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1 Introduction

The primary goal of this paper is to present a family of questions about the relationships
between the strong completeness properties defined in the next section and about the basic
topology of these properties. In this paper, all spaces are at least regular and T1.

A space X has the Baire Category Property (BCP) if the intersection of countably many
dense open subsets of X is dense in X. The classical Baire Category Theorem guarantees
that any complete metric space and any locally compact Hausdorff space has BCP, but
many other types of spaces also have the BCP, as can be seen from

Theorem 1.1 Any product space Π{Xα : α ∈ A} has the BCP provided each Xα is Čech-
complete. In particular the product space has the BCP if each factor is either locally compact
or completely metrizable.
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That result is surprising, if only because there is no restriction on the cardinality of the
index set A, and because there are examples showing that the BCP itself is badly behaved
under the product operation: in fact there is a metrizable BCP space whose square does
not have the BCP [29],[14]. In this proposal, we will say that a topological property P is a
(countable) strong completeness property if any (countable) product of spaces with property
P must have the BCP. Consequently, Theorem 1.1 shows that Čech-completeness is a strong
completeness property. For many (but not all1) strong completeness properties P , we will
see that P is even better behaved than required in the definition of a strong completeness
property, in the sense that P implies the BCP and the class of spaces with property P is
closed under the formation of arbitrary products.

2 Basic definitions

In the 1960s, three strong completeness properties were designed to explain what is really
happening in Theorem 1.1. Oxtoby[27] said that a space X is pseudocomplete if it has a
sequence 〈P(n)〉 of π-bases such that

⋂
{P (n) : n ≥ 1} 6= ∅ whenever P (n) ∈ P(n) and

∅ 6= cl(P (n + 1)) ⊆ P (n) for each n. De Groot [17] said that a space is subcompact if it
has a base B of non-empty open sets such that

⋂
F 6= ∅ whenever F ⊆ B is a regular filter

base2. Subsequently de Groot and his colleagues in Amsterdam introduced two related
strong completeness properties called base-compactness and co-compactness. A space X is
base compact if it has a base B with the property that

⋂
{cl(C) : C ∈ C} 6= ∅ whenever

C is a centered3 subcollection of B, and X is co-compact if it has a collection D of closed
sets such that any centered subcollection of D has non-empty intersection, and such that
if U is open in X and x ∈ U , then some D ∈ D has x ∈ Int(D) ⊆ D ⊆ U . If each
D ∈ D is the closure of its own interior, then we say that X is regularly cocompact. These
three properties – subcompactness, base-compactness, and co-compactness – have come
to be known as the Amsterdam properties, and [2] presents a survey. In [13], Choquet
introduced a game related to the BCP that is now called the strong Choquet game on X
and is denoted by Ch(X). Player 1 begins the game by specifying a pair (U1, x1) where
x1 ∈ U1 and U1 is open in X, and player 2 responds with an open set V1 that must have
x1 ∈ V1 ⊆ U1. Player 1 then chooses a pair (U2, x2) with x2 ∈ U2 ⊆ V1 and player 2
responds with an open set V2 having x2 ∈ V2 ⊆ U2. This game continues, generating
a sequence U1, x1, V1, U2, x2, V2, · · · and player 2 wins the play if

⋂
{Vn : n ≥ 1} 6= ∅

(equivalently
⋂
{Un : n ≥ 1} 6= ∅). Because the literature is very confusing about the names

for players 1 and 2, we will refer to player 2 as the non-empty player. The key question
about Ch(X) is whether the non-empty player has a winning strategy in the game, i.e., a
decision process σ so that if Vn = σ(U1, x1, V1, · · · , Un, xn) for each n, then the non-empty
player wins, no matter what the other player does. If the non-empty player has a winning
strategy, then X is Choquet complete. Of particular interest is the case where the strategy σ

1Čech-completeness is a strong completeness property that is not arbitrarily productive.
2i.e., given B1, B2 ∈ F , then some B3 ∈ F has cl(B3) ⊆ B1 ∩B2
3i.e., has the finite intersection property
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uses nothing but the pair (Un, xn) in choosing the response Vn, and in that case σ is called
a stationary strategy for the non-empty player. For example, if the space X were locally
compact, then for each pair (Un, xn) the non-empty player could choose any open set Vn
with xn ∈ Vn ⊆ cl(Vn) ⊆ Un, where cl(Vn) is compact, and that would be a stationary
winning strategy.

In the 1970s and 1980s, researchers began to study completeness using sieves of various
kinds. The most general type was introduced by E. Michael in [25] and we follow his
notation. A sieve for a space X is an indexed family of not-necessarily-open covers S(n) =
{S(α) : α ∈ A(n)} together with a sequence of functions πn : A(n+1)→ A(n) called bonding
maps with the property that Sα = X if α ∈ A(0) and if α ∈ A(n) then S(α) =

⋃
{S(β) : β ∈

A(n+1), πn(β) = α}. A sequence of indexes 〈αn〉 is a bonded sequence if πn(αn+1) = αn for
each n, and the sieve is complete if

⋂
{cl(F ) : F ∈ F} 6= ∅ whenever F is a filter base on X

and 〈αn〉 is a bonded sequence with the property that each S(αn) contains some member of
F . A sieve 〈S(n)〉 is exhaustive (in X) if for every subset Y ⊂ X and for every n, Y contains
a relatively open subset of the form Y ∩S where S ∈ S(n). Clearly an exhaustive sieve is a
generalization of a sieve whose members are open covers, something previously studied by
Chaber, Choban, and Nagami [12], and by Wicke and Worrell [36]. Michael’s goal was to give
new insight into the preservation of metric completeness by certain types of mappings, and
a few years later Telgarsky and Wicke [34] showed that Michael’s completeness, which they
renamed partition completeness, is preserved by countable products, by perfect mappings
and open mappings, by perfect inverse images and is inherited by Gδ-subspaces. Because it
is easy to show that any space with a complete exhaustive sieve has the BCP, the results of
Telgarsky and Wicke showed that partition completeness is a countable strong completeness
property.

Starting in the 1980s, topologists began to explore the role of domain representability
in topology. Domain representability is a property designed by D. Scott [31] for use in
theoretical computer science. We begin with a poset (D,v) and say that D is directed-
complete provided for each non-empty directed subset E ⊆ D, some p ∈ D has p = sup(E).
Using the given relation v of D we define an auxiliary relation � by the rule that a � b
if for every non-empty directed set E with b v sup(E), some e ∈ E has a v e. With
⇓(b) := {a ∈ D : a � b} for each b ∈ D, we say that D is continuous provided each ⇓(b)
is directed and has b = sup(⇓(b)). By a domain we mean a directed-complete, continuous
poset. In any domain, the collection of all sets of the form ⇑(a) := {b ∈ D : a � b} is
a base for a topology on D that is called the Scott topology. It is easy to see that any
directed complete poset D has a non-empty set of maximal elements (denoted by max(D)).
To say that a topological space X is domain-representable means that there is a domain
D such that X is homeomorphic to max(D) with the relative Scott topology. It is not
hard to prove that any product of domain representable spaces is domain representable
and that any domain representable space has the BCP so that, in our terminology, domain
representability is a strong completeness property. In fact, K. Martin [23] proved more: if
X is domain representable, then the non-empty player has a winning strategy in the strong
Choquet game Ch(X), so that X is Choquet complete.

3



3 Subcompactness and domain representable spaces

It is surprising that, after almost 50 years, open questions still remain about de Groot’s
subcompactness and the other Amsterdam properties. The most fundamental is

Question 3.1 Suppose X is subcompact and Y is a (dense) Gδ-subset of X. Is Y subcom-
pact? In particular, must every Čech-complete space be subcompact?4

A second open question requires some special notation. Suppose τ is a topology on a
space X and S ⊆ X. Let τS be the topology on X whose base is τ ∪ {{x} : x ∈ S}. This
new topology isolates all points of S and agrees with τ on X − S, and we have

Question 3.2 Suppose that (X, τ) is subcompact and S ⊆ X. Is (X, τS) subcompact?

As it happens, these two questions are closely related to a newer question. In [3] we
proved:

Proposition 3.3 If X is a subcompact regular space, then X is domain representable.

We do not know whether the converse of Proposition 3.3 is true and we have:

Question 3.4 Is it true that every domain representable space is subcompact?

We expect a negative answer to Question 3.4 among general spaces, but as explained below,
we have shown that subcompactness and domain representability are equivalent in many
types of spaces with additional structure. In the light of our next result (proved in [4]), a
negative answer to either of Questions 3.1 or 3.2 would give a negative answer to Question
3.4 because we proved:

Proposition 3.5 Suppose (X, τ) is domain representable. Then any Gδ-subset of X is also
domain representable and for any S ⊆ X, the space (X, τS) is domain representable.

Proposition 3.5 suggests that it is easier to answer questions about domain representable
spaces than about subcompact spaces but there is at least one exception. It is known [2]
that a locally subcompact space must be subcompact, and the following question remains
open:

Question 3.6 If X = U ∪ V where U and V are open, domain representable subspaces of
X, is X domain representable? More generally, if X is locally domain representable, is X
domain representable?

As mentioned above, Question 3.4 is known to have an affirmative answer for certain
classes of spaces. In [10] we proved:

4In a private communication in 2008, Fleissner showed that if c = 2ω and if D is a countable subset of
X = {0, 1}c, then X −D is subcompact.
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Theorem 3.7 Suppose X is a Moore space. Then the following are equivalent:

a) X has a development G(n) such that if G(n) ∈ G(n) and cl(G(n + 1)) ⊆ G(n), then⋂
{G(n) : n ≥ 1} 6= ∅, i.e., X is Rudin complete;

b) X is subcompact;

c) the non-empty player has a winning strategy in the strong Choquet game Ch(X);

d) the non-empty player has a stationary winning strategy in Ch(X);

e) X is domain representable.

It is easy to see that if (X, τ) is a Moore space and S ⊆ X, then (X, τS) is a Moore
space if and only if S is an Fσ-subset of (X, τ). Therefore, the combination of Theorem 3.7
and Theorem 3.5 gives affirmative answers to Questions 3.1, 3.2, and 3.6 in the category of
Moore spaces.

Corollary 3.8 Suppose (X, τ) is a Moore space.

a) If (X, τ) is subcompact and if Y is a Gδ-subspace of X, then as a subspace of X, Y
is also subcompact;

b) If (X, τ) is subcompact, S ⊆ X and (X, τS) is also a Moore space, then (X, τS) is
subcompact.

c) If X is locally domain representable, then X is domain representable.

In fact, the equivalence of (b), (c), (d) and (e) given in Theorem 3.7 actually holds in
the wider class of spaces that have a Base of Countable Order (BCO) in the sense of Wicke
and Worrell [35].

In [3] we showed that every completely quasi-developable space5 is domain representable.
The Michael line shows that a subcompact quasi-developable space can fail to be completely
quasi-developable. It is easy to see that any Čech complete quasi-developable space is
completely quasi-developable, but we do not know whether the converse holds. In addition,
the following question remains open. It is a special case of Question 3.4, above.

Question 3.9 Suppose X is quasi-developable. If X is domain representable, is X subcom-
pact?

The classes of σ-spaces and semi-stratifiable spaces [18] are also natural generalizations
of the class of Moore spaces. While we have already investigated many of the standard
examples of such spaces, the following question remains open.

5A space X is completely quasi-developable if there is a sequence G(n) of open collections in X that is
a quasi-development for X and has the additional property that

T
{Mk : k ≥ 1} 6= ∅ whenever Mk is a

decreasing sequence of nonempty closed sets with the property that for some choice of n1 < n2 < · · ·, some
Gk ∈ G(nk) has Mk ⊆ Gk. This property is obviously a relative of Moore completeness in Moore spaces.
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Question 3.10 What are the relations between subcompactness, domain representability,
and the strong Choquet game in the class of semi-stratifiable spaces?

Because any semi-stratifiable space has a Gδ-diagonal, the previous question is linked to
questions about the strong Choquet game in a later section.

Unlike the situation in metric spaces, there are at least two types of completeness in
Moore spaces. Rudin completeness is defined in part (a) of Theorem 3.7 and Moore com-
pleteness is defined as follows: there is a development 〈G(n)〉 for X such that

⋂
{Mn :

n ≥ 1} 6= ∅ whenever 〈Mn〉 is a decreasing sequence of nonempty closed sets such that for
each n, Mn is a subset of some member of G(n). Among completely regular Moore spaces,
Moore completeness is equivalent to Čech completeness and is strictly stronger than Rudin
completeness6.

As it happens, there is a special kind of domain called a Scott domain7 that can be
used to represent certain spaces, and K. Martin [22] proved that any Moore space X that
has X = max(D) for a Scott domain D must be Čech complete. For some time it was an
open question whether Scott-domain representability characterized Moore completeness (in
the class of Moore spaces). Then several researchers noted a link between Scott-domain
representability and the co-compactness property of de Groot and his Amsterdam colleagues
(defined in Section 2). The next result appears in [19] and an easier proof appears in [5].

Proposition 3.11 Suppose X is homeomorphic to max(D) where (D,v) is a Scott domain.
Then X is co-compact with respect to the collection D := {↑(d) : d ∈ D}.

Given Proposition 3.11, a Moore space constructed by Tall [32] becomes relevant to
our study: it is a Čech-complete Moore space that is not co-compact, showing that Moore
completeness is not equivalent to Scott-domain representability for Moore spaces. Mishkin
[26] showed how to embed Tall’s space in a co-compact Moore space as a closed (and
therefore Gδ) subset, and in [5] we were able to construct a Scott domain that represents
one version of Mishkin’s space. This leaves open the following questions:

Question 3.12 Is it true that every co-compact Moore space is Scott domain representable?
Is it true that every Čech-complete Moore space can be embedded (as a closed subset, or as
a dense subset) in a co-compact Moore space?

It is not surprising that some results about domain representability of Moore spaces are
axiom-sensitive. For example, constructions in [10] show:

Proposition 3.13 The statement that each countably paracompact separable Čech-complete
Moore space is Scott-domain representable is independent of and consistent with ZFC.

Question 3.14 In ZFC, must every normal, separable, Čech-complete Moore space be
Scott-domain representable?

6Of course, among metric spaces, the two completeness concepts are equivalent.
7A Scott domain is a domain D with the extra property that if d1, d2 ∈ D have d1, d2 v d3 for some

d3 ∈ D, then sup{d1, d2} exists in D.
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What may be important for future work is that Kopperman, Kunzi, and Waszkiewicz [19]
combined Proposition 3.11 with a certain bi-topological property called pairwise complete
regularity to characterize spaces that are Scott domain representable. However, it is not
clear how to use this bi-topological condition in Moore spaces.

There are spaces such as [0, ω1) that are hereditarily domain representable and we ask:

Question 3.15 Suppose X is hereditarily domain representable (hereditarily subcompact).
Is X scattered?

The work of Michael [25], and of Telgarsky and Wicke [34] allows us to understand
which kinds of mappings preserve partition completeness, but the situation for domain
representability is largely unexplored.

Question 3.16 Which kinds of mappings preserve (Scott) domain representability?

4 Measurements and domains

If D is a domain, then for each x ∈ max(D) the elements of ⇓(x) approximate the point x
in an order-theoretic and topological sense. K. Martin [22] introduced a numerical measure
of the degree of approximation that he called a measurement on the domain. Let [0,∞)∗

denote the set [0,∞) with the reverse order. Then [0,∞)∗ is a Scott domain with 0 as
its unique maximal element, and [0,∞)∗ has a Scott topology that is not the same as the
Euclidean topology. By a measurement on a domain D we mean a function µ : D → [0,∞)∗

that has:

a) µ is continuous when both domain and range carry their Scott topology;

b) if x ∈ D with µ(x) = 0 and if 〈pn〉 is a sequence of elements of ⇓(x) having lim{µ(pn) :
n→∞} = 0, then {pn : n ≥ 1} is a directed set whose supremum is x.

The kernel of µ is the set ker(µ) := {p ∈ D : µ(p) = 0} and it is easy to show that
ker(µ) ⊆ max(D) and that ker(µ) is a Gδ-subset of D in the Scott topology [22].

Question 4.1 Characterize X so that for some (Scott) domain D, X = max(D) and
max(D) is a Gδ-subset of D. Characterize those spaces X for which there is a domain
(Scott domain) D and a measurement µ on D such that X is homeomorphic to ker(µ).

In [6] we extended results from [22], obtaining some necessary conditions that suggest
directions for attacking the first part of Question 4.1:

Theorem 4.2 Suppose that D is a domain and that X ⊆ max(D) is a Gδ-subset of D.
Then in the relative Scott topology, X is first-countable and domain representable, and is a
union of a family of dense Gδ-subspaces, each of which is completely metrizable.

7



Theorem 4.3 Suppose that S is a Scott domain and that X is a Gδ-subset of max(S).
Then X is weakly developable in the sense of [1] and therefore has a Gδ-diagonal and a
base of countable order in the sense of [35]. In addition, there is a sequence 〈G(n)〉 of open
covers such that if F is a centered collection of nonempty closed subsets of X and for each
n, some Gn ∈ G(n) contains a member of F , then

⋂
F 6= ∅. Hence, if X is completely

regular, then X is Čech-complete. In addition, if X is regular and submetacompact, then
X is a complete Moore space, and if X is paracompact or countably compact, then X is
metrizable.

Example 4.4 Let X := [0, ω1) with the usual open interval topology. Then there is a
domain D such that X = max(D) is a Gδ-subset of D, but there is no Scott domain S such
that X = max(S) is a Gδ-subset of S. (This example appears in [6] and corrects an error
in the literature [30].)

Example 4.5 Burke [11] constructed a locally compact Hausdorff space X with a Gδ-
diagonal that is not a Moore space, and there is a Scott domain S such that X = max(S)
is a Gδ-subset of S, and yet X is not the kernel of any measurement on any Scott domain.
(This example answers a question posed in [24].)

Question 4.6 Suppose X is completely metrizable. Is there a Scott domain SX such that
X = max(SX) is a Gδ-subset of SX? (A potentially easier question from [22] asks whether
there is a Scott domain S where X is a dense subset of max(S) and also a Gδ-subset of S.
Martin [22] provided an affirmative answer in case X is a complete separable metric space.)

Question 4.7 Suppose Y is a Scott-domain-representable Moore space. Is there a Scott do-
main SY such that Y = max(SY ) is a Gδ-subset of SY ? Is every Scott-domain-representable
Moore space the kernel of a measurement on some Scott domain?

5 The strong Choquet game

The strong Choquet game Ch(X) on a space X was described in Section 2. K. Martin [23]
was the first to see the relation between domain representability and the strong Choquet
game when he proved:

Theorem 5.1 If X is domain representable, then the non-empty player has a winning
strategy in the strong Choquet game Ch(X). In fact, the non-empty player has a winning
strategy that depends on knowing only the previous two moves in the game (as opposed to
knowing the entire history of the game).

The claim that the non-empty player needs to know only the previous two moves of
Ch(X) raises some delicate issues. Martin begins by selecting a domain P with X = max(P )
and then choosing certain points pn ∈ P and then letting the set Vn := ⇑(pn) ∩max(P ) be
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the non-empty player’s response to the pair (Un, xn) where xn ∈ Un and Un is an open set
in X. The goal is to get E := {pn : n ≥ 1} to be a directed set, so that sup(E) ∈ P will lie
below (or equal) an element of

⋂
{Vn : n ≥ 1}. Martin points out that to finish the proof,

the non-empty player needs to know only the point pn−1 that was used to define Vn−1, and
then to choose pn so that pn−1 � pn, and that is the sense in which it is enough for the non-
empty player to know only two previous moves in the game8. But what if the non-empty
player knows only the set Vn−1 and the pair (xn, Un) with xn ∈ Un ⊆ Vn−1 ⊆ max(P )? It
is not clear how the non-empty player can reconstruct the point pn−1 used to define Vn−1

from the potentially many points p with ⇑(p) ∩ max(P ) = Vn−1. On the other hand, if
(in a domain representable space) the non-empty player can look all the way back to the
first move in the game, i.e., to the pair (U1, x1), then a well-ordering argument allows the
non-empty player to reconstruct the point pn−1 that was used to determine Vn−1, and then
to arrange a point pn ∈ P with pn−1 � pn. Thus we have

Question 5.2 (a) Suppose that X is domain representable. Does the non-empty player
have a winning strategy in Ch(X) that chooses the response Vn based on knowing only the
subset Vn−1 ⊆ X and the pair (Un, xn), but not the element of the representing domain P
that was used to define Vn−1?

(b) Find an example of a domain representable space in which the non-empty player has
no winning stationary strategy in Ch(X).

Debs [16] has constructed a family of topological spaces in which the non-empty player has
a winning strategy, but no stationary winning strategy, in the Banach-Mazur game9. We
now know that one of Debs’ spaces is not domain-representable. However, there may be
other variations of Debs’ space that are domain-representable and if such spaces exist, they
would provide the counterexample sought in (b) of Question 5.2.

As noted in the previous section, spaces having a Gδ-diagonal are one of the broadest
types of generalized metric spaces, and in [3] we proved:

Proposition 5.3 Suppose X has a Gδ-diagonal and that the non-empty player has a sta-
tionary winning strategy in the strong Choquet game Ch(X). Then X is domain repre-
sentable.

Question 5.4 Suppose X has a Gδ-diagonal.

a) If the non-empty player has a winning strategy in Ch(X) that might not be a stationary
strategy, must X be domain representable? Must X be subcompact?

b) Suppose the non-empty player has a stationary winning strategy in Ch(X). Must X
be subcompact?

8In a Scott domain the non-empty player needs to know only the single previous move, namely the pair
(Un, xn). Any choice of pn with xn ∈ ⇑(pn)∩max(P ) ⊆ Un can be used because {pk : 1 ≤ k ≤ n} is bounded
in P by xn so that qn := sup{pk : 1 ≤ k ≤ n} is in P and can be used to win the game. This shows that in
a Scott-domain representable space X, the non-empty player has a stationary winning strategy in Ch(X).

9In the Banach-Mazur game, players 1 and 2 alternate choosing terms of a nested sequence of nonempty
open sets U1, V1, U2, V2, · · · and the nonempty player (who chooses the sets Vn) wins if

T
{Vn : n ≥ 1} 6= ∅.
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Recall that a space X is Choquet-complete if the non-empty player has a winning strategy
in the strong Choquet game Ch(X), where the strategy is allowed to use the entire previous
history of the play. The basic topology of Choquet-complete spaces is well-understood. For
example, any Gδ-subspace of such a space is Choquet complete and if (X, τ) is Choquet
complete, then so is (X, τS) for every subset S ⊆ X (where τS is as defined in Section 3).
But some basic topological questions remain open about spaces in which the non-empty
player has a stationary winning strategy in Ch(X). Porada [28] outlined a proof that if X
is Čech-complete, then the non-empty player has a stationary winning strategy in Ch(X).
His proof is not correct, but it can be fixed, and a further modification gives the first part
of our next result:

Proposition 5.5 Suppose that the non-empty player has a stationary winning strategy in
the strong Choquet game Ch(X, τ) in the space (X, τ).

a) If Y is a dense Gδ-subspace of X then the non-empty player also has a stationary
winning strategy in Ch(Y ).

b) If S ⊆ X, then the non-empty player has a stationary winning strategy in Ch(X, τS).

Proof: For part (a), write Y =
⋂
{G(n) : n ≥ 1} where G(1) = X and G(n + 1) ⊆ G(n).

Define G(∞) = Y . We will use the notational convention ∞+ 1 =∞ and we will write τ |Y
for the subspace topology inherited by Y .

For a ∈ H ∈ τ , let r(H, a) ∈ τ have a ∈ r(H, a) ⊆ clX(r(H, a)) ⊆ H. For U ∈ τ |Y let
Û =

⋃
{H ∈ τ : H ∩ Y ⊆ U}. Then Û ∩ Y = U and U is dense in Û . Also define

N(U) = sup{k : Û ⊆ G(k)}.

Then 1 ≤ N(U) ≤ ∞ and Û ⊆ G(N(U)).

Let σ be a stationary wining strategy for the non-empty player in the game Ch(X, τ).
Let y ∈ U ∈ τ |Y ; then (U, y) is a conceivable move by the empty player in Ch(Y, τ |Y ). Our
goal is to define a set ψ(U, y) ∈ τ |Y with y ∈ ψ(U, y) ⊆ U in such a way that ψ becomes a
stationary winning strategy for the non-empty player in Ch(Y, τ |Y ). With N(U) as above,
consider the pair (Û ∩ G(N(U) + 1), y). Using the “regularity operator” r defined above,
find the set r(Û ∩ G(N(U) + 1), y) ∈ τ and then use the stationary winning strategy σ to
find σ(r(Û ∩G(N(U) + 1), y), y) ∈ τ . Finally let

ψ(U, y) = Y ∩ r(σ(r(Û ∩G(N(U) + 1), y), y), y).

Then y ∈ ψ(U, y) ⊆ U and ψ(U, y) ∈ τ |Y .

Claim 1: Suppose U, V ∈ τ |Y with y ∈ U, z ∈ V and suppose V ⊆ ψ(U, y). Then
V̂ ⊆ G(N(U) + 1) so that N(V ) ≥ N(U) + 1. (Recall the convention that ∞+ 1 =∞.) To
verify Claim 1 we will show that

(∗) V̂ ⊆ clX(r(Û ∩G(N(U) + 1), y).
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If (*) fails, then the set H := V̂ − clX(r(Û ∩ G(N(U) + 1), y)) is non-empty and open in
X. Because Y is dense in X, there must exist some y0 ∈ H ∩ Y . Because H ⊆ V̂ we have
y0 ∈ Y ∩H ⊆ Y ∩ V̂ = V and

V ⊆ ψ(U, y) ⊆ r(σ(r(Û ∩G(N(U) + 1), y), y), y) ⊆ σ(r(Û ∩G(N(U) + 1), y), y).

But
σ(r(Û ∩G(N(U) + 1), y), y) ⊆ r(Û ∩G(N(U) + 1), y)

showing that y0 ∈ r(Û ∩ G(N(U) + 1), y) which contradicts y0 ∈ H = V̂ − clX(r(Û ∩
G(N(U) + 1), y)). Therefore Claim 1 holds.

Claim 2: Suppose U, V ∈ τ |Y with y ∈ U, z ∈ V and suppose V ⊆ ψ(U, y). Then in X we
have V̂ ⊆ σ(r(Û ∩G(N(U) + 1), y), y).

To verify Claim 2 we note that ψ(U, y) ⊇ V gives r(σ(r(Û ∩G(N(U) + 1), y), y), y) ⊇ V
so that clX(r(σ(r(Û ∩G(N(U) + 1), y), y), y) ⊇ clX(V ). Because Y is dense in X we know
that clX(V ) ⊇ V̂ which gives

V̂ ⊆ clX(V ) ⊆ clX(r(σ(r(Û ∩G(N(U) + 1), y), y), y)) ⊆ σ(r(Û ∩G(N(U) + 1), y), y),

as claimed.

Given Claims 1 and 2, we are ready to show that ψ is a stationary winning strategy in
Ch(Y, τ |Y ). Suppose that the non-empty player uses ψ as a stationary strategy in the game
Ch(Y, τ |Y ) and that

(U1, y1), ψ(U1, y1), (U2, y2), ψ(U2, y2), (U3, y3), · · ·

is a play of the game. By Claim 1, we have N(Uk) ≥ k for each k. Now consider the pair
(r(Û1∩G(N(U1) + 1), y1), y1). We have Û2 ⊆ σ(r(U1∩G(N(U1) + 1), y1), y1) from Claim 2.
More generally, consider the pair (r(Ûk ∩G(N(Uk) + 1), yk), yk). Then σ(r(Ûk ∩G(N(Uk) +
1), yk), yk) ∈ τ and Claim 2 gives Ûk+1 ⊆ σ(r(Ûk ∩G(N(Uk) + 1), yk), yk) so that

yk+1 ∈ σ(r(Ûk ∩G(N(Uk) + 1), yk), yk)

and therefore

σ(r(Ûk+1 ∩G(N(Uk+1 + 1), yk+1), yk+1) ⊆ Ûk+1 ⊆ σ(r(Ûk ∩G(N(Uk) + 1), yk), yk).

To simplify notation, writeHk := σ(r(Ûk∩G(N(Uk)+1), yk), yk). Then we have yk ∈ Hk ∈ τ
and Hk+1 ⊆ Ûk+1 ⊆ σ(Hk, yk). Therefore the sequence

(H1, y1), σ(H1, y1), (H2, y2), σ(H2, y2), (H3, y3) · · ·

is a play of the game Ch(X, τ). Because σ is a stationary winning strategy in Ch(X, τ),
the nonempty player wins and we know that

⋂
{Hk : k ≥ 1} 6= ∅. By Claim 1, Hk ⊆

G(N(Uk)) ⊆ G(k) so that we have
⋂
{Hk : 1 ≤ k < ∞} ⊆

⋂
{G(k) : 1 ≤ k < ∞} ⊆ Y .
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Let z ∈
⋂
{Hk : k ≥ 1}. Then z ∈ Hk ∩ Y ⊆ Ûk ∩ Y ⊆ Uk for each k, showing that⋂

{Uk : k ≥ 1} 6= ∅, as required to prove part (a) of this theorem.

The proof of part (b) of Proposition 5.5 is easy and is reminiscent of Question 3.2 and
Theorem 3.5. 2

In the proof of part (a) of Proposition 5.5, it is crucial that Y is dense in X and that
raises:

Question 5.6 Suppose that the non-empty player has a stationary winning strategy in
Ch(X) and that Y is a Gδ-subset of X. Without assuming that Y is dense in X, does
the non-empty player have a stationary winning strategy in Ch(Y )?

Part of the difficulty in Question 5.6 is that (as the Michael line shows) closed sets do not
necessarily inherit Choquet completeness so that one may not assume that the non-empty
player has a stationary winning strategy in Ch(cl(Y )). Telgarsky [33] approached Question
5.6 by using a relativized version of Ch(X) that he denoted by G(X,Y ) where open sets
in X were used to play the strong Choquet game in the subspace Y , and he proved that
if the non-empty player has a stationary winning strategy in Ch(X), then the non-empty
player also has a winning strategy in G(X,Y ) for every non-empty Gδ-subspace Y of X.
Telgarsky included a comment that this would give a stationary winning strategy for the
non-empty player in Ch(Y ), but that assertion was not proved and we have:

Question 5.7 Suppose the non-empty player has a stationary winning strategy in Ch(X)
and in Telgarsky’s game G(X,Y ) from [33]. Does the non-empty player have a stationary
winning strategy in Ch(Y )? What if Y is assumed to be a Gδ-subset of X?

6 Strong completeness in function spaces

In this section, all spaces are at least completely regular. Let Cp(X) be the set of continuous
real-valued functions on a space X under the pointwise-convergence topology. Recent results
have given a basic understanding of subcompactness, domain representability, and various
types of Choquet completeness in Cp(X), but many hard questions remain.

Results of [20] show that is it difficult, but possible, to have Cp(X) satisfy the BCP (see
Section 1) for a non-discrete space X. A folklore question asked whether Cp(X) could be
subcompact if X is not discrete, and [21] provided a negative answer. In [8] we generalized
that result for normal spaces, proving

Theorem 6.1 Suppose X is a T4-space. Then the following are equivalent:

a) Cp(X) is domain representable;

b) Cp(X) is Scott-domain representable;

12



c) Cp(X) is subcompact;

d) X is discrete.

Question 6.2 Can Theorem 6.1 be proved if X is completely regular but not T4?

By placing restrictions on the limit point structure of X, it is possible to weaken the nor-
mality assumption in Theorem 6.1 to complete regularity plus pseudo-normality10. Recall
that space X is pseudo-radial if for each Y ⊆ X, Y fails to be closed if and only if there is a
transfinite sequence σ (i.e., a net of points of Y with a well-ordered domain) that converges
to some point of X − Y . In [7] we proved:

Proposition 6.3 Suppose X is completely regular and pseudo-normal. If X is pseudo-
radial, then the following are equivalent:

a) Cp(X) is domain representable;

b) Cp(X) is Scott-domain representable;

c) X is discrete.

It would be desirable to generalize Proposition 6.3 because the class of pseudo-radial
spaces is quite restrictive. However, it does include the class of GO-spaces that will be
mentioned in the next section.

Another way to improve Theorem 6.1 is to look only at Scott-domain representability,
and in that case we proved in [8]

Proposition 6.4 Suppose X is completely regular and pseudo-normal. Then Cp(X) is
Scott-domain representable if and only if X is discrete.

The role of the strong Choquet game in Cp(X) is relatively well understood. In [7] we
characterized pseudo-normal spaces for which Cp(X) is Choquet complete by proving:

Proposition 6.5 Suppose X is completely regular and pseudo-normal. Then the following
are equivalent:

a) every countable subset of X is closed;

b) the non-empty player has a winning strategy in the strong Choquet game in Cp(X);

c) the non-empty player has a stationary winning strategy in the strong Choquet game
in Cp(X);

d) Cp(X) is pseudocomplete in the sense of Oxtoby [27].

10A space X is pseudo-normal if disjoint closed sets, one of which is countable, have disjoint neighborhoods.
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Question 6.6 Can Proposition 6.5 be proved without assuming that X is pseudo-normal?

The authors of [21] included questions about spaces for which Cp(X) contains a dense
subcompact subspace, and analogous questions exist for domain representable spaces. For
example:

Question 6.7 Must a completely regular space X be discrete if Cp(X) contains a dense
subcompact subspace? Must a normal space be discrete if Cp(X) contains a dense domain
representable subspace (respectively, a dense Scott-domain representable subspace)? In the
second question, what if X is not assumed to be normal?

7 Strong completeness in GO-spaces

Except where otherwise noted, the results in this section will appear in [9]. A generalized
ordered space (GO-space) is a triple (X,<, τ) where < is a linear ordering of a set X and
τ is a topology on X having a base of order-convex sets (possibly including singleton sets).
GO spaces seem simple, but they have provided many of the central counterexamples in
general and set-theoretic topology, e.g., ordinal spaces and the lines named after Souslin,
Aronszajn, Sorgenfrey, and Michael, and their variations.

Even when the GO-spaces in question are constructed on the set R of all real numbers,
or on subsets X ⊆ R, the resulting GO-spaces can have interesting completeness properties
related to the questions in Section 3 of this proposal. For example, we have

Proposition 7.1 Any GO-space constructed on the entire set R is Scott-domain repre-
sentable. [15]

Proposition 7.2 Suppose that τ is any GO topology on the usual ordered set R of real
numbers. Then (R, τ) is subcompact. [9]

The proof of the next proposition given in [9] is quite complicated, and it would be good
to have a more direct argument.

Proposition 7.3 Suppose that τ is a GO-topology on R and that X is a Gδ-subspace of
(R, τ). Then (X, τ |X) is subcompact.

Proposition 7.3 allows us to answer Questions 3.1 and 3.2 for GO-spaces constructed on
sets of real numbers. We outline the proofs of the next three corollaries; full details appear
in [9].

Corollary 7.4 Suppose σ is any GO-topology on any subset X ⊆ R and that (X,σ) is
subcompact.

a) If Y is a Gδ-subset in (X,σ), then (Y, σ|Y ) is also subcompact.

14



b) For any subset S ⊆ X, the space (X, τS) is subcompact.

Proof: To prove assertion (a), first observe that there is a GO-topology σ̂ on R with the
properties that

i) σ̂|X = σ

ii) if x ∈ X then {x} ∈ σ̂ if and only if {x} ∈ σ

iii) each y ∈ R − X has a neighborhood base in σ̂ consisting of sets of the form (a, b)
where a < y < b.

A König’s lemma argument shows that because (X,σ) subcompact, it is a Gδ-subspace
of (R, σ̂), and therefore so is (Y, σ|Y ). But then (Y, σ|Y ) is subcompact in the light of
Proposition 7.3, as required for (a).

The proof of assertion (b) is similar. We use the same notation as in the proof of part
(a), and we note that (X,σ) is a Gδ-subspace of (R, σ̂). Construct σ̂S by isolating all points
of the given set S. Then σ̂S |X = (σ|X)S and because σ̂ ⊆ σ̂S we see that (X,σS) is a
Gδ-subspace of (R, σ̂S). Now apply Proposition 7.3 to complete the proof of (b). 2

Using the same general kind of techniques, in [9] we proved:

Corollary 7.5 Suppose X ⊆ R and τ is a topology on X such that (X, τ) is co-compact.
Then (X, τ) is subcompact.

Outline of Proof: As in the previous corollary, find a GO-topology σ̂ on R with σ = σ̂|X .
Let Z = clσ̂(X) and show that (Z, σ|Z) is a Gδ-subset of (R, σ̂). Using co-compactness,
show that X is a Gδ-subspace of (Z, σ̂|Z). Then (X,σ) is a Gδ-subspace of (R, σ̂) so that
Proposition 7.3 completes the proof. 2

For GO-spaces (X,σ) on sets X ⊆ R that are dense-in-themselves (i.e., (X,σ) has no
isolated points), we have preliminary results relating subcompactness, pseudo-completeness,
and domain representability.

Proposition 7.6 Suppose that σ is a GO-topology on some subset X ⊆ R and that (X,σ)
is dense-in-itself. Then the following are equivalent:

a) there is a Gδ-subspace S of the usual real line topology such that S is dense in (X,σ)
and (S, σ|S) is a subcompact space;

b) (X,σ) is pseudo-complete in the sense of Oxtoby [27];

c) there is a Gδ-subset S of the usual real line such that S is a dense subset of (X,σ).

Many questions remain open concerning GO-spaces constructed on R and its subsets.
For example:

Question 7.7 Let X ⊆ R.
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a) Suppose τ is a GO-topology constructed on X ⊆ R, and suppose (X, τ) is domain
representable. Is (X, τ) subcompact?

b) Characterize those subsets X ⊆ R that admit some dense-in-itself GO-topology σ such
that (X,σ) has one of the Amsterdam properties or is Choquet complete, or is Choquet
complete where the non-empty player has a stationary winning strategy.

c) Is it true that if X ⊆ R and µ is a GO-topology on X such that (X,µ) is Choquet
complete, then (X,µ) is domain representable? (Note that the answer is “Yes” if we
assume that the non-empty player has a stationary winning strategy [3].)
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