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Abstract: In this paper we explore a family of strong completeness properties in GO-spaces defined
on sets of real numbers with the usual linear ordering. We show that if τ is any GO-topology on
the real line R, then (R, τ) is subcompact, and so is any Gδ-subspace of (R, τ). We also show that
if (X, τ) is a subcompact GO-space constructed on a subset X ⊆ R, then X is a Gδ-subset of
any space (R, σ) where σ is any GO-topology on R with τ = σ|X . It follows that, for GO-spaces
constructed on sets of real numbers, subcompactness is hereditary to Gδ-subsets. In addition, it
follows that if (X, τ) is a subcompact GO-space constructed on any set of real numbers and if τS is
the topology obtained from τ by isolating all points of a set S ⊆ X, then (X, τS) is also subcompact.
Whether these two assertions hold for arbitrary subcompact spaces is not known.

We use our results on subcompactness to begin the study of other strong completeness properties
in GO-spaces constructed on subsets of R. For example, examples show that there are subcompact
GO-spaces constructed on subsets X ⊆ R where X is not a Gδ-subset of the usual real line. However,
if (X, τ) is a dense-in-itself GO-space constructed on some X ⊆ R and if (X, τ) is subcompact (or
more generally domain-representable), then (X, τ) contains a dense subspace Y that is a Gδ-subspace
of the usual real line. It follows that (Y, τ |Y ) is a dense subcompact subspace of (X, τ). Furthermore,
for a dense-in-itself GO-space constructed on a set of real numbers, the existence of such a dense
subspace Y of X is equivalent to pseudo-completeness of (X, τ) (in the sense of Oxtoby). These
results eliminate many pathological sets of real numbers as potential counterexamples to the still-
open question “Is there a domain-representable GO-space constructed on a subset of R that is not
subcompact?” Finally, we use our subcompactness results to show that any co-compact GO-space
constructed on a subset of R must be subcompact.
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1 Introduction

Subcompactness is one of the strong completeness properties, now called Amsterdam properties,
that were introduced in the 1960s by de Groot and his collaborators. (See Section 2 for definitions.)
Every complete metric space is subcompact, and every subcompact space is a Baire space (i.e., the
intersection of countably many open, dense sets is dense). Furthermore, any product of subcompact
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spaces is subcompact (and hence Baire), something that contrasts sharply with behavior of Baire
spaces in general.

It is somewhat surprising that, after 40 years, several of the most natural and important questions
about subcompact spaces remain open. For example:

Q1) Suppose the topological space (X, τ) is subcompact and suppose that Y is a Gδ-subspace of
X. Must (Y, τ |Y ) be subcompact?

Q2) Suppose (X, τ) is subcompact and S ⊆ X. Let τS be the topology on X having the collection
τ ∪ {{x} : x ∈ S} as a base. Must (X, τS) be subcompact?

In recent years, another completeness property called domain representability has attracted
topologists’ attention. Domain representability is a strong completeness property in the sense that
any product of domain-representable spaces is domain representable and hence a Baire space. The
analogs of Q1 and Q2 for domain-representable spaces are known to have affirmative answers (see
[3], [4]). It is known that domain representability lies somewhere between subcompactness and
strong Choquet completeness: every subcompact T3-space is domain representable [4], and every
domain representable space is strongly Choquet complete [9]. The second of those two implications
is irreversible, but the next question remains open:

Q3) Does domain representability imply subcompactness?

We expect a negative answer to Q3 among general spaces. However, to date, progress on Q3 has
been limited to showing that subcompactness and domain representability are equivalent properties
in certain restricted classes of spaces, e.g., in metrizable spaces [9], in Moore spaces and in BCO
spaces [6], and in function spaces with the pointwise convergence topology [5]. Note that in any class
of spaces where subcompactness and domain representability are equivalent concepts, questions Q1
and Q2 have affirmative answers.

In this paper, R denotes the set of real numbers with the usual ordering and we focus on the class
of generalized ordered spaces constructed on subsets of R. Generalized ordered spaces (GO-spaces)
constructed on R and its subspaces have been important examples in topology – for example, the
Sorgenfrey and Michael lines and their subspaces have been used to study product spaces. These
GO-spaces have also been used in the study of the Amsterdam completeness properties: in [1], it
was shown that the Sorgenfrey line is co-compact and subcompact, but no dense subspace of it can
be base-compact or regularly co-compact.

The goal of this paper is to study Questions Q1, Q2 and Q3 in the category of GO-spaces
constructed on sets of real numbers. We answer both Q1 and Q2 affirmatively for GO-spaces on
sets of real numbers, and make some progress on Q3, showing that if X ⊆ R and if (X, τ) is a domain-
representable, dense-in-itself GO-space (with respect to the usual ordering), then (X, τ) contains a
subcompact, dense Gδ-subspace Y . In addition, Y is a Gδ-subset of the usual open-interval topology
on R and this eliminates many subsets of R as potential counterexamples to Q3. However, we do
not know whether every domain-representable GO-space defined on a set of real numbers must
be subcompact so that these GO-spaces remain a potential source for counterexamples to Q3. In
addition, we use our results on subcompactness to study the role of Oxtoby’s pseudo-completeness
in GO-spaces constructed on subspaces of R.
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Necessary definitions appear in Section 2 of our paper. Our main results on subcompactness
appear in Section 3, and in Section 4 we use these results to study other strong completeness
properties in GO-spaces constructed on subsets of R. In Section 5 we pose several open questions
about strong completeness properties of GO-spaces defined on sets of real numbers.

2 Basic definitions

The four basic Amsterdam properties are co-compactness, regular co-compactness, base compact-
ness, and subcompactness. A regular space X is co-compact if there is a collection C of closed
subsets of X such that any centered subcollection3 of C has nonempty intersection, and such that
if p ∈ U with U open, then some C ∈ C has p ∈ Int(C) ⊆ C ⊆ U . If members of C are reg-
ularly closed sets, i.e., if each is the closure of its own interior, then X is regularly co-compact.
The space X is base compact if there is a base B of nonempty, open sets with the property that⋂
{cl(C) : C ∈ C} 6= ∅ whenever C is a centered subcollection of B. Finally, a space X is subcompact

if it has a base B of nonempty open sets such that
⋂
F 6= ∅ whenever F ⊆ B has the property

that given any F1, F2 ∈ F , some F3 ∈ F has cl(F3) ⊆ F1 ∩ F2. Such an F is said to be a regular
filter base in B, and the base B is said to be a subcompact base for X. It is clear that regular
co-compactness implies base compactness, and base compactness implies subcompactness. (As the
example of the Sorgenfrey line shows, the fourth property, co-compactness, is strictly weaker than
regular co-compactness and does not imply base compactness.) Most of this paper will focus on
subcompact spaces, but questions in the final section involve other Amsterdam properties as well.

Another classical completeness property is pseudo-completeness, introduced by Oxtoby in [12].
A regular space is pseudo-complete if there is a sequence of π-bases P(n) such that if Pn ∈ P(n)
and cl(Pn+1) ⊆ Pn for each n ≥ 1, then

⋂
{Pn : n ≥ 1} 6= ∅.

As mentioned in the Introduction, there is a newer topological completeness property called
domain-representability that was borrowed from theoretical computer science. Defining the property
requires certain background information. Let (P,v) be a partially ordered set. By the supremum
of a subset S ⊆ P we mean an upper bound u for S that has u v v whenever v is an upper bound
for S. A subset S ⊆ P is directed if it is nonempty and has the property that given any s1, s2 ∈ S,
some s3 ∈ S has s1, s2 v s3. If every directed subset of P has a supremum in P , then P is a dcpo (=
directed complete partial order). Zorn’s lemma shows that for every p in a dcpo P , there is some
maximal element q ∈ P with p v q. The set of all maximal elements of P is denoted by max(P ).

There is an important auxiliary relation � on P defined as follows: we say that a � b if
whenever a directed set S ⊆ P has b v sup(S), then some s ∈ S has a v s. The poset P is
continuous if for each a ∈ P the set ⇓(a) := {b ∈ P : b� a} is directed and has a as its supremum.
A continuous dcpo is called a domain.

In a domain P , the collection of all sets ⇑(a) := {b ∈ P : a� b} is a base for a topology known
as the Scott topology on P . The set max(P ) is a dense subset of P in the Scott topology. If for a
topological space X there is a domain (P,v) such that X is homeomorphic to max(P ) with the
relative Scott topology, then we say that X is domain representable.

3A collection D is centered if it has the finite intersection property.
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Recall that a generalized ordered space (= GO-space) is a triple (X, <, τ) where (X, <) is a
linearly ordered set and τ is a T2-topology on X that has a base of order-convex sets. The open-
interval topology of the ordering <, which we will always denote by λ, is the most familiar GO-
topology. If X ⊆ R and < is the usual linear ordering of R, then any GO-space (X, < |X, τ) is said
to be a GO-space constructed on a subset of R. The most familiar GO-spaces constructed on R are
the Sorgenfrey and Michael lines.

3 Subcompactness in GO-spaces constructed on sets of real

numbers

Because the real line (R, λ) with its usual open interval topology is hereditarily Lindelöf, given any
subset S ⊆ R there is a countable subset S0 ⊆ S such that for every x ∈ S − S0 and every ε > 0,
both (x− ε, x)∩S and (x, x+ ε)∩S are uncountable. We will say that such a point x is a two-sided
condensation point of S. Because (R, λ) is also hereditarily separable, we may assume that the
countable set S0 is dense in S. Write S1 = S − S0.

We begin with a technical lemma about certain Gδ-subspaces of (R, λ). Any such subspace is
a completely metrizable, so that we can invoke ideas from Baire Category theory provided we are
careful to use relativized versions of those ideas. For example, the usual Cantor set is not the union
of countably many relatively nowhere dense subspaces of itself, even though the usual Cantor set is
nowhere dense in R. It is well known that any uncountable Gδ-subset Y of (R, λ) contains a Cantor
set (= a compact, uncountable, dense-in-itself, totally disconnected subset). We need a little more
in our next lemma.

Lemma 3.1 Let Z be a closed uncountable subset of (R, λ) and let Z = Z0 ∪ Z1 be as above.
Suppose that I is a convex subset of R such that the set Y := I ∩ Z1 is uncountable. Suppose
that C =

⋃
{Ck : k ≥ 1} where each Ck is a relatively closed, relatively nowhere dense subset of

(Z1, λ|Z1). Let s = inf(I ∩ Z1) and t = sup(I ∩ Z1). Then s < t and there are sets A and B such
that

a) A ∪B ⊆ Z1, with s = inf(A), t = sup(B),

b) A− {s} ⊆ (s, s+t
2

] ∩ Y ,

c) B − {t} ⊆ [ s+t
2

, t) ∩ Y , and

d) C ∩ (A ∪B) ⊆ {s, t},

e) A ∪B is relatively nowhere dense in Z1.

In addition, there are strictly increasing functions α : (s, t]→ A−{s} and β : [s, t)→ B−{t} such
that α(y) < y for each y ∈ (s, t] and y < β(y) for each y ∈ [s, t).

Proof: Let Io denote the λ-interior of I. Then Io ∩ Z1 is a nonempty open subset of Z1 so that
(Io ∩Z1)−C is a dense Gδ-subset of Io ∩Z1 and hence (I ∩Z1)−C is a dense Gδ-subset of I ∩Z1.
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Write Y = (I ∩ Z1) − C. Then inf(Y ) = s and sup(Y ) = t. In addition, Y for each ε > 0 both
[s, s + ε)∩Y and (t− ε, t]∩Y are uncountable. Therefore, standard techniques provide Cantor sets
A+ and B+ with

1) s ∈ A+ ⊆ [s, s+t
2

), t ∈ B+ ⊆ ( s+t
2

, t],

2) A+ − {s} ⊆ Y, B+ − {t} ⊆ Y , and

3) the sets A = A+ ∩ Y and B = B+ ∩ Y are relatively nowhere dense in Z1

In order to obtain b) and c) of the lemma, we may replace A by [s, s+t
2

] ∩ A and B by B ∩ [ s+t
2

, t]

Next we define the function β. Let S := {sk : k ≥ 1} be any countable dense set in [s, t) in the
λ-topology, with s1 = s. Using the fact that all but countably many points of B are two-sided limit
points of B+, we recursively find two-sided limit points dk ∈ B+ with the following properties:

i) if si < sj then di < dj

ii) for each i ≥ 1, si < si+t
2

< di

For any y ∈ (s, t) define β(y) = sup{di : si ≤ y}. Because B+ is compact and each di ∈ B+, we
see that each β(y) ∈ B. Next we show that β is a strictly increasing function. Suppose y < y′ in
[s, t). Find sj, sk ∈ (y, y′) ∩ S with sj < sk. Then dj < dk and for any si ≤ y we have di < dj < dk.
Hence β(y) ≤ dj and dk ≤ β(y′) so that β(y) < β(y′) as claimed. Because β is strictly increasing,
we know that β(y) ∈ B+ − {t} ⊆ B for each y ∈ [s, t). Hence β(y) ∈ Y −C. Finally, we show that
y < β(y) for each y ∈ [s, t). Fix any such y. If si ≤ y then si+t

2
< di ≤ β(y) so that

y = sup{si : si ≤ y} ≤ sup{si + t

2
: si ≤ y} ≤ sup{di : si ≤ y} = β(y).

But sup{ si+t
2

: si ≤ y} = y+t
2

so we have y < y+t
2
≤ β(y) as claimed. 2

Our next result concerns GO-spaces constructed on the entire set of real numbers. It may be
proved directly, by a generalization of the recursive technique used in [1] to show that the Sorgenfrey
line is subcompact. However, it is an immediate corollary of the more general Theorem 3.3, which
we prove in detail below.

Proposition 3.2 Suppose that τ is any GO-topology on the linearly ordered set (R, <). Then (R, τ)
is subcompact. 2

The key idea in the direct proof of Proposition 3.2 involves finding base elements that never
repeat certain kinds of endpoints called “external endpoints,” and that idea is also the key to
proving our next result. It is surprising how much harder the proof becomes when Gδ-subsets of R,
rather than all of R, are involved.

Theorem 3.3 Suppose that τ is a GO-topology on R and that X is a Gδ-subset of the space (R, τ).
Then (X, τ |X) is subcompact.

5



Proof: Write X = X0 ∪ X1 where X0 is countable and dense in (X, λX) and where each point of
X1 = X−X0 is a two-sided condensation point of X1. Our proof will have three main steps. In the
first we define basic open τX-neighborhoods of the countably many points in X0. In the second, if
X1 6= ∅, we define basic τX-neighborhoods of the uncountably many points in X1. In the third step
we show that the collection of basic neighborhoods found in the first two steps is a subcompact
base for (X, τ).

Step 1: Find basic neighborhoods for points of X0 Write X =
⋂
{H(n) : n ≥ 1} where H(n) ∈ τ

and H(n + 1) ⊆ H(n) for each n ≥ 1. Without repetitions, index the set X0 := {xk : k ≥ 1}. We
will recursively define a collection {B(xj, k) : 1 ≤ j ≤ k < ω} of intervals in (R, <) in the following
pattern: first B(x1, 1), then B(x1, 2) and B(x2, 2), then B(x1, 3), B(x2, 3), B(x3, 3) and so on. We
need to classify the points of X based on the “shape” of their τ |X-neighborhoods. Let

I = {x ∈ X : {x} ∈ τ |X}
R = {x ∈ X − I : X ∩ [x,→) ∈ τ |X}
L = {x ∈ X − I : X ∩ (←, x] ∈ τ |X}
E = X − (I ∪R ∪ L).

By an external endpoint of one of the intervals B(x, k) we will mean any endpoint of B(x, k) except
for the point x. Thus clλ(B(x, k))−B(x, k) is the set of external endpoints of B(x, k).

To initialize the recursion in Step 1, consider x1. If x1 ∈ I, let B(x1, 1) := {x1}. If x1 ∈ R, choose
b(x1, 1) in the infinite set (x1, x1+1)∩X and so that the set B(x1, 1) := [x1, b(x1, 1)) ⊆ [x1, b(x1, 1)] ⊆
H(2). If x1 ∈ L, let B(x1, 1) := (a(x1, 1), x1] ⊆ [a(x1, 1), x1] ⊆ H(2) where a(x1, 1) is a point of
(x1− 1, x1)∩X. Finally if x1 ∈ E let B(x1, 1) = (a(x1, 1), b(x1, 1)) where [a(x1, 1), b(x1, 1)] ⊆ H(2)
with a(x1, 1), b(x1, 1) chosen as above. Let S(x1, 1) = B(x1, 1) ∩ X and let E(1) be the set of
external endpoints of B(x1, 1), i.e., E(1) = {inf(B(x1, 1)), sup(B(x1, 1))} − {x1}.

To describe the general recursion step, suppose we have xi ∈ B(xi, j) ⊆ clλ(B(xi, j)) ⊆ H(i+ j)
for 1 ≤ i ≤ j ≤ n and that E(n) is the finite set of external endpoints of the sets B(xi, j) for 1 ≤ i ≤
j ≤ n. Choose ε > 0 so small ε < 1

n+1
and such that for 1 ≤ i ≤ n+1, [xi− ε, xi + ε] ⊆ H(i+n+1),

and such that (xi− ε, xi)∪ (xi, xi + ε) contains no point of the finite set E(n). (We cannot ask that
(xi − ε, xi + ε) ∩ E(n) = ∅ because xn+1 might have been an external endpoint of some previously
defined B(xi, j).) There are four possibilities for B(x1, n + 1). If x1 ∈ I, let B(x1, n + 1) = {x1}.
If x1 ∈ R, then the set X ∩ (x1, x1 + ε) is infinite and we choose b(x1, n + 1) ∈ (x1, x1 + ε)− E(n).
Letting B(x1, n + 1) = [x1, b(x1, n + 1)), we know that the external end point b(x1, n + 1) 6∈ E(n).
The cases where x1 ∈ L and x1 ∈ E are handled analogously. Let E(n, 1) be the union of E(n)
with the set of external endpoints of B(x1, n + 1). Next consider x2. Shrinking ε if necessary, we
may assume that (x2 − ε, x2) ∪ (x2, x2 + ε) has no points in common with E(n, 1) and this allows
us to define the sets B(x2, n + 1) with four cases (depending upon which of the sets I, R, L and
E contains x2). Let E(n, 2) be the union of E(n, 1) with the set of external endpoints of the set
B(x2, n+1). Repeating this process n+1 times gives the sets B(xi, n+1) for 1 ≤ i ≤ n+1 and the
finite set E(n+1), which is the set of all external endpoints of all sets B(xi, j) for 1 ≤ i ≤ j ≤ n+1.
Note that clλ(B(xi, n + 1)) ⊆ H(i + n + 1) for 1 ≤ i ≤ n + 1.

Write S(xk, j) = X ∩B(xk, j). Then the collection {S(xi, j) : j ≥ i} is a local base at xi in the
space (X, τ). We claim:

Claim 1: if 〈S(xin , jn) : n ≥ 1〉 is a strictly decreasing sequence of the sets defined in
Step 1 above, then

⋂
{S(xin , jn) : n ≥ 1} 6= ∅.
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To verify Claim 1, suppose the intersection is empty. Because the sets S(xin , jn) are nested
and S(xin , jn) ⊆ B(xin , jn), the collection {B(xin , jn) : n ≥ 1} is a centered collection of bounded
intervals in R, and therefore there is some point z ∈

⋂
{clλ(B(xin , jn)) : n ≥ 1}. Because the

intersection of the sets S(xin , jn) is empty, z fails to belong to one of those sets, say S(xim , jm), and
therefore fails to belong to all sets S(xik , jk) for k ≥ m. Without loss of generality, suppose m = 1.

Because the sets S(xin , jn) are distinct, we must have no repetitions in the ordered pairs (xin , jn)
naming the sets. Consequently, the sequence of sums in + jn must be unbounded so that z ∈
clλ(B(xin , jn)) ⊆ H(in + jn). Because the sets H(k) are nested and have X =

⋂
{H(k) : k ≥ 1}, we

know that z ∈ X. Then z 6∈ S(xin , jn) = B(xin , jn) ∩X combines with z ∈ X ∩ clλ(B(xin , jn)) to
show that z must be an endpoint of each interval B(xin , jn). Because each xin ∈ S(xin , jn) while
z 6∈ S(xin , jn) we see that z must be an external endpoint of B(xin , jn) for each n and that is
impossible because the sets B(xin , jn) cannot repeat any external endpoint. Therefore, Claim 1 is
established.

Step 2: Construct basic neighborhoods for the points of X1: Suppose X1 6= ∅. We know that the
set X1 = X − X0 is a Gδ-subset of (R, τ), is uncountable, and every point of X1 is a two-sided
condensation point of X1. Write X1 =

⋂
{Gn : n ≥ 1} where Gn ∈ τ and Gn+1 ⊆ Gn. Write each

Gn as the union of its convex components in the linearly ordered set (R, <), say Gn =
⋃
{G(n, j) :

j ∈ J(n)}. Because we can replace the space (R, τ) by a homeomorphic copy of itself in (0, 1), there
is no loss of generality if we assume that each G(n, j) has finite diameter with respect to the usual
metric on R. In addition, because the set X0 is dense in X, if x ∈ X1 and if G(n, jn) is the unique
convex component of Gn that contains x, we know that the limit (as n → ∞) of the diameter of
G(n, jn) must be zero. Because there may be may isolated points in τ |X, the index sets J(n) might
be uncountable. Let J(n, 1) := {j ∈ J(n) : |G(n, j) ∩ X1| > 1}. For each j ∈ J(n, 1) the set
G(n, j) ∩X1 is uncountable, and the index set J(n, 1) is countable.

Let Z = clλ(X1) and partition Z = Z0 ∪ Z1 as described above. Note that Z is a Gδ-subset of
(R, λ) and hence so is Z1. Also note that X1 ⊆ Z1.

Step 2, Level n = 1: Fix j ∈ J(1, 1). Then the set G(1, j) ∩ X1 is uncountable and hence so is
Z1 ∩ G(1, j). Apply Lemma 3.1 with G(1, j) being the set called I in (3.1), and C = ∅. Compute
s = inf(Z1 ∩G(1, j)) and t = sup(Z1 ∩G(1, j)), and find relatively closed, relatively nowhere dense
sets A = A(1, j), B = B(1, j) with s ∈ A ⊆ {s}∪(Z1∩G(1, j)) and t ∈ B ⊆ (Z1∩G(1, j))∪{t}. Also
find strictly increasing functions α = α1,j : (s, t]→ A(1, j)−{s} and β = β1,j : [s, t)→ B(1, j)−{t}
with α(x) < x for x ∈ (s, t] and x < β(x) for each x ∈ [s, t).

Now consider any x ∈ X1 ∩G(1, j). If x ∈ I (see above for the definitions of I, R, L and E), let
B(x, 1) = {x}. If x ∈ R, we would like to define B(x, 1) = [x, β(x)), but in order to do that we
must show that x < t. We establish x < t by contradiction. Clearly x ≤ t, so for contradiction,
assume x = t. Then we claim that x = t = sup(G(1, j)). For otherwise, t < sup(G(1, j)) so
that we may find ε > 0 with [x, x + ε) ⊆ G(1, j). Because x ∈ X1, the point x is a two-sided
condensation point of X1 so that X1 ∩ (x, x + ε) is uncountable. Hence t = x is not the supremum
of X1 ∩ G(1, j), which is false. Therefore, we conclude that if x = t then x = t = sup(G(1, j)).
But t = x ∈ X1 ∩ G(1, j) so that the set G(1, j) contains its own right endpoint, namely x.
Then x ∈ G(1, j) ∈ τ so that x ∈ R gives us some δ > 0 with [x, x + δ) ⊂ G(1, j), contrary to
x = sup(G(1, j)). This cluster of contradictions shows that x = t is impossible, as claimed. Now
we may define B(x, 1) = [x, β(x)) if x ∈ R ∩X1 ∩ G(1, j). Similarly, if x ∈ L ∩X1 ∩ G(1, j) then
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s < x and we may define B(x, 1) = (α(x), x] and if x ∈ E ∩ X1 ∩ G(1, j) then s < x < t and we
may define B(x, 1) = (α(x), β(x)). In any case, note that clλ(B(x, 1)) ⊆ G(1, j) ⊆ G(1).

The term external endpoint is used just as in Step 1 of the proof. Note that for x ∈ X1∩G(1, j)
every external endpoint of B(x, 1) is a point of A(1, j)∪B(1, j) which is a relatively closed, relatively
nowhere dense subset of Z1. Also note that the points s = inf(Z1∩G(1, j)) and t = sup(Z1∩G(1, j))
are never external endpoints of any set B(x, 1) for x ∈ X1 ∩G(1, j).

Because any point x ∈ X1 belongs to a unique G(1, j) we have now defined B(x, 1) for each
x ∈ X1. We let End(1) be the set of all external endpoints of all sets B(x, 1) for x ∈ X1. Then
End(1) is a relative first category subset of Z1 because the index set J(1, 1) is countable and
End(1) ⊆

⋃
{A(1, j) ∪B(1, j) : j ∈ J(1, 1)}.

Claim 2: Suppose x 6= x′ are points of X1 and that B(x, 1) ∩ X ⊆ B(x′, 1). It cannot
happen that both x and x′ belong to a single one of the sets I, R, L or E.

In proving Claim 2, there is no loss of generality if we assume x < x′. Let j, j′ ∈ J(1) with
x ∈ G(1, j), x′ ∈ G(1, j′). If j 6= j′ then B(x, 1) ∩ B(x′, 1) ⊆ G(1, j) ∩ G(1, j′) = ∅, contrary
to x ∈ B(x, 1) ∩ X ⊆ B(x′, 1), so that j = j′. Clearly x, x′ ∈ I is impossible. Given that
x 6∈ I and x ∈ G(1, j) we conclude that because G(1, j) ∩ X1 is a relative τ -neighborhood of
x, it must contain an open interval on the left or right of x, so that because points of X1 are
two-sided condensation points of X1, the set G(1, j) ∩ X1 must be uncountable. Hence we have
sets A1,j, B1,j and functions β = β1,j and α = α1,j. Now consider the case where x, x′ ∈ R.
Then B(x, 1) = [x, β(x)) and B(x′, 1) = [x′, β(x′)). From x ∈ B(x, 1) ∩ X ⊆ B(x′, 1) we get
x′ ≤ x < β(x′) which is false because x < x′. Hence {x, x′} ⊆ R is impossible. Next consider the
case where x, x′ ∈ L. Then x < x′ gives α(x) < α(x′). Now the point α(x) ∈ Z1 so that the interval
(α(x), α(x′)) must contain uncountably many points of Z1. Choose any z1 ∈ (α(x), α(x′)) ∩ Z1.
Because Z is the λ-closure of X1 and z1 ∈ Z, there is a point x1 ∈ X1∩ (α(x), α(x′)). Clearly, then,
x1 6∈ B(x′, 1). Recall that x ∈ B(x, 1) ∩X ⊆ B(x′, 1) = (α(x′), x′] so that we have α(x′) < x < x′.
Consequently, α(x) < x1 < α(x′) < x showing that x1 ∈ (α(x), x] ∩ X = B(x, 1) ∩ X ⊆ B(x′, 1),
which is impossible. Thus, x, x′ ∈ L is also impossible. As the final step in proving Claim 1,
consider the case where x, x′ ∈ E. Then B(x, 1) = (α(x), β(x)) and B(x′, 1) = (α(x′), β(x′)) so
that from x ∈ B(x, 1) ∩ X ⊆ B(x′, 1) we have α(x′) < x < β(x′). From x < x′ we know that
α(x) < α(x′). Therefore α(x) < α(x′) < x. But α(x) ∈ Z1 so that the interval (α(x), α(x′))
must contain uncountably many points of Z1. Then the interval (α(x), α(x′)) must contain some
point x1 ∈ X1 because Z is the λ-closure of X1. Because x1 < α(x′) we know that x1 6∈ B(x′, 1)
and yet from α(x) < x1 < α(x′) < x we know that x1 ∈ B(x, 1) ∩ X, which again contradicts
B(x, 1) ∩X ⊆ B(x′, 1). Consequently, Claim 2 is established.

Claim 3: For x ∈ X1 let S(x, 1) = B(x, 1) ∩ X. It is not possible to have an infinite
sequence xi ∈ X1 of distinct points such that S(xi+1, 1) ⊆ S(xi, 1) for each i ≥ 1.

For contradiction, suppose there were an infinite sequence of distinct points xi ∈ X1 with
S(xi+1, 1) ⊆ S(xi, 1). If some xi ∈ I then S(xi, 1) = {xi} so that xi+1 ∈ S(xi+1, 1) ⊆ S(xi, 1) = {xi}
yields xi+1 = xi, and that is false. Hence xi ∈ R ∪ L ∪ E for all i. Suppose x1 ∈ R. Then Claim 2
shows that xi 6∈ R for each i ≥ 2, so that x2 ∈ L∪E. If x2 ∈ L, then Claim 2 shows that xi 6∈ L∪R

8



for each i ≥ 3, so x3 ∈ E. But then Claim 2 shows that x4 6∈ I ∪R ∪ L ∪E = X, and that is false.
All other cases are similar, so Claim 3 is proved.

Step 2, Level n + 1: Suppose that B(x, j) is defined for each x ∈ X1 and each j ≤ n and that the
set End(n) of all external endpoints of all of the previously defined sets B(x, j) is known to be a
countable union of relatively closed, relatively nowhere dense subsets of Z1. We define B(x, n + 1)
by making cosmetic changes in the n = 1 step above.

For a fixed x ∈ X1, choose the unique j = j(n+1, x) ∈ J(n+1) with x ∈ G(n+1, j). If x ∈ I, let
B(x, n+1) = {x}. If x 6∈ I, then j ∈ J(n+1, 1) and the set G(n+1, j)∩X1 is uncountable. Because
X1 ⊆ Z1, we know that the set G(n + 1, j)∩Z1 is uncountable. Compute s = inf(G(n + 1, j)∩Z1)
and t = sup(G(n + 1, j) ∩ Z1), and apply Lemma 3.1 with I = G(n + 1, j) and C = End(n) to
find relatively closed, relatively nowhere dense subsets A(n + 1, j), B(n + 1, j) of Z1 and functions
αn+1,j : (s, t]→ A(n+1, j)−{s}, βn+1,j : [s, t)→ B(n+1, j)−{t}. If x ∈ R, then, as in the case where
n = 1, we prove that x < t and we let B(x, n + 1) = [x, βn+1,j(x)). If x ∈ L, then x > s and we let
B(x, n+1) = (αn+1,j(x), x]. If x ∈ E then s < x < t and we let B(x, n+1) = (αn+1,j(x), βn+1,j(x)).
Note that for any x ∈ X1 ∩G(n + 1, j) we have clλ(B(x, n + 1)) ⊆ G(n + 1, j).

Still considering the fixed x ∈ X1 and j = j(n = 1, x) from the previous paragraph, we claim
that no external endpoint of B(x, n + 1) can belong to the set End(n). Clearly, if x ∈ I, then
B(x, n + 1) has no external endpoints. In case x ∈ R, then βn+1,j(x) is the only external endpoint
of B(x, n + 1) and we note that βn+1,j(x) ∈ B(n + 1, j) − {t} ⊆ Y − C = Y − End(n) where
s = inf(Z1 ∩G(n + 1, j) and t = sup(Z1 ∩G(n + 1, j) as computed in the previous paragraph. The
case where x ∈ L is analogous, and in case x ∈ E then the set of external endpoints of B(x, n + 1)
is {αn+1,j(x), βn+1,j(x)} which is disjoint from End(n). This argument shows that no external
endpoint of B(x, n + 1) can be a repetition of an external endpoint from a previous level.

The above process defines B(x, n + 1) for each x ∈ X1. Let End(n + 1) be the union of End(n)
with the collection of all external endpoints of all sets B(x, n+1) for x ∈ X1. As before, End(n+1)
is a subset of a countable union of relatively closed, relatively nowhere dense subsets of Z1 because
the index set J(n + 1, 1) is countable, and the very same proofs used for Claims 2 and 3 give us

Claim 4: For x ∈ X1, let S(x, n + 1) = B(x, n + 1) ∩ X. It is not possible to have an
infinite sequence xi ∈ X1 of distinct points such that S(xi+1, n + 1) ⊆ S(xi, n + 1) for
each i ≥ 1.

Step 3: Find a subcompact base:

We now define a collection of τ |X-open subsets of X by

S := {B(xk, j) ∩X : xk ∈ X0, k ≤ j < ω} ∪ {B(x, n) ∩X : x ∈ X1, n ≥ 1}.

We see that S is a base for (X, τ) because the sets B(x, k) ∈ S have the right “shape” determined
by which of I, R, L or E the point x belongs to, and because the diameter of the sets B(x, n)
approaches zero as n→∞.

What remains is to prove that S is a subcompact base for (X, τ). To do that, let F ⊆ S be a
regular filter (with respect to the topology τ |X) and suppose for contradiction that

⋂
F = ∅. Then

no member of F is a singleton. Let C := {B(x, n) : X ∩ B(x, n) ∈ F}. Because F is a filter base,
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the collection C is centered. Because each member of C is a bounded subset of (R, λ) we know that
there is some point z ∈

⋂
{clλ(B(x, n)) : B(x, n) ∈ C}. However, z 6∈

⋂
F so there must be some

F0 ∈ F with z 6∈ F0. Write F0 = B(x0, k0) ∩ X for some B(x0, k0) ∈ C. Because
⋂
F = ∅, the

collection F cannot have any minimal element (with respect to inclusion) so that, starting with the
set F0 chosen above, we can find a sequence Fn ∈ F such that Fn+1 is a proper subset of Fn for
each n ≥ 0. Write Fn = B(xn, kn) ∩X with B(xn, kn) ∈ C.

Looking back at Claim 1, we conclude from
⋂
F = ∅ that at most finitely many members of the

sequence Fn could have been constructed in Step 1 using points xn ∈ X0. Discarding those finitely
many sets, we may renumber and assume that every set Fn = B(xn, kn) ∩ X was constructed in
Step 2, using points xn ∈ X1.

Now Claim 4 shows that for any fixed value of K, only a finite number of points xn have
kn = K. Discarding certain finite sub-sequences of the points xn we obtain a sequence of pairs
(xn1 , kn1), (xn2 , kn2), · · · with the property that kn1 < kn2 < · · ·. Renumbering the pairs if necessary,
we may assume that the sequence of pairs (x1, k1), (x2, k2), · · · has k1 < k2 < · · ·. But then we have
z ∈ clλ(B(xn, kn)) ⊆ G(kn). Because the open sets G(j) are nested and have X1 =

⋂
{G(j) : j ≥ 1}

we obtain z ∈
⋂
{G(kn) : n ≥ 1} = X1 ⊆ X. Recall that z 6∈ Fn = B(xn, kn) ∩ X. Because

z ∈ X, it follows that z 6∈ B(xn, kn). However, z ∈ clλ(B(xn, kn)) so that z must be an end point of
B(xn, kn). Because z 6∈ Fn = B(xn, kn) ∩X while xn ∈ Fn we know that z 6= xn. Therefore z is an
external endpoint of each set B(xn, kn). But that is impossible because, for example, no external
endpoint of the set B(x1, k1) can be an external endpoint of any set constructed at any later level
in the Step 2 recursion. In particular, because k1 < k2 the sets B(x1, k1) and B(x2, k2) cannot have
any external endpoints in common. This contradiction shows that S cannot contain any regular
(with respect to τ) filter base F having

⋂
F = ∅. Therefore, S is a subcompact base for (X, τ), as

required. 2

A well-known theorem shows that a completely metrizable space X is a Gδ-subset of any other
metric space that contains X as a subspace. Our next proposition makes an analogous assertion
about subcompact GO-spaces constructed on sets of real numbers, namely that a subcompact GO-
space X defined on a set of real numbers must be a Gδ-subset of any other GO-space on a set of
real numbers that contains X as a subspace. This is, in some sense, a converse of Theorem 3.3. We
begin with an easy lemma.

Lemma 3.4 Let < be the usual ordering of R. If X ⊆ R and if (X, <, σ) is any GO-space, then
there is at least one GO-topology τ on (R, <) with σ = τ |X . In addition, we can choose τ with the
properties that

a) for x ∈ X, {x} ∈ σ if and only if {x} ∈ τ and

b) each point x ∈ R−X has a base of neighborhoods of the form (a, b) where a < x < b. 2

Proposition 3.5 Suppose σ is a GO-topology on a subset X ⊆ R and that (X, σ) is subcompact.
Let τ be any GO-topology on R with the property that σ = τ |X . Then X is a Gδ-subset of (R, τ).
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Proof: The proof is an application of König’s lemma. We begin by noting that because τ is a
GO-topology on R, the space (R, τ) is hereditarily paracompact because (R, τ) has a Gδ-diagonal.
Therefore, if V is any collection of τ -open subsets of R, there is a point-finite collectionW of τ -open
sets such that

⋃
W =

⋃
V , for each W ∈ W , the τ -closure of W is contained in some member of V

[2], [10].

Let B be a subcompact base for (X, σ) and let B(1) = {B ∈ B : diam(B) < 1}, where diameter
is computed using the usual metric for R. For each B ∈ B(1) there is a set C(B, 1) ∈ τ that has
diameter < 1 and has B = C(B, 1) ∩X. Let C(1) = {C(B, 1) : B ∈ B(1)}. Then there is a point-
finite collection D(1) ⊆ τ such that

⋃
D(1) =

⋃
C(1) with the property that for each D ∈ D(1),

some set γ1(D) ∈ C(1) has D ⊆ clτ (D) ⊆ γ1(D).

Suppose n ≥ 1 and D(n) is defined. Let

B(n + 1) = {B ∈ B : diam(B) <
1

n + 1
and for some D ∈ D(n), B ⊆ D}.

For each B ∈ B(n+1) choose some δ(B, n) ∈ D(n) with B ⊆ δ(B, n), and then find C(B, n+1) ∈ τ
with diameter < 1

n+1
and having

B = X ∩ C(B, n + 1) ⊆ C(B, n + 1) ⊆ δ(B, n).

Let C(n + 1) = {C(B, n + 1) : B ∈ B(n + 1)}. Then there is a point-finite collection D(n + 1) ⊆ τ
with

⋃
D(n + 1) =

⋃
C(n + 1) and

(1) for each D ∈ D(n+1) there is some γn+1(D) ∈ C(n+1) with D ⊆ clτ (D) ⊆ γn+1(D).

Let Gn =
⋃
D(n). Then Gn ∈ τ and we have X ⊆

⋂
{Gn : n ≥ 1}. We claim that X =⋂

{Gn : n ≥ 1}. To verify that assertion, consider any q ∈
⋂
{Gn : n ≥ 1}. For each n ≥ 1

the collection D(n, q) := {D ∈ D(n) : q ∈ D} is non-empty and finite. Hence so is the collection
K(n) := {γn(D) : D ∈ D(n, q)} where γn(D) is the member of C(n) chosen in the recursive
construction above. Let K :=

⋃
{K(n) : n ≥ 1} and define a partial order � on K by the rule

that K1 � K2 means clτ (K2) ⊆ K1. We claim that there is a sequence Kn = γn(Dn) ∈ K(n) with
Kn � Kn+1 for all n ≥ 1. Once we show that for each K ′ ∈ K(n+1), some K ′′ ∈ K(n) has K ′′ � K ′,
then the existence of this sequence will follow from a version of König’s Lemma (see Theorem 114
in [11] for a result that resembles the more familiar version in Theorem 2.6 of [13]; we need the
more general result because we do not claim that K is a tree).

So fix K ′ ∈ K(n + 1), say K ′ = γn+1(D
′) where D′ ∈ D(n + 1, q). Then q ∈ D′. Because

γn+1(D
′) ∈ C(n + 1) we know that there is some B′ ∈ B(n + 1) with γn+1(D

′) = C(B′, n + 1).
Because B′ ∈ B(n + 1) the set δ(B′, n) ∈ D is defined and has B′ ⊆ δ(B′, n), and, from the
construction of C(B′, n + 1) we also know that C(B′, n + 1) ⊆ δ(B′, n). Write D′′ = δ(B′, n).
Because D′′ ∈ D(n) we have some γn(D′′) ∈ C(n) with D′′ ⊆ clτ (D

′′) ⊆ γn(D′′). Then we have

(2) q ∈ D′ ⊆ γn+1(D
′) = C(B′, n + 1) ⊆ δ(B′, n) = D′′ ⊆ clτ (D

′′) ⊆ γn(D′′).

Hence q ∈ D′′ ∈ D(n) so that γn(D′′) ∈ K(n) and, writing K ′′ = γn(D′′), we have

(3) K ′ = γn+1(D
′) ⊆ clτ (D

′′) ⊆ γn(D′′) = K ′′.

Therefore, as noted above, König’s lemma gives us Kn = γn(Dn) ∈ K with Kn � Kn+1. i.e.,
γn+1(Dn+1) ⊆ clτ (γn+1(Dn+1)) ⊆ γn(Dn). This gives
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(4) X ∩ γn+1(Dn+1) ⊆ X ∩ clτ (γn+1(Dn+1)) ⊆ γn(Dn).

Looking back at the recursive construction above, we see that for each n ≥ 1, γn(Dn) ∈ C(n) so
that for some Bn ∈ B(n) we have γn(Dn) = C(Bn, n). Recall that the set C(Bn, n) was chosen in
such a way that X ∩ C(Bn, n) = Bn so that assertion (4) gives

(5) Bn+1 = X ∩ C(Bn+1, n + 1) ⊆ X ∩ clτ (C(Bn+1, n + 1)) ⊆ X ∩ C(Bn, n) = Bn.

Therefore clσ(Bn+1) ⊆ Bn because σ = τ |X , so that the collection {Bn : n ≥ 1} is a regular filter
base in the subcompact base B for (X, σ). Therefore, some point r ∈ X has r ∈ Bn for each n ≥ 1.
But then r ∈ Bn ⊆ C(Bn, n) = γn(Dn) and q ∈ γn(Dn) = C(Bn, n). Because the diameter of
C(Bn, n) is less than 1

n
, it follows that q = r ∈ X, as required to show that

⋂
{Gn : n ≥ 1} = X. 2

One must be careful in applying Proposition 3.5 because, as Example 3.9 will show, there is
a dense-in-itself, subcompact GO-space (X, σ) with X ⊆ R where X is not a Gδ-subset of the
usual real line. That example is consistent with Proposition 3.5 because the given σ will not be a
relativized topology from (R, λ).

Our next result says that question Q2 has an affirmative answer for GO-spaces constructed on
sets of real numbers.

Corollary 3.6 Suppose X ⊆ R and suppose that σ is a GO-topology on the linearly ordered set
(X, <) such that (X, σ) is subcompact. Suppose that Y is a Gδ-subset of (X, σ). Then (Y, σ|Y ) is
subcompact.

Proof: Let τ be any GO-topology on R that has σ = τ |X . By Proposition 3.5, the set X is a
Gδ-subset of (R, τ). But then Y is also a Gδ-subset of (R, τ) so that by Theorem 3.3, the subspace
(Y, τ |Y ) is subcompact. But because τ |X = σ we have τ |Y = σ|Y , as required to show that (Y, σ|Y )
is subcompact. 2

Corollary 3.7 Suppose X is a Gδ-subset of the usual real line (R, λ), and that σ is any GO-topology
constructed on the linearly ordered set (X, <). Then (X, σ) is subcompact.

Proof: As noted in Lemma 3.4, there is at least one GO-topology τ on R with τ |X = σ. Then X
is a Gδ-subset of (R, τ) because λ ⊆ τ . According to Proposition 3.2, the GO-space (R, τ) must be
subcompact. According to Theorem 3.3, (X, σ) must be subcompact. 2

Corollary 3.8 Suppose X ⊆ R. Then (X, σ) is subcompact for every GO-topology σ constructed
on (X, <) if and only if X is a Gδ-subset of the usual space of real numbers.

Proof: Let λ denote the usual topology on R. Then λ|X is a GO-topology on X, and if (X, λ|X)
is subcompact, then (X, λ|X) is completely metrizable and therefore is a Gδ-subset of (R, λ). The
converse is Corollary 3.7. 2

Corollary 3.7 gives sufficient, but not necessary, conditions for a GO-space (X, σ) on a subset
X ⊆ R to be subcompact, as our next example shows.
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Example 3.9 There is a dense-in-itself subspace X of the Sorgenfrey line (R, σ) that is subcompact
even though X is not a Gδ-subset of (R, λ).

Proof: Let I1, I2, · · · be a listing of the open intervals removed from [0, 1] in the usual Cantor set
construction. Thus, I1 = (1

3
, 2

3
), I2 = (1

9
, 2

9
), I3 = (7

9
, 8

9
), · · ·. Let Jn be the set In together with its

left endpoint sn. In the relative Sorgenfrey topology, each Jn is open and subcompact, so that the
set X :=

⋃
{Jn : n ≥ 1} is subcompact in the relative Sorgenfrey topology. Note that

⋃
{In : n ≥ 1}

is an Fσ-subset of (R, λ) so that if X were a Gδ-subset of (R, λ), then X−
⋃
{In : n ≥ 1} would also

be a Gδ-subset of (R, λ). But X −
⋃
{In : n ≥ 1} is the countable, dense-in-itself set {sn : n ≥ 1},

and no countable dense-in-itself set can be a Gδ-subset of (R, λ). 2

Recall Question Q2 of the introduction: suppose the topological space (X, σ) is subcompact and
we create a new topology by isolating all of the points in some set S ⊆ X (i.e., we let σS be the
topology on X having the collection σ ∪{{x} : x ∈ S} as a base). Must (X, σS) be subcompact? If
we consider only GO-topologies on subsets or R, our next result provides an affirmative answer.

Proposition 3.10 Suppose X ⊆ R and suppose σ is a GO-topology on X such that (X, σ) is
subcompact. Let σS be obtained from σ by isolating all points in some subset S ⊆ X. Then (X, σS)
is also subcompact.

Proof: Because (X, σ) is a GO-space, there is a GO-topology τ on R with τ |X = σ. Because (X, σ)
is subcompact, Proposition 3.5 shows that X is a Gδ-subset of (R, τ). Let τS be the topology
having τ ∪ {{x} : x ∈ S} as a base. Then τS is a GO-topology on R with τS|X = σS, and because
τ ⊆ τS, X is a Gδ-subset of the GO-space (R, τS). Now apply Corollary 3.6 to show that (X, σS)
is subcompact. 2

4 Applications to other completeness properties

As noted in Section 2, subcompactness is just one of a cluster of strong completeness properties
introduced by de Groot and his Amsterdam colleagues. In general spaces it is easy to see that

(*) regularly co-compact ⇒ base compact ⇒ subcompact.

The property “co-compact” does not appear in hierarchy (*): the Sorgenfrey line is a co-compact
space with respect to the collection {[a, b] : a < b} but it is neither regularly co-compact nor base
compact [1]. However, the Sorgenfrey line is subcompact, and that is no accident because we can
prove:

Proposition 4.1 Suppose that X ⊆ R and that τ is a GO-topology constructed on (X, <). If (X, τ)
is co-compact, then (X, τ) is subcompact.

Proof: Let C be the collection of closed subsets of (X, τ) with respect to which (X, τ) is co-compact.
Lemma 3.4 gives a GO-topology σ on (R, <) such that σ|X = τ , {x} ∈ σ if and only if {x} ∈ τ , and
has the property that for x ∈ R−X, basic σ-neighborhoods of x have the form (a, b) for a < x < b.
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Let Z = clσ(X). We will show that Z is a Gδ-subset of (R, σ) and that X is a Gδ-subset of
(Z, σ|X) from which it will follow that that X is a Gδ-subset of (R, σ). Then (3.2) and (3.6) combine
to show that (X, σ|X) is subcompact, and the proof will be complete because σ|X = τ .

To show that Z is a Gδ-subset of (R, σ), note that if y ∈ R−Z then basic σ-neighborhoods of y
have the form (a, b) with a < y < b. Hence there are rational numbers r, s with y ∈ [r, s] ⊆ R− Z
so that R−Z is the union of countably many closed intervals with rational endpoints. Hence R−Z
is an Fσ-subset of (R, σ), so Z is a Gδ, as required.

Next we show that X is a Gδ-subset of (Z, σ|Z). With C being the collection of closed subsets
of (X, τ) given by the definition of co-compactness, there is no loss of generality if we assume that
Intτ (C) 6= ∅ for each C ∈ C. Let Cn := {C ∈ C : diam(C) < 1

n
} where diam(C) is computed with

respect to the usual metric on R. Because τ = σ|X , for each C ∈ Cn, there is a set Gn(C) ∈ σ with
X ∩Gn(C) = Intτ (C), and we may assume that diam(Gn(C)) < 1

n
. Note that Gn(C)∩Z ∈ σ|Z , so

that the set Hn :=
⋃
{Gn(C) ∩ Z : C ∈ Cn} ∈ σ|Z and X ⊆ Hn for each n.

We claim that
⋂
{Hn : n ≥ 1} ⊆ X. Let y ∈

⋂
{Hn : n ≥ 1}. Then for each n there is

some Cn ∈ Cn with y ∈ Gn(Cn) ∩ Z. For each n ≥ 1, y ∈
⋂
{Gj(Cj) : 1 ≤ j ≤ n} so that⋂

{Gj(Cj)∩Z : 1 ≤ j ≤ n} is a nonempty set in σ|Z . We know that X is a dense subset of (Z, σ|Z)
so that ∅ 6=

⋂
{Gj(Cj) ∩ X : 1 ≤ j ≤ n} ⊆

⋂
{Intτ (Cj) : 1 ≤ j ≤ n} ⊆

⋂
{Cj : 1 ≤ j ≤ n}.

Therefore, {Cn : n ≥ 1} is a centered subcollection of C so that some x ∈ X has x ∈
⋂
{Cn : n ≥ 1}

by co-compactness of (X, τ). Choose sn ∈ Intτ (Cn). Then |x − sn| < 1
n

because diam(Cn) < 1
n
.

Furthermore, y ∈ Gn(Cn) ∩ Z and sn ∈ Intτ (Cn) = Gn(Cn) ∩X ⊆ Gn(Cn) ∩ Z so that |y − sn| ≤
diam(Gn(Cn)) < 1

n
. Therefore |y − x| ≤ 2

n
. Because this holds for each n ≥ 1 we conclude that

y = x ∈ X. Consequently X =
⋂
{Hn : n ≥ 1} so that X is a Gδ-subset of (Z, σ|Z).

At this point we know that (X, τ) = (X, σ|X) is a Gδ-subset of (R, σ) so that we may apply
Proposition 3.2 and Corollary 3.6 to complete the proof of Proposition 4.1. 2

As noted in the Introduction, one of the most interesting open questions in completeness theory
is whether every domain-representable space is subcompact. Among general spaces, we expect a
negative answer even though in special classes like metrizable, Moore, and BCO spaces, the two
notions are equivalent. We do not know whether domain-representability and subcompactness are
the same in the category of GO-spaces constructed on subsets of R. However, we can prove:

Proposition 4.2 Suppose Y is a subset of R that is domain-representable when equipped with some
dense-in-itself GO-topology τ . Then there is a subset S ⊆ Y that is dense in (Y, τ) and is a Gδ-subset
of the usual real line.4

Proof: Let X be the closure of the set Y in (R, λ) where λ is the usual open-interval topology on
R. In this proof, X always carries the subspace topology λ|X from R. Note that λ|Y := {U ∩ Y :
U ∈ λ} ⊆ τ . Because (Y, τ) has no isolated points, if G ⊆ Y is τ -open, then there is a λ|X-open set
H ⊆ X with the property that H ∩ Y ⊆ G and H ∩ Y is a τ -dense subset of G. We will repeatedly
use the fact that any base for any space contains a maximal pairwise disjoint subcollection whose
union is dense in the space.

Let (P,v) be a domain that represents (Y, τ). We will abuse notation and write Y = max(P ).

4Note that S must also be dense in Y when Y carries the usual subspace topology from R.
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Let P (1) := {p ∈ P : 0 < diam(⇑(p)∩Y ) < 1} where diameter is computed by the usual metric
on R. Then B(1) := {⇑(p)∩Y : p ∈ P (1)} is a base for (Y, τ) so that there is a subset P ′(1) ⊆ P (1)
with the property that C(1) := {⇑(p)∩Y : p ∈ P ′(1)} is a maximal pairwise disjoint subcollection of
B(1). Then

⋃
C(1) is a dense subset of (Y, τ) and therefore also a dense subset of (Y, λ|Y ). Because

Y is a λ|X-dense subset of X, it follows that
⋃
C(1) is also a dense subset of (X, λ|X) For each

p ∈ P ′(1) there is a λ|X-open subset U(1, p) ⊆ X with the property that U(1, p) ∩ Y is a τ -dense
subset of ⇑(p) ∩ Y and where diam(U(1, p)) < 1. Then the collection U(1) = {U(1, p) : p ∈ P ′(1)}
is a pairwise disjoint collection (because Y is dense in (X, λ|X)) of λ|X-open subsets of X. Write
V (1) =

⋃
U(1). Then V (1) is dense in (X, λ|X).

Suppose we have a pairwise disjoint collection U(n) = {U(n, p) : p ∈ P ′(n)} where P ′(n) ⊆ P
and each U(n, p) is a λX-open set of diameter < 1

n
and where U(n, p)∩Y is τ -dense in ⇑(p)∩Y for

each p ∈ P ′(n). Fix p ∈ P ′(n) and let P (n + 1, p) = {q ∈ P : p� q, 0 < diam(⇑(q) ∩ Y ) < 1
n+1
}.

Then B(n+1, p) = {⇑(q)∩Y : q ∈ P (n+1, p)} is a base for the open subspace ⇑(p)∩Y of (Y, τ) so
there is a set P ′(n+1, p) ⊆ P (n+1, p) with the property that C(n+1, p) = {⇑(q)∩Y : q ∈ P ′(n+1, p)}
is a maximal pairwise disjoint subcollection of B(n + 1, p). Then

⋃
C(n + 1, p) is a τ -dense subset

of U(p) ∩ Y . For each q ∈ P ′(n + 1, p) there is a λ|X-open subset U(n + 1, p, q) of X such that
U(n+1, q, p) ⊆ U(n, p) and U(n+1, p, q)∩Y is τ -dense in ⇑(q)∩Y . Let P ′(n+1) :=

⋃
{P ′(n+1, p) :

p ∈ P ′(n)}. Note that the collection U(n + 1) = {U(n + 1, p, q) : p ∈ P ′′(n), q ∈ P ′(n + 1, q, p)} is
a pairwise-disjoint collection of λ|X-open subsets of X that refines U(n) and has the property that
the set V (n + 1) =

⋃
U(n + 1) is λ|X-dense in X.

Let S :=
⋂
{V (n) : n ≥ 1}. Then, because (X, λ|X) is a complete metric space, we know that

the set S is non-empty and is λ|X-dense in X. We claim that S ⊆ Y . For consider any x ∈ S.
For each n ≥ 1 there is a unique U(n, pn) ∈ U(n) with x ∈ U(n, pn). Then pn � pn+1 in P
so that the set D = {pn : n ≥ 1} is a directed subset of the domain P . Hence sup(D) ∈ P so
that because Y = max(P ) there is some y ∈ Y with sup(D) v y. But then for each n we have
pn � pn+1 v sup(D) v y so that y ∈ ⇑(pn) ∩ Y . Because the set U(n, pn) has diameter less than
1
n

and U(n, p) ∩ Y is τ -dense in ⇑(pn) ∩ Y , we know that |x− y| ≤ 1
n
. Because this holds for each

n ≥ 1 we see that x = y ∈ Y , as required. Hence S ⊆ Y .

It follows that the set S is λ|Y dense in Y , but even more is true. For each n ≥ 1 we know that⋃
C(n) is τ -dense in Y . By construction, V (n)∩Y is also τ -dense in Y , and is also τ -open (because

λ|Y ⊆ τ). Because (Y, τ) is domain representable, it is a Baire space, so that
⋂
{Y ∩ V (n) : n ≥ 1}

must be τ -dense in Y . But
⋂
{V (n)∩Y : n ≥ 1} ⊆ S ⊆ Y so we now know that S is dense in (Y, τ)

and is a Gδ-subset of (X, λ|X). But X is closed in (R, λ) and therefore any Gδ-subset of (X, λ|X) is
also a Gδ-subset of R. 2

We note that the “dense-in-itself” hypothesis is necessary in Proposition 4.2: let Y be any subset
of R that contains no dense subset that is a Gδ in the usual real numbers, e.g, a Bernstein set. Let
σ be the discrete topology on Y . Then (Y,<, σ) is certainly domain-representable.

Corollary 4.3 None of the following subsets of R can support a dense-in-itself GO-space that is
domain representable: a totally non-meager subset of R, a Bernstein set, a Q-set, any subset with
cardinality less than 2ω.

Proof: No such subset of R can contain a dense Gδ-subset of R. 2
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Corollary 4.4 Suppose that X is a subset of R and that τ is a dense-in-itself topology on X so
that (X, τ) is domain representable. Then there is a Gδ-subset Y of the usual space R such that Y
is a dense subset of (X, τ) and (Y, τ |Y ) is subcompact.

Proof: Use Proposition 4.2 to find a Gδ-subset Y of the usual real line (R, λ) that is a dense subspace
of (X, τ). Then Corollary 3.3 shows that any GO-topology on Y must be subcompact. In particular,
(Y, τ |Y ) is subcompact, as required. 2

The set S found in Proposition 4.2 has a special significance, as our next result shows.

Proposition 4.5 Suppose that σ is a GO-topology on some subset X ⊆ R and suppose that (X, σ)
is dense-in-itself. Then the following are equivalent:

a) (X, σ) is pseudocomplete in the sense of Oxtoby,

b) there is a Gδ-subset S of (R, λ), where λ is the usual topology on R, such that S is a dense
subset of (X, σ),

c) the subspace (S, σ|S) is a dense subcompact subspace of (X, σ).

Proof: To show that (a) implies (b), we start with π-bases P(n) for (X, σ) that witness pseudo-
completeness of (X, σ). We may assume that the diameter (with respect to the usual metric on R)
of each member of P(n) is less than 1

n
. Let Z be the closure of X in the space (R, λ).

Let P ′′(1) be a maximal pairwise disjoint subcollection of P(1). Then
⋃
P ′′(1) is dense in (X, σ)

and because (X, σ) is dense-in-itself, for each P ∈ P ′′(1) there is a set Q(P, 1) ∈ λ|Z such that
Q(P, 1) ∩ X is a dense subset of P in the space (X, σ). Because X is dense in (Z, λ|Z) we know
that the collection Q(1) := {Q(P, 1) : P ∈ P ′′(1)} is pairwise disjoint.

Suppose n ≥ 1 and that we already have the pairwise disjoint collection Q(n) ⊆ λ|Z . Let
P ′(n+1) be the collection of all P ∈ P(n+1) whose closure in (X, σ) is contained in some member
of Q(n). Note that if Pn ∈ P ′′(n) and Pn+1 ∈ P ′(n + 1) have Pn ∩ Pn+1 6= ∅, then clσ(Pn+1) ⊆ Pn.
Also, P ′(n + 1) is a π-base for (X, σ). Let P ′′(n + 1) be a maximal pairwise disjoint subcollection
of P ′(n + 1). Then

⋃
P ′′(n + 1) is dense in (X, σ) and for each P ∈ P ′′(n + 1) there is some

Q(P, n + 1) ∈ λ|Z with Q(P, n + 1) ∩ X being dense in P in the space (X, σ). We may assume
that the diameter of Q(P, n + 1) is less than 1

n+1
. Then the collection Q(n + 1) is pairwise disjoint

because X is dense in (Z, λ|Z).

Let Gn =
⋃
Q(n). Then Gn ∈ λ|Z and Gn ∩ X =

⋃
{Q(P, n) ∩ X : P ∈ P ′′(n)} is dense

and open in (X, σ). Because (X, σ) is pseudocomplete and therefore a Baire space, we know that⋂
{Gn∩X : n ≥ 1} is dense in (X, σ). We also know that the set S :=

⋂
{Gn : n ≥ 1} is a Gδ-subset

of (Z, λZ) and therefore also a Gδ-subset of (R, λ).

We claim that S ⊆ X. Let y ∈ S and for each n, choose the unique set Pn ∈ P ′′(n) with
y ∈ Q(Pn, n). Then Q(Pn+1, n + 1) ∩ Q(Pn, n) 6= ∅ so that X ∩ (Q(Pn+1, n + 1) ∩Q(Pn, n)) 6= ∅
showing that Pn+1 ∩ Pn 6= ∅. But then, as noted above, clσ(Pn+1) ⊆ Pn. It now follows from the
pseudo-completeness property that there is some x ∈

⋂
{Pn : n ≥ 1}. We claim the x = y. For fix

any n ≥ 1 and choose some zn ∈ Q(Pn, n)∩X. Because y, zn ∈ Q(Pn, n) we know that |y−zn| < 1
n
.
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Because x, zn ∈ Pn we know that |zn − x| < 1
n
. Consequently |x− y| < 2

n
for each n and therefore

y = x ∈ X. Therefore, S ⊆ X as claimed.

But then we have S = S ∩X =
⋂
{Gn ∩X : n ≥ 1} so that S is both dense in (X, σ) and is a

Gδ-subset of (R, λ) as required in (b).

To show that (b) implies (c) use Corollary 3.7.

That (c) implies (a) is part of a more general theorem discussed in [1], namely that if S is a
dense subset of a regular space (X, σ) such that (S, σ|S) is subcompact with respect to a base B
of relatively open sets, then the collection C := {C ∈ σ : C ∩ S ∈ B} is a π-base for (X, σ) and
if Cn ∈ C has clσ(Cn+1) ⊆ Cn for each n ≥ 1, then

⋂
{Cn : n ≥ 1} 6= ∅. Consequently, defining

P(n) = C for each n gives that our space (X, σ) is pseudocomplete. 2

Corollary 4.6 Any domain representable GO-space constructed on a subset X ⊆ R is pseudocom-
plete.

Proof: Combine Proposition 4.2 with Proposition 4.5. 2

5 Some questions about GO-spaces on sets of real numbers

The most interesting open question about GO-spaces constructed on sets of real numbers is a
special case of the more general question Q3 of the Introduction that asks for an example of a
domain-representable space that is not subcompact.

Question 5.1 Suppose (X, τ) is a GO-space constructed on a set X ⊆ R and suppose (X, τ) is
domain representable. Is (X, τ) subcompact? (Compare Corollary 4.4.)

Results in this paper allow us to understand the role of subcompactness in GO-spaces constructed
on subsets of R, but many questions about the other Amsterdam properties remain open.

Question 5.2 Characterize subsets X ⊆ R that admit some dense-in-itself GO-topology τ so that
(X, τ) has one of the other Amsterdam properties (co-compactness, regular co-compactness, base-
compactness). Characterize those subsets X ⊂ R so that every GO-topology on X is one of co-
compact, regularly co-compact, and base-compact. (See Corollary 3.8 for the subcompact case.)

We note that results from [1] show that if a subspace X of the Sorgenfrey line is base-compact,
then X is nowhere dense in the usual topology of R.

The strong Choquet game Ch(X) on a space X is an infinite topological game that is closely
associated with domain representability in the light of K. Martin’s theorem that if X is domain
representable, then the non-empty player in Ch(X) has a winning strategy that requires knowledge
of at most two previous steps in the game (rather than perfect knowledge of the entire history of
the game). See [9] for details. We have an analog of 5.2 for this game-theoretic property:

Question 5.3 Characterize subsets X ⊆ R that admit some dense-in-itself GO-topology τ so that in
Ch(X, τ) the nonempty player has a winning strategy (respectively, a winning strategy that depends
on only the two previous moves, or depends on the previous move only).
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In any game, a strategy that depends only on the opponent’s single previous move is called a
stationary winning strategy. A result in [4] shows that if X is any regular space with a Gδ-diagonal
in which the nonempty player has a stationary winning strategy in Ch(X), then X must be domain
representable.

We note that the proof of Corollary 3.8 characterizes those subsets X ⊆ R with the property
that for every GO-topology σ on X the space (X, σ) is domain-representable (respectively, has the
property that the non-empty player has a winning strategy in Ch(X, σ)): they are precisely the
Gδ-subsets of the usual topology λ on R.

References

[1] Aarts, J., and Lutzer, D., Completeness properties designed for recognizing Baire spaces,
Dissertationes Mathematicae 116(1974), 45pp.

[2] Bennett, H., Point-countability in linearly ordered spaces, Proc. Amer. Math. Soc. 28(1971),
598-606.

[3] Bennett, H. and Lutzer, D., Domain-representable spaces Fundamenta Math. 189 (2006),
255-268.

[4] Bennett, H. and Lutzer, D., Domain representability of certain complete spaces, Houston J.
Math., to appear.

[5] Bennett, H. and Lutzer, D., Domain representability of Cp(X), Fundamenta Math., to ap-
pear.

[6] Bennett, H., Lutzer, D., and Reed, G.M., Domain-representability and the Choquet game
in Moore and BCO spaces, Topology and its Applications, to appear.

[7] Duke, K., and Lutzer, D., Scott-domain representability of a class of generalized ordered
spaces, Topology Proceedings, to appear.

[8] de Groot, J., Subcompactness and the Baire Category Theorem, Indag. Math. 22(1963),
761-767.

[9] Martin, K., Topological games in domain theory, Topology and its Appl. 129(2001), 177-186.

[10] Lutzer, D., On generalized ordered spaces. Dissertationes Math. 89(1971), 32pp.

[11] Moore, R.L. Foundations of Point-Set Theory, Volume XIII in Colloquium Publications,
American Mathematical Society, Providence, RI, 1962.

[12] Oxtoby, J., Cartesian products of Baire spaces, Fundamenta Math. 49(1961), 157-166.
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