and if α1 < α2

both belong to S ∩ C then f(α1) < α2 < f(α2). 2

The central tool for the study and application of stationary sets is called the Pressing Down
Lemma, and is also known as Fodor’s lemma.

Lemma 2.10 Suppose S is a stationary subset of ω1 and f : S → ω1 has f(α) < α for each α ∈ S.
Then there is a stationary subset T ⊆ S and an ordinal β < ω1 with the property that f(α) = β for
each α ∈ T . Consequently, the fiber f−1[{β}] of f is stationary. 2

Proof: Suppose not. Then for each β < ω1, the set f−1[{β}] is not stationary, so there is a club-set
Dβ that is disjoint from f−1[{β}]. From Proposition 2.2 we know that the set E = {γ < ω1 : γ ∈⋂
{Dβ : β < γ}} is a club-set, so there is some α ∈ S ∩E. Write δ = f(α). Then α ∈ f−1[{δ}] and

because δ = f(α) < α we know that α ∈
⋂
{Dγ : γ < α} ⊆ Dδ. But that is impossible because

Dδ ∩ f−1[{f(α}] = ∅. 2.
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Remark 2.11 Measure theory in ω1. In Proposition 2.4 we showed that a subset S ⊆ ω1 is a Borel
set in ω1 if and only if either S or ω1− S contains a club-set. This allows us to define a measure m
whose domain is Borel(ω1) by the rule that for S ∈ Borel(ω1), m(S) = 1 if S contains a club-set,
and m(S) = 0 otherwise. This m is a countably additive bounded measure and is non-atomic, i.e.,
m({α}) = 0 for each α ∈ ω1. The question is: could we extend the domain of m to be the entire
power set of ω1? Ulam presented a very elegant solution in [17] by using the matrix in Lemma 2.7
to show that there is no non-trivial countably additive, finite-valued, non-atomic, bounded measure
whose domain is the power set of ω1 . See [14] for a good discussion. It is an amusing exercise
to figure out why the following construction does not contradict Ulam’s result. Let U be a free
ultrafilter3 on ω1. Define m(S) = 1 if S ∈ U and m(S) = 0 otherwise. Explain why this m does not
violate Ulam’s Theorem about the non-existence of measures whose domain is the power set of ω1.

Remark 2.12 Most mathematicians use the Axiom of Choice, but there is another axiom system
(incompatible with AC called “ZF + AD” where AD stands for the Axiom of Determinacy. In
ZF + AD one can prove that every subset of ω1 either contains or is disjoint from a club-set, and
consequently the power set of ω1 is the collection Borel(ω1) and therefore the {0, 1}-valued measure
m at the beginning of this section is defined for all subsets of ω1.

3 Basic topology of stationary sets

Any subset S ⊆ ω1 inherits a subspace topology from ω1 whose open sets are of the form S ∩ V
where V is an open subset of ω1, and any such set is called “relatively open in S.” (Warning:
This is usually not the same as the open-interval-topology defined on S by the restriction of the
well-ordering ≤ to S.) We begin with an internal characterization of stationary subsets of ω1.

Proposition 3.1 For any subset S ⊆ ω1, the following are equivalent:

a) S is not stationary;

b) there is a collection U of pairwise disjoint relatively open subsets of S that covers S,
where each U ∈ U is countable;

c) in its subspace topology, S is metrizable.

Consequently, any subspace of ω1 is either metrizable or stationary.

Proof: Recall that a subset C of any linearly ordered set (X,<) is convex provided a, b ∈ C and
a < x < b gives x ∈ C. The convex components of a subset D ⊆ X are the maximal convex subsets
of D, and D is the pairwise disjoint union of its convex components.

To show that a) implies b), suppose S is not stationary. Then there is a club-set C with
S ⊆ ω1 − C. Express ω1 − C as the union of its convex components, say ω1 − C =

⋃
{Ui : i ∈ I}.

3A free ultrafilter on ω1 is a nonempty collection U of infinite subsets of ω1 having four properties: (i) if A,B ∈ U
then A ∩ B ∈ U ; (ii) if A ∈ U and A ⊆ B ⊆ ω1, then B ∈ U ; (iii) for every set S ⊆ ω1, either S ∈ U or ω1 − S ∈ U ;
and (iv)

⋂
U = ∅.
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Then each Ui is an open subset of ω1, Ui ∩ Uj = ∅ if i 6= j, each Ui is countable, and we have
S =

⋃
{S ∩ Ui : i ∈ I} as claimed.

To show that b) implies c), write S =
⋃
{Vi : i ∈ I} where each Vi is a countable relatively

open subset of S, and the sets Vi are pairwise disjoint. Each Vi, being a regular, countable and
first-countable space, is metrizable by the Urysohn metrization theorem [13]. Then S, being a union
of pairwise disjoint open metrizable spaces, is a metric space, as claimed.

To show that c) implies a), suppose for contradiction that c) holds and S is stationary. Let T be
the set of relatively non-isolated points of S, i.e., T is the set of limit points of S that belong to S.
Then T is also stationary and is a relatively closed subset of S. Because S is a metric space, T is a
Gδ-set in the space S so there are relatively open subsets U(n) of S with T =

⋂
{U(n) : n < ω}. Fix

n. For each λ ∈ T , there is an ordinal fn(λ) < λ with S ∩ (fn(λ), λ] ⊆ U(n). The Pressing Down
Lemma 2.10 gives an ordinal βn and a stationary set Tn with the property that fn(λ) = βn for each
λ ∈ Tn. Then (βn, ω1) ∩ S ⊆ U(n). Having found the ordinals βn we let γ = sup{βn : n < ω} and
we see that (γ, ω1) ∩ S ⊆

⋂
{S ∩ Un : n < ω} = T . But that is impossible because the first element

of S greater than γ belongs to (γ, ω1) ∩ S but not to T . 2

Corollary 3.2 Suppose S is a stationary subset of ω1 and g : S → ω1 is continuous. Write
T = g[S]. Then the following are equivalent:

1) T is stationary;

2) T is uncountable;

3) each fiber g−1[β] of g is countable.

Proof: Clearly 1) implies 2). To prove that 2) implies 3), suppose the set T is uncountable and yet
for some β, the set A = g−1[β] is uncountable. Then A, being an uncountable relatively closed subset
of the stationary set S, is also stationary. Because the space ω1 is first-countable, the set {β} is a
Gδ-subset of T , so the set A is a Gδ-subset of S, say A =

⋂
{Un : n ≥ 1} where each Un is a relatively

open subset of S. For each n and each α ∈ A there is an ordinal fn(α) < α with (fn(α), α]∩S ⊆ Un.
The Pressing Down Lemma gives some δn with fn(α) = δn for all α in a stationary subset Tn of T ,
so that (δn, α] ∩ S ⊆ Un for all α ∈ Tn, and therefore (δn, ω1) ∩ S ⊆ Un. Let δ = sup{δn : n ≥ 1}.
Then (δ, ω1) ∩ S ⊆

⋂
{Un ∩ S : n ≥ 1} = A. But then T = g[S] = {β} ∪ {g(α) : α ∈ S ∩ [0, δ]}

showing that T is a countable set, contradicting 2).

To complete the proof we show that 3) implies 1), so suppose 3) holds and yet T is not stationary.
Then Proposition 3.1 shows that there is a pairwise disjoint collection {Vj : j ∈ J} of countable,
relatively open subsets of T that covers T . Then {g−1[Vj] : j ∈ J} is a pairwise disjoint relatively
open cover of S, and we see that each g−1[Vj] =

⋃
{g−1[{β}] : β ∈ Vj} is a countable set because

each fiber of g is countable. In the light of Proposition 3.1, that is impossible. 2

Recall that two spaces X and Y are topologically the same if there is a homeomorphism h from
S onto T , i.e., a bijection so that both h and h−1 are continuous. Could it happen that the disjoint
stationary sets found in Theorem 2.5 are homeomorphic spaces? More generally, how many different
topological types of stationary subsets of ω1 exist? A partial answer was given in [4] as follows:

Proposition 3.3 Suppose S and T are stationary subsets of ω1 that are homeomorphic. Then S∩T
is stationary and the symmetric difference S∆T = (S − T ) ∪ (T − S) is not stationary.
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Proof: Suppose h : S → T is a homeomorphism. Let S1 = {α ∈ S : h(α) < α}, S2 = {α ∈ S :
h(α) = α} and S3 = {α ∈ S : h(α) > α}. Because S = S1 ∪ S2 ∪ S3 is stationary, one of the sets
Si must be stationary by Lemma 2.6. The set S1 cannot be stationary because h is injective and
that would violate the Pressing Down Lemma (Lemma 2.10). Next consider S3. If S3 is stationary,
then by Corollary 3.2 the set T3 = h[S3] is also stationary because each fiber of h is a singleton.
But T3 cannot be stationary because h−1 : T3 → S3 has h−1(β) < β for each β ∈ T3, contrary to
the Pressing Down Lemma. We conclude that S3 cannot be stationary. Therefore S2 is stationary,
and because S2 ⊆ S ∩ T , the set S ∩ T is also stationary, as claimed.

Now consider the set S − T . Because S2 ⊆ S ∩ T ⊆ T , we see that ω1 − T ⊆ ω1 − S2 so that
S − T ⊆ S − S2 = S1 ∪ S3. Because S1 and S3 are non-stationary, so is S − T . Next consider the
set T − S. Apply the first part of the proof to the homeomorphism h−1 : T → S to conclude that
T − S is also non-stationary. Therefore S∆T is non-stationary. 2

Corollary 3.4 Given any stationary set S in ω1, there is a collection Ψ of subsets of S where

(i) each member of Ψ is a stationary subset of ω1

(ii) |Ψ| = 2ω1

(iii) if T1 6= T2 are members of Ψ, then T1 and T2 are not homeomorphic to each other.

Proof: Let Φ be the uncountable pairwise disjoint collection of stationary subsets of S found in
Corollary 2.8. For each nonempty C ⊆ Φ let S(C) =

⋃
C. Each S(C) is stationary, and if C,D

are different non-void subcollections of Φ, we may choose T ∈ C − D or T ∈ D − C. Then
T ⊆ S(C)∆S(D) showing that S(C)∆S(D) is not non-stationary, so the subspaces S(C) and S(D)
cannot be homeomorphic by Proposition 3.3. Then Ψ := {S(C) : ∅ 6= C ⊆ Φ} is the required
collection of size 2ω1 . 2

Proposition 3.3 gives a necessary condition for two stationary subsets of ω1 to be homeomorphic,
but that condition is not sufficient. Consider the stationary sets S = ω1 and T = S − {ω}. Clearly
S and T are not homeomorphic (because T contains a sequence without a limit point while S does
not) and yet S ∩ T is stationary and S∆T is not stationary. However, the hypothesis S∆T is
non-stationary does have an interesting topological characterization. Recall that two spaces X and
Y are Borel isomorphic if there is a bijection g : X → Y such that if C is a Borel set in X, then
g[C] is a Borel set in Y , and if D is a Borel set in Y , then g−1[D] is a Borel set in X. The following
result is proved in [4]:

Proposition 3.5 Let S and T be stationary subsets of ω1. Then S∆T is non-stationary if and
only if S and T are Borel isomorphic.

Readers who want to test their pressing down skills should prove the following, which shows
that every continuous, real-valued function on a stationary set S must be “constant on a tail of S.”

Proposition 3.6 If S ⊆ ω1 is stationary and if f : S → R is a continuous function, then there is
some α ∈ S such that for each β ∈ S ∩ [α, ω1), f(β) = f(α). 2
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4 The product of two stationary sets

Every topology student knows that the product of two Hausdorff spaces is a Hausdorff space,
and the product of two regular spaces is again regular. But the product of two normal spaces
is something entirely different, as can be seen by considering the product of two copies of the
Sorgenfrey line. The goal of this section is to show how the stationary set theory outlined above
can be used to study the product space S × T where S and T are stationary subsets of ω1. We
will see that normality of S × T depends entirely upon whether or not S ∩ T is stationary. As a
consequence we will see that for every X ⊆ ω1, the space X ×X is normal.

Throughout this section we use the following special notation. If α < β are points of ω1 and
S ⊆ ω1, then [α, β]S = [α, β] ∩ S and other interval notations like (α, β]S are similarly defined. It
does not matter whether α, β ∈ S. Similar comments apply to the notation [α, β]T = [α, β]∩T and
its variations. In addition we will use the term clopen for a set that is both closed and open. For
example, any interval (α, β] is a clopen subset of ω1.

Theorem 4.1 For stationary subsets S and T of ω1, the product space S×T is normal if and only
if S ∩ T is stationary.

Proof: The proof has two major parts which we present in Propositions 4.2 and 4.4. To avoid
notational confusion between ordered pairs and open intervals, we will write 〈α, β〉 for a point of
the product S × T and reserve the notation (α, β) for an interval in ω1.

Proposition 4.2 If S and T are stationary subsets of ω1 and if S∩T is not stationary, then S×T
is not normal.

Proof: The proof below was suggested by N. Kemoto in a private communication.

Because S ∩ T is not stationary, there is a club-set C0 with (S ∩ T ) ∩ C0 = ∅. Then the sets
S0 = S ∩ C0 and T0 = T ∩ C0 are disjoint stationary sets, with S0 closed in S and T0 closed in T .
Therefore S0 × T0 is a closed subspace of S × T , so that if S0 × T0 is not normal, then neither is
S × T . Therefore it is enough to consider the special case where S ∩ T = ∅.

For each α ∈ S, let f(α) be the first element of T that is greater than α. Because α < f(α) for
each α ∈ S, we know from Corollary 2.9 that the set C = {γ < ω1 : if α ∈ S and α < γ then f(α) <
γ} is a club-set in ω1.

Because S is stationary, we know that S ∩ C is a relatively closed subset of S that is also
stationary in ω1 and that, by Corollary 2.9, if α < α′ are both in S ∩ C, then f(α) < α′ < f(α′).
Consider the set F = {〈α, f(α)〉 : α ∈ S ∩ C} ⊆ S × T . If a sequence of points of F converges to a
point 〈γ, δ〉 ∈ S × T then γ = δ and that is impossible because S ∩ T = ∅. Therefore, no sequence
of points of F can converge to any point of S × T so that every subset of F is closed in S × T .

Use Corollary 2.8 to show that the stationary set S∩C is the union of two disjoint subsets S1, S2

that are also stationary. For i = 1, 2, let Fi = {〈α, f(α)〉 : α ∈ Si}. Then F1 and F2 are disjoint
closed subsets of S × T so that, if S × T is normal, then there are open subsets Ui of S × T having
Fi ⊆ Ui and cl(U1) ∩ cl(U2) = ∅ (where the closures are taken in S × T ).
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Consider F1 and U1. For each α ∈ S1 the point 〈α, f(α)〉 ∈ U1 so that there is some g1(α) <
α such that the set (g1(α), α]S × {f(α)} ⊆ U1. Because S1 is stationary, the Pressing Down
Lemma gives some δ1 with g1(α) = δ1 for every α in a stationary subset S∗1 ⊆ S1 and therefore
(δ1, α]S × {f(α)} ⊆ U1 for every α ∈ S∗1 . Similarly, there is some δ2 and some stationary subset
S∗2 ⊆ S2 with (δ2, α]S × {f(α)} ⊆ U2 for each α ∈ S∗2 . Let δ = max(δ1, δ2). Then for i = 1, 2, each
α ∈ S∗i has (δ, α]S × {f(α)} ⊆ Ui. Let δ+ be the first member of S with δ < δ+.

For i = 1, 2, the sets {f(α) : α ∈ S∗i } are unbounded in ω1 so that if Di is the closure in ω1 of
the set {f(α) : α ∈ S∗i }, then Di is a club-set. Therefore, so is D = D1 ∩D2. Because the set T is
stationary, there is some β0 ∈ D ∩ T .

We claim that the point 〈δ+, β0〉 ∈ cl(U1), where the closure is taken in S × T . If β0 ∈
{f(α) : α ∈ S∗1}, say β0 = f(α0) where α0 ∈ S∗1 , then the point 〈δ+, β0〉 is in the product set
(δ, α0]S × {f(α0)} ⊆ U1 ⊆ cl(U1). If β0 6∈ {f(α) : α ∈ S∗1}, then there is a sequence αn ∈ S∗1
with limn→∞ f(αn) = β0. Then the points 〈δ+, f(αn)〉 lie in the sets (δ, αn]S × {f(αn)} ⊆ U1 so
that 〈δ+, β0〉 = limn→∞〈δ+, f(αn)〉 ∈ cl(U1). Similarly, the point 〈δ+, β0〉 ∈ cl(U2). But that is
impossible because cl(U1) ∩ cl(U2) = ∅. Therefore, the product space S × T is not normal when
S ∩ T is not stationary. 2

We are now ready to prove the other half of Theorem 4.1. We present two proofs of the key
lemma (4.3). The first is an elementary proof that involves repeated use of the Pressing Down
Lemma and the theory of stationary sets outlines in Section 2 above, together with the fact that
every metric space is normal. The second proof (see Remark 4.5, below) is much shorter and relies
on some more specialized topics from general topology. Recall that if S and T are subsets of ω1

and α ∈ ω1, then [0, α]T = [0, α] ∩ T and [0, α]S is similarly defined.

Lemma 4.3 Suppose S and T are subsets of ω1. Suppose γ < ω1. Then the space Y = S × [0, γ]T
is normal.

Proof: Note that [0, γ]T is countable and first-countable, and therefore is metrizable by Urysohn’s
theorem. By Proposition 3.1, the set S is either metrizable or stationary. If S is metrizable, then
S × [0, γ]T is also metrizable and therefore normal.

Now suppose that S is stationary, and suppose M and N are two disjoint closed subsets of
Y = S × [0, γ]T For each β ∈ [0, γ]T , write Horiz(β) = S × {β}. Let Long(M) = {β ∈ [0, γ]T :
M ∩ Horiz(β) is uncountable} and Long(N) = {β ∈ [0, γ]T : Horiz(β) ∩ N is uncountable}.
Because Horiz(β) cannot contain two disjoint uncountable closed sets, Long(M) ∩ Long(N) = ∅.

We claim that Long(M) is a closed subset of [0, γ]T . For suppose βn ∈ Long(M) and βn → β∗ ∈
[0, γ]T . Let Cn = {α ∈ S : 〈α, βn〉 ∈M}. Each Cn is a relative club-set in S so that by Corollary 2.6
the diagonal intersection set D :=

⋂
{Cn : n < ω} is also a relative club -set in S. For each α ∈ D,

〈α, βn〉 → 〈α, β∗〉 showing that D × {β∗} ⊆ M and hence that β∗ ∈ Long(M). Similarly Long(N)
is closed in [0, γ]T . Because [0, γ]T is metrizable, there exist disjoint open sets G,H ⊆ [0, γ]T with
Long(M) ⊆ G and Long(N) ⊆ H.

As noted above, for each β ∈ [0, γ]T , one or both of the sets M ∩Horiz(β) and N ∩Horiz(β) is
countable so there is some α(β) < ω1with the property that at least one one (or both) of the sets
M ∩Horiz(β) and N ∩Horiz(β) is contained in [0, α(β)]S ×{β}. Because [0, γ]T is countable, the
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ordinal α∗ = sup{α(β) : β ∈ [0, γ]T} < ω1. Now let Y1 = [0, α∗]S×[0, γ]T and Y2 = (α∗, ω1)S×[0, γ]T .
Then Y1 and Y2 are disjoint clopen subsets of Y and Y = Y1 ∪ Y2.

The space Y1 is metrizable by the Urysohn metrization theorem, so there are disjoint open subsets
U1, V1 of Y1 (and hence also of Y ) with M ∩ Y1 ⊆ U1 and N ∩ Y1 ⊆ V1. Define U2 = (α∗, ω1)S ×G
and V2 = (α∗, ω1)S ×H where G and H are the sets found above. Then U2 and V2 are open in Y2
(and hence also in Y ) and U2 ∩ V2 = ∅. We claim that M ∩ Y2 ⊆ U2. For suppose 〈α, β〉 ∈M ∩ Y2.
Then α > α∗ ≥ α(β) so that M ∩ Horiz(β) cannot be countable (because if it were countable,
then α(β) would be an upper bound for its first coordinates). Therefore β ∈ Long(M) ⊆ G so that
〈α, β〉 ∈ U2. Similarly, N ∩ Y2 ⊆ V2.

Let U = U1 ∪ U2 and V = V1 ∪ V2. Then M ⊆ U , N ⊆ V and U ∩ V = ∅, showing that Y is
normal. 2

Proposition 4.4 If S, T ⊆ ω1 and S ∩ T is stationary, then the space S × T is normal.

Proof: Let K and L be disjoint closed subsets of S×T . For each α ∈ S∩T , the point 〈α, α〉 of S×T
belongs to at most one of the sets K and L, so there is some f(α) < α with the property that the set
O(α) = (f(α), α]S × (f(α), α]T is disjoint from at least one of the sets K and L. Then the Pressing
Down Lemma (2.10) gives some γ such that the set R := {α ∈ S ∩ T : f(α) = γ} is stationary.
Let RK = {α ∈ R : O(α) is disjoint from K} and RL = {α ∈ R : O(α) is disjoint from L}.
Because R = RK ∪RL, one of the sets RK and RL is stationary. Without loss of generality, suppose
RL is stationary. Then for each α ∈ RL we see that (γ, α]S × (γ, α]T is disjoint from L so that
(γ, ω1)S × (γ, ω1)T is disjoint from L.

Let Y = S× [0, γ]T and Z = [0, γ]S× (γ, ω1)T . By Lemma 4.3, the clopen subspace Y is normal,
and an analogous proof shows that the clopen subspace Z is also normal. Therefore, we can find
disjoint open subsets UY , VY of Y with K ∩Y ⊆ UY and L∩Y ⊆ VY , and we can find disjoint open
subsets UZ and VZ of Z with K ∩Z ⊆ UZ and L∩Z ⊆ VZ . Because Y and Z are clopen in S × T ,
the four sets UT , VY , UZ and VZ are also open in S×T . Now let U = UY ∪UZ ∪ ((γ, ω1)S× (γ, ω1)T )
and V = VY ∪ VZ . Then U ∩ V = ∅ and K ⊆ U and L ⊆ V . Therefore S × T is normal. 2

Remark 4.5 If one is willing to use theorems from general topology that do not usually appear in
the first topology course, then there is a much shorter proof that the space Y × [0, γ]T (and hence
S×T ) is normal when S∩T is stationary. Induction shows that each set [0, γ] embeds as a compact
subset of the closed unit interval I = [0, 1], and the Pressing Down Lemma shows that that any
stationary set S in ω1 is countably paracompact. Then, because any stationary S is normal and
countably paracompact, it follows that S × [0, 1] is a normal space (see [5], Theorem 5.2.8). But
then S × [0, α∗]T , being an Fσ-subset of S × I, is also normal. (see [5] Problem 2.1E, p. 73).

Corollary 4.6 For any subspace Y ⊆ ω1, Y 2 is normal.

Proof: If Y is stationary, apply Theorem 4.1 with S = T = Y . If Y is not stationary, apply
Proposition 3.1 to see that Y is metrizable. But then Y 2 is also metrizable, and hence normal. 2

Corollary 4.7 For any subspace Y ⊆ ω1, if Y 2 is hereditarily normal (i.e., if every subspace of Y 2

is normal) then Y and Y 2 are metrizable.

11



Proof: From 3.1 we know that Y is either metrizable or stationary. If Y is metrizable so is Y 2. If Y
is stationary, then Corollary 2.8 gives disjoint stationary sets S, T ⊆ Y . Then S × T is a subspace
of Y × Y . But Proposition 4.2 shows that because S ∩ T = ∅, the subspace S × T of Y 2 cannot
be normal, so that Y 2 cannot be hereditarily normal. Therefore, we see that if Y 2 is hereditarily
normal, then Y 2 is metrizable. 2

5 Where to go for more

In this article we considered ω1, its club-sets, and its stationary sets. These ideas generalize to
any regular uncountable cardinal κ and can be found in most set theory books, e.g., [12]. The
original study of homeomorphism between stationary sets is [4]. The basic study of products of
stationary sets in κ is [11] in which Kemoto, Ohta, and Tamano characterize normality, and six
related properties, in the product of two stationary subsets of κ. Buzyakova [2] proved that if S and
T are stationary subsets of κ with S∩T = ∅, then there is no continuous injection from the function
space Cp(S) into Cp(T ) where both function spaces carry the topology of pointwise convergence, so
that in the light of Corollary 2.8 there are uncountably many topologically distinct types of function
spaces associated with stationary subsets of ω1.

Every linearly ordered set X with the open-interval topology is normal, but paracompactness
is another matter entirely and, as proved in [6], a linearly ordered space fails to be paracompact
if and only if it contains a closed set homeomorphic to a stationary set in an uncountable regular
cardinal. That result was vastly generalized by Z. Balogh and M.E. Rudin who showed in [1] that
a monotonically normal space4 fails to be paracompact if and only if it contains a closed subset
homeomorphic to a stationary set in an uncountable regular cardinal. That result is the key to the
proof by Buzyakova and Vural that any monotonically normal topological group is paracompact
[3]. Fleissner and Kunen [8] used disjoint stationary subsets A,B ⊆ ω1 to construct metrizable
Baire spaces5 XA and XB whose product is not a Baire space. In addition, stationary sets have
been central tools in many other constructions in set-theoretic topology, and Fleissner’s survey
[7] and Rudin’s monograph [16] are excellent places to look for details. A search in MathSciNet
for “products of ordinals” will reveal many papers that investigate various normality and covering
properties of (subspaces of) products of ordinals.
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