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Abstract

In this paper, we study domain-representable spaces, i.e., spaces that can be represented as the
space of maximal elements of some continuous directed-complete partial order (= domain) with the
Scott topology. We show that the Michael and Sorgenfrey lines are of this type, as is any subspace of
any space of ordinals. We show that any completely regular space is a closed subset of some domain-
representable space, and that ifs domain-representable, then so is &3ysubspace oX. It follows
that anyéech-complete space is domain-representable. These results answer several questions in the
literature.
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1 Introduction

Approximability by special partially ordered sets is an idea that came into topology from theoretical
computer science. Contemporary discussions containing many important examples can be found in the
papers of Martin, Mislove, and Reed [8], [11] [12]. An article by Ciesielski, Flagg, and Kopperman [4]
gives valuable motivation for studies of this type (and proves important results about countably-based
models of spaces.)

Because the literature about domain-representations contains conflicting terminology, we begin
with the basic definitions to be used in this paper. (RE) be a partially ordered set (= poset). A
subseD C P is directedprovided for eaclu;,d, € D, someds € D hasd;,d, C d3. We say that such
ads is acommon extensioof d; andd,. For any sefl C P we write sugT) to mean the least of all
of the upper bounds of in P, if such a thing exists. Most frequently will be a directed set, but
sometimed will be a subset oP with the property that if;,t; € T then somep € P hasty,t; C p. The
poset(P,C) is adcpo(= directed-complete partial order) if every non-empty directedsetP has a
supremum irP. If (P,C) is a dcpo, then Zorn’s Lemma shows that for eachP at least one maximal
elementx € P hasp C x. The set of all maximal elements Bfis denoted by ma®).

*Texas Tech University, Lubbock, TX 79409. E-mail = bennett@math.ttu.edu
TCollege of William & Mary, Williamsburg, VA 23187. E-mail = lutzer@math.wm.edu



Starting with a posetP, C), there is a new relatiorg on P defined as follows: fop,qe P, p< q
means that for any directed detwith q C sup D), there is somel € D with p C d. Traditionally
p < qisread ‘pis far belowq” or “qis far abovep.” Clearly p < gimpliesp C q (use the directed set
D = {q} in the definition ofp < g). It can happen that songes P hasp < p and such elements Bfare
calledcompact elements of FFor p € P we writef(p) = {qe P: p< q} and{(p) = {ge P:g< p}.

We say that the poséP,C) is continuousif for each p € P, the setl}(p) is directed and has
p=sup{(p)). The worddomainused in the title is a synonym for “continuous dcpo.” To say that a
domain isalgebraicmeans that for eacp € P, the setK(p) of compact elements d¥ that belong to
1(p) is a directed set with sy (p)) = p.

We introduce a topology oR as follows. A subsdt of a dcpo(P,C) is Scott opemprovidedU has
the following two properties:

a) ifxeU andxCy € P, theny € U;
b) if D C Pis any directed set with syp) € U thenDNU = 0.

The collection of all Scott-open sets is a topology on thePsetalled theScott topology From a
traditional topological viewpoint, the Scott topology is not a good one — as shown in Proposition 2.6
of [12], it is alwaysTo but almost neveil;. However, when restricted to the subset ifR)x the

Scott topology can be very nice, as can be seen from Theorem 1.1 below. If a topologicakspace
homeomorphic to the space n{&} topologized using the relative Scott topology for some continuous
dcpo(P,C), then we say that the spa¥eis representable as the space of maximal elementsasfd®
thatX is domain-representahle

Being representable as the space of maximal elements of some domain is a non-trivial restriction
on a spac&. For example, any such spakes a Baire space, and (even morefCisoquet-complete
[10]. (Choquet completeness is a game-theoretic property that is equivaéethacompleteness in
any metric space; see Theorem 8.7 in [3] and Choquet’s remarks after the proof of (8.7).)

Many important types of spaces are representable as the space of maximal elements of some con-
tinuous dcpo. The following theorem summarizes results of Edalat and Heckman [5] and Martin [10]
concerning complete metrizability, and of Gierz et al. [7] concerning local compactness. See also
Examples 3.6 and 3.7 in [8] and Example 3.7 in [11].

Theorem 1.1 A metrizable space X is representable as the space of maximal elements of some con-
tinuous dcpo if and only if X is completely metrizable, and any locally compact Hausdorff space is
representable as the space of maximal elements of some continuous dcpo.

The goal of our paper is to study spaces that can be represented as the space of maximal elements
in a continuous dcpo and to extend Theorem 1.1 in a significant way by answering several questions in
the literature. We will show:

1) Representability as the space of maximal elements of some domain is not a closed-hereditary
property. In fact, any completely regul@-spaceY is a closed subspace of a completely regular
Ti-spaceX(Y) that is domain-representable. This answers a question posed in [9].

2) SupposeX = maxP) for some continuous dcpB. If Y is a Gs-subset ofX, thenY is also
domain-representable. In particular, evé€rgch-complete is domain-representable. (This an-
swers question (vii) in [8].) Furthermore, X is both perfect (= closed sets aB-sets) and
domain-representable, then so is any closed subsét of
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3) Both the Michael line and the Sorgenfrey line can be represented as the space of maximal ele-
ments of some continuous dcpo, and so can any subspace of any ordinal.

We will use several known results about dcpos at many points in this paper, so we record them here.
The first is easy and the other two appear in the literature.

Lemma 1.2 If (D,C) is any nonempty directed set that contains no maximum element, then for each
d € D there exists a sequenqd) of distinct elements of D withetd; Tdy T d3 - -

Lemma 1.3 Let (P,C) be a continuous dcpo. Then the collectiph(p) : p € P} is a basis for the
Scott topology on P. (See [13] or Proposition 2.13 in [8].)

Lemma 1.4 Suppos€P,C) is a continuous dcpo and that@e P have ax c. Then there is some
b € P (possibly be {a,c}) with a< b <« c. (See [13] or Proposition 2.9 in [8].)

Throughout this paper, we will reserve the symlRIsQ andP for the usual sets of real, rational,
and irrational numbers, ariiwill denote the set of all integers (positive and negative). In addition, for
any ordered paip, T5(p) will denote thei" coordinate ofp.

The authors would like to thank K. Martin and G.M. Reed for helpful correspondence during the
preparation of this paper. We also thank K.P. Hart for comments that substantially improved an earlier
draft.

2 Examples of domain-representable spaces

This section contains a technical construction that will be used in later sections, as well as some exam-
ples that may be of interest in themselves.

Proposition 2.1 Suppose that the topological spacé o) has X= max(P) where(P,C) is a contin-
uous dcpo, and suppose that | is an arbitrary subset of X.dUsé{y} : y € |} as the base for a new
topologyt on X. Then there is a continuous dcff@, <) havingmax Q) = (X, ).

Proof: For eacly € I, lety" be any point not irP, chosen in such a way thatyf z are inl, then
yt #£z". LetQ=PuU{y" :y e l}. Thinking of partial orders as sets of ordered pairs, we define an
ordering=< onQ by

= = C U{(py):pEy} U{(xy"):yel}

Then= is a partial ordering o and it is clear that, as a set, M&@y = {y:ye X -1} U{y" :yel}.
We will identify this set withX in the obvious way.

We claim that Q, <) is a dcpo. We must show thatlf is a nonempty directed subset@fthenD
has a supremum iQ. In caseD C P, somepg € P is the supremum dD in (P,C) and therefore also
in (Q,=). In caseD is not a subset d?, then there is somg" € Qwith y™ € D, and directedness &f
guarantees that this™ is unique. But they™ is the supremum dd in (Q, <).

Next we claim thatQ is continuous. In this part of the proof—(r) (respectively,|_(r)) will
denote the collection of members Bf(respectively, ofQ) that are far below in the posetP,C)
(respectively, iNQ, =)). We must show that = sug({}~(r)) for eachr € Q, where the supremum is
taken inQ, and thatl} - (r) is directed. In case € P, both are automatic. To complete this part of the
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proof, we will show thay* € |} - (y") for eachy € I. To that end, suppode is a directed subset 6
and thatyt < sup, (E) where the supremum is taken(i®, <). If y© € E there is nothing to prove, so
assume/™ ¢ E. For anye € E we know thate < y* so that the definition of& givesy € P andeL y.
But theny is an upper bound fdE in (Q, <) that is strictly belowy™ and that is impossible. Therefore
y" e l<(yh) for eachy™ € Q. Hencey"' is a common extension of any two members|afly”) so
that{l<(y") is directed, ang™ = sup; ({(y*")), as required.

As noted above, mdQ) = {y:ye X—I1}u{y" :y € l}. To complete the proof, we show that
the relative Scott topology on méR) is the topologyt described in the statement of the proposition.
Suppose € U € 1. If z€ |, thenzis identified with the poinz" € max Q) and because we know
thatz" € ||4(z") we also haver" € +4(z"). Henceft4(z") nmaxQ) = {z"} showing thalJ is a
neighborhood ot in the relative Scott topology. Next suppase U € T with ze X — 1. ThenU
is a neighborhood of in the original topologyo so that there is somp € P with z < {(p) and
fc(p) Nmax(P) C U. But thenz € f(p) "max Q) C U, as required to show that is relatively
Scott open. Conversely, consider any fetr) NnmaxQ) wherer € Q. If r € P, this is the same as
fc(r) nmax(P) which is open ino and hence also in. In caser ¢ P, thenr =y* for somey € |
and we havey_ (r)nmaxQ) = {y*} € 1. Thus, every basic open set in the relative Scott topology on
max(Q) is T-open. Hence the relative Scott topology on f@xcoincides witht, as requiredd

Generalized ordered spacéS0O-spaces) are Hausdorff spa¢&st) that admit a linear ordeg
such that there is a base foconsisting of order-convex sets. An easy way to obtain GO-spaces is to
start with some linearly ordered se{, <) and choose three disjoint subsg&4., andl of X. Isolate
each point of, and let basic neighborhoods of any poir R have the fornix, b) for x < b € X. Basic
neighborhoods of points of € L have the form(a,y] for a <y, and points ofX — (RULUI) have
their usual open interval neighborhoods. GO-spaces have been widely used as sources of examples in
topology. The most famous are the Michael and the Sorgenfrey lines, as well as spaces (and subspaces)
of ordinals.

Example 2.2 The Michael line is representable as the space of maximal elements of a continuous
dcpo.

Proof: The usual real line is representable as the set of maximal elements of thd [pdgeta <
b, a,b € R} ordered by reverse inclusion. Liebe the set of all irrational numbers and apply Proposi-
tion 2.10

It is harder to prove that the Sorgenfrey line is representable as the space of maximal elements of
some continuous dcpo, but our next example shows that it is true.

Example 2.3 The Sorgenfrey line S is representable as the space of maximal elements of some contin-
uous dcpo.

Outline of Proof: For each pair of real numbers: b, let S(a, b) be a strictly increasing sequene)
With @= X1, liMn_eXy = b, and[Xn1 —Xa| < 252, LetCy = Z and, giverCn, let

Cﬂ+l = U{S(a7b) a< b7 a,bE Cn, (aab) NGy = 0}

LetC = J{Cn: 0 < n< w}. Note that ifa < b are consecutive points of sorfig, thenb—a < 2—1,1



Let A= R x {0,1} carry the open interval topology of the lexicographic order. For real numbers
a<bletJ(ab)=(a1),(b,0)]. Eachd(a,b) is a compact, convex subsetAf Now define

Q(O‘)) = {({(X70)7(X7 1)}7(*)) S XeE R—C}U{({(X, 1)}7(‘0) DS R}
and for eacmwith 0 < n< wlet
Q(n) ={(J(a,b),n) :a< b,be C(n) and(a,b) NC(n) = 0}.

Let Q= U{Q(n) : 0 < n < w}. Define a relatioriC in Q by the rule that fo;,q; € Q, g1 C gy if and
only if one of the following holds:

a) g =0y;
b) fori=1,2, g = (J(a,hbi),n) € Q—Q(w), J(az,bz) C I(az,by), andny < ny;

c) g1 = (J(a,b),n) € Q—Q(w), g € Q(w) andap C Inta (I(a,b));
d) g = (pi,w) andp C p1.

Then(Q,C) is a poset. IE is a nonempty directed subset@that does not contain its own maximum
element, thele N Q(w) = 0 and{my(e) : ec E} is a directed collection of compact, convex subsets of
A. Lemma 1.2 gives a sequeneel e, L --- of distinct elements oE whereTtp(e) < Th(e41) for
eachi. The width restriction on consecutive pointgdy, wheren, = 1o(g), forces\{m(e) :ec E} C
{(x,0),(x,1)} for somex € R. If somee € E has the forme = (J(x,b),n), then sug) = {(x,1)} and
otherwise sufE) = {(x,0),(x,1)}. Therefore(Q,C) is a dcpo.

For anyg € Q with Tp(q) < wwe haveqg < qso thatg € |.(q). Thereforeq is a common extension
of any two members af(q), making|{/(q) a directed set, angl= sup({}(q)). For distinctg, gz € Q(w)

it never happens thag < gz and for anyg € Q(w), {(q) = {d € Q— Q(w) : d C q}. Hencel}(q) is
directed and has sg(q)) = q. ThereforeQ is a continuous dcpo.

The set of maximal elements @fis given by maxQ) = {{(x,1)} : x€ R}. For eachx € R there are
memberg) = (J(x,b),n) € Qwith € = b—xarbitrarily small, so that max) N{(q) = [x,x+¢€). Hence
the topology induced on mé&®) by the Scott topology o is exactly the Sorgenfrey line topology.

Example 2.4 Suppose X is any subspace of any space of ordinals. Then X is representable as the
space of maximal elements of some continuous dcpo.

Proof: There is a strictly increasing functidrfrom the ordered seX onto some initial ordinalo, 3).
The functionf might fail to be a homeomorphism fro with its given topology ontd0, 3) with its
usual open interval topology because for some isolated painX, f(x) might be a limit ordinal in
[0,B). Letl ={f(x):xe Xis isolated and (x) is a limit ordinal;. Because, in its usual order topology,
[0,B) is locally compact, it is representable as rfRaxfor come continuous dcp@,C). LetY be the
space obtained by isolating every point of the Isetn the light of Proposition 2.1, the spateis
representable as the subspace of maximal elements of some continuous dépgs hacheomorphic
toX. O

Subspaces of ordinals are not the only spaces that are hereditarily domain-representable. In a
subsequent paper, we will show thaiXifis a countabld;-space with exactly one non-isolated point,
then every subspace ¥fis homeomorphic to the space of maximal elements of some continuous dcpo
with the Scott topology.

Question 2.5 For which spaces X is it true that every subspace of X is representable as the space of
maximal elements of some continuous dcpo with the Scott topology? Must such an X be scattered?



3 Subspaces of domain-representable spaces

One can think of domain-representability as a kind of topological completeness property, related to
being a Baire space. The property of being a Baire space, and most other completeness properties
associated with being a Baire space, are open-hereditary properties and are hereditary®g-detse

but are not closed-hereditary. (See [1].) In additiorX ifias a dense subspactehat is a Baire space,

thenX is also a Baire space. In this section we show that representability as the space of maximal
elements of some continuous dcpo follows that same pattern to a large degree, but not entirely.

Example 3.1 Any completely regular space Y is a closed subset of a space X that can be represented
as the space of maximal elements of a continuous dcpo. Hence there is a space X that is representable
as the space of maximal elements of a continuous dcpo and a closed sybgethat is not cannot

be represented as the space of maximal elements of any continuous dcpo.

Proof: Given a completely regular spa¢ewe know that the compact Hausdorff spdd¥¢ can be
represented as the space of maximal elements of some continuous dcpo (see Theorem X.bg Let

the space that is obtained froY by isolating all points ofdY —Y. By Proposition 2.1X is also
representable as the space of maximal elements of some continuous dclgdsandlosed subspace

of X. To obtain the second assertion of the example from the firsf) le¢ the usual set of rational
numbers, constru@Q and isolate all points BQ — Q. Becaus€) is not a Baire space, it cannot be
represented as the space of maximal elements of a continuous dcpo. (The second assertion also follows
from Example 2.2.17

Example 3.1 answers a question of K. Martin [9]. While domain-representability is not a closed-
hereditary property, it is open-hereditary. (According to an e-mail from K. Martin, Reinhold Heckmann
was the first to observe that domain-representability is an open-hereditary property.) Our next result
goes much further.

Theorem 3.2 Suppose that a space X can be represented as the space of maximal elements of some
continuous dcpdP,C) and that Y is a G-subspace of X. Then there is a continuous d@po<) such
that Y is homeomorphic to the spavax Q). Furthermore,(Q, <) is algebraic.

Proof: WriteX = max(P,C). Becausé&' is aGs-subset oX, there must be Scott-open subgets) of
P with O(n+ 1) C O(n) andY = XNN{O(n) : n < w}. Let

Qn={(p,n): p€ O(n) andfH(p)NY # 0}

and define
Qu={(p.w): p({O(n) :n < w}}.
Let Q = U{Qn: n < w}. Notice thatify € Y, then(y,w) € Q.

We claim that(p, w) € Qy, if and only if for eachn < wwe havel.(p) NO(n) # 0. For suppose that
(p,w) € Q- Then for eacm < wwe havep € O(n) so that for some, € P we havep € }(pn) C O(n).
The Interpolation Lemma 1.4 gives us sopjes P with p, < p}, < p so thatp, € {(p) NO(n) showing
that{}(p) NO(n) # 0 for eachn < w. Conversely, ifl.(p) NO(n) # 0 for eachn < w, then somep, has
pn < p andpp € O(n) so that,O(n) being Scott open, we hayes O(n).

We define a relatior onQ by the rule that i p,m), (g,n) € Q (with m,n < w) , then(p,m) < (q,n)
if and only if one of the following holds:



a) (p,m) = (q,n);
b) m<n<wandp<q;
Cc) p<gandm< n=w;
d) pCgandm=n=w.
Then= is a partial order ol and the relatiorf p1, ) < (p2,n2) never happens far, < w.

The rest of the proof involves a sequence of steps. We will carefully distinguish between the partial
ordersC and =<, but we will use< to denote the “far below” relation in botf,C) and in(Q, <),
relying on context to make the meaning clear. In addition, we will writd Sumeaning the supremum
of Sin P or Q, depending upon wheth&cC P or SC Q. Similarly we will write |}(x) rather than}p(x)
or |o(x) and are confident that readers will know which we mean by deciding whetheror x € Q.

Step 1 (Q, =) is a dcpo. We will show that iE is a nonempty directed subset®f then supE) € Q.
If E contains a maximal elemest of itself then supE) = € € Q so suppose that no point & is
maximal inE. The setmy[E] = {ru(e) : e E} is a non-empty directed subset Bf so that some
p* € P hasp* = supm|[E]).

We claim that(p*, w) € Q. There are two cases to consider. In the first, supfos€,, # 0. Then
somee € E hase= (p,w) sothatee Qyieldsp e N{O(n) : n< w}. Thenp C p*yieldsp* € N{O(n):
n < w} because eacB®(n) is Scott open, and therefof@*,w) € Q. In the second case, suppose that
ENQw= 0. Choose distinay = (pi,n;) € E with ¢ < e.1. Thenn; < ni;1 so thatp, € O(n;). Because
pi C p*, p* € O(n;) because eadd(n;) is Scott open. Hencg' € N{O(n;) :i > 1} =N{O(n):n> 1},
showing that p*, w) € Q.

Knowing thatq* = (p*,w) € Q, we can show thag* is an upper bound fdE in Q. For lete€ E.
In casee = (p,n) with n < w, somee; € E — {e} hase < e;. According to part (b) or (c) of the
definition of <, we must haven(e) < my(e1) C sup(Tu[E]) = p* so thatry(e) < p* and therefore
e= (p*,w) =q". In casee = (p,w), thenty(e) C sup(tTy[E]) = p* and part (d) of the definition of
shows thae < (p*,w) = Q.

We complete the proof that s(Jp) = q* by showing thatf* < g wheneverq is an upper bound for
E in Q. Given an upper bounglwe know thatrg (e) C 1y(q) for eache € E. Becausep* = supy[E])
it follows thatp* = Ty (q*) C T (q). Either because sonees E hasm(e) = w, or because we can find
distincte € E with Th(g) < T(e+1), we know that(q) = w. But thenry () C m(q) is enough to
show thaty* < g, as required.

Step 2 If (p,n) € Q with n < w, then(p,n) < (p,n) in Q. To verify that assertion, suppo&eis a
nonempty directed set iQ with (p,n) < supE). The non-trivial case is whele contains no maximal
element of itself. As proved in Step 1, we then know that B)p= (p*, w) wherep* = sugtu(E)) in

P. Then(p,n) < supE) = (p*,w) so thatp < p* in P. Now we invoke Lemma 1.4 to find some= P
with p < r < p* in P. Because < p* = sugm(E)), somee; = (p1,my) € E hasp < r C my(ey).
Either because some elementtbhas second coordinate or because we can choose distinct points
e,e3,--- Of Ewith e; <& <e3 <--- and withtp(g) < Th(e1) < w for eachi, we can finde* € E
with e C € andn < Tp(€"). But then(p,n) < €* € E as required to show thép,n) < (p,n).

Step 3 If (p*,w) € Q then(p*,w) = sufE*) whereE* = {(p,n) e Q:1<n<wandpe ||(p*)N
O(n)}. To verify that assertion, first note thgp*, w) is clearly an upper bound fd&*. Next observe
thatE* N Q(n) # 0 for each fixedh < w, becausép*,w) € Q yields p* € O(n) and then some € P
with p* € 1(r) C O(n). Lemma 1.4 gives songwith r < s< p* and then(s,n) € E*. Next consider
any upper bound € Q for E*. We will show that(p*,w) < q. Becaus&* N O(n) # 0 for eachn < w,
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we know thatrp(g) = w so thatq has the forng = (p, w) for somep € P. Therefore we will have the
desired(p*, w) =< g provided we can provp* C 1y (q). To do that, we will show that (q) is an upper
bound for|/(p*) in P and that will yieldp* = sup({.(p*) C 1u(q) as required.

Consider any € |}(p*). We know thatp* € N{O(n) : n < w} C O(1), so that there is somec P
with p* € f}(s) € O(1). Thens < p* so that Lemma 1.4 provides somes P with s< r < p*.
Because the directed sgtp*) contains both andr, someu € |}(p*) hasr,t C u. Thens< r C uand
sou € 1}(s) C O(1). Thereforeu € O(1) N {(p*) showing tha(u, 1) € E*. Because is an upper bound
for E* we know that(u,1) < q and therefores < T (q). But thent C u < 14(q) givest < 14(q) S0
thatty (q) is an upper bound fog(p*). Hencep* C 14 (q) as required to show th&p*, w) < g. This
completes Step 3.

Step 4 If (P, w), (p*,w) € Q, then(P,w) < (p*,w) never happens iQ. Consider the séE* defined
usingp* in Step 3. We know thatp*, w) = sugE*) so that if(f, w) < (p*,w), then somép,n) € E*
would have(p,w) < (p,n) and because < w that can never happen.

Step 5 (Q, =) is a continuous poset, i.e., for eagte Q, |/(q) is directed andy = sup{}(g)). In
caseq has the formg = (p,n) with n < w, Step 2 givegy € |I(q) so thatg is a common extension
of any two members of (gq) andg = sup({}(q)). Now consider the case whege= (p*,w) € Q. Let
a1,92 € J(p*,w). From Step 4, eact; has the formg = (pi,ni) with n; < w. Becausey < (p*, w)
in Q andn; < w, we know thatry(g) < p* in P. Letm= n; +np. Becausgp*,w) € Q we may
chooser € ||(p*) N O(m). Becauseps, p2,r belong to the directed séft(p*), somes € |}(p*) has
p1, p2,r £ s. Becauses< p* in P, Lemma 1.4 give$ € P with s« t <« p*. Becausd < p* we
have (t,m) < (p*,w). Applying Step 3 to(t,m), we obtain(t,m) < (t,m) < (p*,w) in Q so that
(t,m) € J((p*,w)). Becausep C st andn; < mwe have(p;,n;) < (t,m), so thatl((p*,w)) is

directed. It follows that su@.((p*,w))) exists inQ. Obviously sup| ((p*,w))) < (p*, w).

Now consider the directed s&" in Step 3. For eaclip,n) € E* we havep € |J(p*) so that
(p;n) = (p*, w). Apply Step 3 to see thap,n) < (p,n) < (p*,w) so that(p,n) € }((p*, w)). Hence
E* C |((p*,w)) so we must have

(p*,w) = sudE") < sud{((p",w))) = (p", ).
We conclude that sy ((p*,w))) = (p*,w), as required to complete Step 5.

Step 6 The set of maximal elements ), <) is given by maxQ) = {(y,w) : y € Y}. Consider any
yeY C X =maxP). Theny € N{O(n) : n < w} so that(y,w) € Q. Because no element Bfis strictly
abovey, it follows that(y, w) is maximal inQ.

Conversely, suppose thats a maximal element d®. If g= (p,n) with n < w, it follows from the
definition ofQ that{}(p) NY # 0. Choosey € Y N1 (p). Then(y,w) € Q, andp < ygives(p,n) =< (Y, w),
contrary to maximality of p,n) in Q. Hence any maximal elemeqtof Q has the formg = (p, w).
Because € P we may choose somép) € X with p C x(p). Becausé p, w) € Q, we know thatp
N{O(n) : n> 1} and thereforg C x(p) givesx(p) € XN (N{O(n) :n>1}) =Y. Then(x(p),w) € Q
andg = (p,w) < (x(p),w) so that maximality ofj givesp=x(p) €Y, as required to complete Step 6.
Step 7 The continuous dcpdQ, <) is algebraic. Lefg e Q. We must show that the sé&t(q) of
compact elements df(q) is directed and has stig(q)) =q. If g= (p,n) for n < wthenK(q) = |(q),

and if g = (p*,w) then the seE* constructed in Step 3 is directed, and H&sC |}((p*,w)) and
(p*,w) = supgE*). Finally, each element d&* is compact in the light of Step 2.

Step 8 If Y is topologized as a subspace)afthenY is homeomorphic to the subspace rf@xof Q.
Defineh:Y — maxQ) by h(y) = (y,w). Thenhis 1-1 and onto.
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We claim thath is continuous. Suppog®y) € {(q) for someq € Q. By Step 3,q cannot have
Th(q) = w soq has the forng = (p,n) with n < w. Becausdy, w) € 1((p,n)) we have(p,n) < (y, w)
in Q so that(p,n) < (y,w) and thereforg < y in P. Consequentlyy(p) NY is a relative neighborhood
of y in the relativized Scott topology frofd. Consider ang € {(p)NY. We havep < zin P so that
(p,n) = (y,w) in Q. Because of Step 4, we hayp,n) < (p,n) < (z w) so thath(z) € f((p,n)) as
required.

Finally, we claim thah is an open mapping. Consider any basic neighborfwed {}(p) NY is the
relative Scott topology ol. We must show that(U) is a relative neighborhood ¢fly) in max Q).
We know thaty € Y C O(1) so that becausg= sup({}(y)) we may choose € |/(y)NO(1). Because
r <y we certainly have thag(r)NY # 0, so that(r,1) € Q. Consider the basic open sgfr,1). We
know thatr < yin P so that(r,1) < (y,w) in Q, and becausf, 1) < (r,1) in Q we have(r,1) < (Y, w)
in Q. Thus(y,w) € ((r,1)). To complete Step 8, we will show th#t(r,1)) "max(Q) C h(U), so let
ge f((r,1))NnmaxQ). Theng = (z,w) withze Y. From(r,1) < (z w) in Q, we know thatr < zin
P,sothatze f(r)NnY =U. Henceq= (z w) € h(U) as required™

Our proof of Theorem 3.2 gives another proof of the following result that, K. Martin has told us,
was originally obtained by Philip Sunderhauf.

Corollary 3.3 If a space X can be represented as the space of maximal elements of some continuous
dcpo P, then X can also be represented as the space of maximal elements of some continuous dcpo Q
that is algebraic.

Proof: LetY = X. ThenY is aGg-subset ofX so that Theorem 3.2 applies to complete the praoof.

Example 3.1 showed that, in general, the property of being represented as the space of maximal
elements of some continuous dcpo is not hereditary to closed sets. However, in perfect spaces (= each
closed set is &5-set) we have the following immediate consequence of Theorem 3.2:

Corollary 3.4 If X is a perfect space (= closed sets arg-&ets) that can be represented as the space
max(P) for some continuous dcpo, then each closed subspace Y of X can be representedQs
for some continuous, algebraic dcpo Q.

We close this section by noting that afech-complete space can be represented as the set of
maximal elements of a continuous, algebraic dcpo. Because locally compact Hausdorff spaces and
completely metrizable spaces &ech-complete, this generalizes a theorem of Edalat and Heckman
[5] that any completely metrizable space can be represented as the space of maximal elements of some
continuous, algebraic dcpo, and also generalizes a theorem in [7] that any locally compact Hausdorff
space can be represented as the space of maximal elements of a continuous dcpo. In addition, it answers
Question (vii) of K. Martin [8].

Theorem 3.5 Suppose Y is &ech-complete space. Then there is a continuous, algebraic(@®po
with Y = max(P).

Proof: LetX = BY be theCech-Stone compactification ¥f Becausé' is éech-completé{ is a dense
Gs-subset oiX. It is known (see [11]) thaX, being compact Hausdorff, can be represented ag®ax
whereP is a continuous algebraic dcpo. Apply Theorem 3.2 to concludeértbah also be represented
as maxQ) for some continuous, algebraic dcpo.



It would be natural to ask whether Corollary 3.5 could be generalized further, by replaging
subsets of compact Hausdorff spaces by Arhangelskii's p-embedded subspaces of compact Hausdorff
spaces. The answer is “N0” because any metric space is p—embeddeéémliteStone compactifica-
tion; now consider the metric spa@e

The converse of Theorem 3.5 holds for metrizable spaces (see Theorem 1.1) but is false for other
types of spaces, e.g., for Moore spaces. A result announced by G.M. Reed in a conference talk shows
that M.E. Rudin’s space in [6] is domain-representable buGesth-complete. (In fact every Rudin-
complete space (see [1]) is domain-representable.) The converse of 3.5 is also false among generalized
ordered spaces, as Examples 2.2, 2.3, and 2.4 show.

Compact Hausdorff spaces can be represented as the spa@d®) irevssomeScott domairnP,C),
i.e., a continuous dcpB with a least element and with the additional property that; ifp, € P have
p1, P2 C p3 for someps € P, then sugp1, p2} exists inP (see [11]). Itis always possible to add a single
minimal element to any dcp@, <), and one might wonder whether some variation of the construction
in Proposition 3.2 could show that aﬁ;ech—complete space can be represented agRnéor some
Scott domairR. That cannot be done because of another example announced by G.M. Reed in several
talks. He has constructed@ech—complete Moore space that is not the space of maximal elements of
any Scott domain.

Example 3.6 There is a metrizable space X that has a dense subspace Y that is domain-representable,
and yet X is not.

Proof: LetY = {('ﬁ, %) :k,ne Z andn > 0} and letX =Y U{(q,0) : q € Q}, and topologizeX as

a subspace of the plane. (This is the space of Exercise 14, page 253, in [2].)Y Themg a set

of isolated points, is completely metrizable, and is densk.irBut X is not completely metrizable,
because it ha® as a closed subspace. According to TheoremYLi4 domain-representable, bXitis

not. O

Remark 3.7 Itis well-known that open mappings and perfect irreducible mappings preserve the Baire
space property and that perfect mappings do not (e.g., the projattoy) = (x,0) with the space

X of Example 3.6 as domain is a perfect mapping that does not preserve the Baire space property).
It would be interesting to know the extent to which various types of mappings preserve the property
of domain-representability. A closely related question is whether the product ¥padé must be
domain-representable, given thais domain-representable akdis a compact Hausdorff space.
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