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Abstract

In this paper, we study domain-representable spaces, i.e., spaces that can be represented as the
space of maximal elements of some continuous directed-complete partial order (= domain) with the
Scott topology. We show that the Michael and Sorgenfrey lines are of this type, as is any subspace of
any space of ordinals. We show that any completely regular space is a closed subset of some domain-
representable space, and that ifX is domain-representable, then so is anyGδ-subspace ofX. It follows
that anyČech-complete space is domain-representable. These results answer several questions in the
literature.
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1 Introduction

Approximability by special partially ordered sets is an idea that came into topology from theoretical
computer science. Contemporary discussions containing many important examples can be found in the
papers of Martin, Mislove, and Reed [8], [11] [12]. An article by Ciesielski, Flagg, and Kopperman [4]
gives valuable motivation for studies of this type (and proves important results about countably-based
models of spaces.)

Because the literature about domain-representations contains conflicting terminology, we begin
with the basic definitions to be used in this paper. Let(P,v) be a partially ordered set (= poset). A
subsetD ⊆ P is directedprovided for eachd1,d2 ∈ D, somed3 ∈ D hasd1,d2 v d3. We say that such
a d3 is acommon extensionof d1 andd2. For any setT ⊆ P we write sup(T) to mean the least of all
of the upper bounds ofT in P, if such a thing exists. Most frequentlyT will be a directed set, but
sometimesT will be a subset ofP with the property that ift1, t2 ∈ T then somep∈P hast1, t2v p. The
poset(P,v) is adcpo(= directed-complete partial order) if every non-empty directed setD ⊆ P has a
supremum inP. If (P,v) is a dcpo, then Zorn’s Lemma shows that for eachp∈ P at least one maximal
elementx∈ P haspv x. The set of all maximal elements ofP is denoted by max(P).
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Starting with a poset(P,v), there is a new relation� on P defined as follows: forp,q∈ P, p� q
means that for any directed setD with qv sup(D), there is somed ∈ D with pv d. Traditionally
p� q is read “p is far belowq” or “ q is far abovep.” Clearly p� q impliespv q (use the directed set
D = {q} in the definition ofp� q). It can happen that somep∈P hasp� p and such elements ofP are
calledcompact elements of P. For p∈P we write⇑(p) = {q∈P : p� q} and⇓(p) = {q∈P : q� p}.

We say that the poset(P,v) is continuousif for each p ∈ P, the set⇓(p) is directed and has
p = sup(⇓(p)). The worddomainused in the title is a synonym for “continuous dcpo.” To say that a
domain isalgebraicmeans that for eachp∈ P, the setK(p) of compact elements ofP that belong to
⇓(p) is a directed set with sup(K(p)) = p.

We introduce a topology onP as follows. A subsetU of a dcpo(P,v) is Scott openprovidedU has
the following two properties:

a) if x∈U andxv y∈ P, theny∈U ;

b) if D⊆ P is any directed set with sup(D) ∈U thenD∩U 6= /0.

The collection of all Scott-open sets is a topology on the setP, called theScott topology. From a
traditional topological viewpoint, the Scott topology is not a good one – as shown in Proposition 2.6
of [12], it is alwaysT0 but almost neverT1. However, when restricted to the subset max(P), the
Scott topology can be very nice, as can be seen from Theorem 1.1 below. If a topological spaceX is
homeomorphic to the space max(P) topologized using the relative Scott topology for some continuous
dcpo(P,v), then we say that the spaceX is representable as the space of maximal elements of Pand
thatX is domain-representable.

Being representable as the space of maximal elements of some domain is a non-trivial restriction
on a spaceX. For example, any such spaceX is a Baire space, and (even more) isChoquet-complete
[10]. (Choquet completeness is a game-theoretic property that is equivalent toČech-completeness in
any metric space; see Theorem 8.7 in [3] and Choquet’s remarks after the proof of (8.7).)

Many important types of spaces are representable as the space of maximal elements of some con-
tinuous dcpo. The following theorem summarizes results of Edalat and Heckman [5] and Martin [10]
concerning complete metrizability, and of Gierz et al. [7] concerning local compactness. See also
Examples 3.6 and 3.7 in [8] and Example 3.7 in [11].

Theorem 1.1 A metrizable space X is representable as the space of maximal elements of some con-
tinuous dcpo if and only if X is completely metrizable, and any locally compact Hausdorff space is
representable as the space of maximal elements of some continuous dcpo.

The goal of our paper is to study spaces that can be represented as the space of maximal elements
in a continuous dcpo and to extend Theorem 1.1 in a significant way by answering several questions in
the literature. We will show:

1) Representability as the space of maximal elements of some domain is not a closed-hereditary
property. In fact, any completely regularT1-spaceY is a closed subspace of a completely regular
T1-spaceX(Y) that is domain-representable. This answers a question posed in [9].

2) SupposeX = max(P) for some continuous dcpoP. If Y is a Gδ-subset ofX, thenY is also
domain-representable. In particular, everyČech-complete is domain-representable. (This an-
swers question (vii) in [8].) Furthermore, ifX is both perfect (= closed sets areGδ-sets) and
domain-representable, then so is any closed subset ofX.

2



3) Both the Michael line and the Sorgenfrey line can be represented as the space of maximal ele-
ments of some continuous dcpo, and so can any subspace of any ordinal.

We will use several known results about dcpos at many points in this paper, so we record them here.
The first is easy and the other two appear in the literature.

Lemma 1.2 If (D,v) is any nonempty directed set that contains no maximum element, then for each
d ∈ D there exists a sequence〈d j〉 of distinct elements of D with d= d1 v d2 v d3 v ·· ·.

Lemma 1.3 Let (P,v) be a continuous dcpo. Then the collection{⇑(p) : p ∈ P} is a basis for the
Scott topology on P. (See [13] or Proposition 2.13 in [8].)

Lemma 1.4 Suppose(P,v) is a continuous dcpo and that a,c ∈ P have a� c. Then there is some
b∈ P (possibly b∈ {a,c}) with a� b� c. (See [13] or Proposition 2.9 in [8].)

Throughout this paper, we will reserve the symbolsR, Q andP for the usual sets of real, rational,
and irrational numbers, andZ will denote the set of all integers (positive and negative). In addition, for
any ordered pairp, πi(p) will denote theith coordinate ofp.

The authors would like to thank K. Martin and G.M. Reed for helpful correspondence during the
preparation of this paper. We also thank K.P. Hart for comments that substantially improved an earlier
draft.

2 Examples of domain-representable spaces

This section contains a technical construction that will be used in later sections, as well as some exam-
ples that may be of interest in themselves.

Proposition 2.1 Suppose that the topological space(X,σ) has X= max(P) where(P,v) is a contin-
uous dcpo, and suppose that I is an arbitrary subset of X. Useσ∪{{y} : y∈ I} as the base for a new
topologyτ on X. Then there is a continuous dcpo(Q,�) havingmax(Q) = (X,τ).

Proof: For eachy ∈ I , let y+ be any point not inP, chosen in such a way that ify 6= z are in I , then
y+ 6= z+. Let Q = P∪{y+ : y∈ I}. Thinking of partial orders as sets of ordered pairs, we define an
ordering� onQ by

� = v ∪ {(p,y+) : pv y} ∪ {(y,y+) : y∈ I}.

Then� is a partial ordering ofQ and it is clear that, as a set, max(Q) = {y : y∈ X− I}∪{y+ : y∈ I}.
We will identify this set withX in the obvious way.

We claim that(Q,�) is a dcpo. We must show that ifD is a nonempty directed subset ofQ, thenD
has a supremum inQ. In caseD ⊆ P, somep0 ∈ P is the supremum ofD in (P,v) and therefore also
in (Q,�). In caseD is not a subset ofP, then there is somey+ ∈Q with y+ ∈D, and directedness ofD
guarantees that thisy+ is unique. But theny+ is the supremum ofD in (Q,�).

Next we claim thatQ is continuous. In this part of the proof,⇓v(r) (respectively,⇓�(r)) will
denote the collection of members ofP (respectively, ofQ) that are far belowr in the poset(P,v)
(respectively, in(Q,�)). We must show thatr = sup(⇓�(r)) for eachr ∈ Q, where the supremum is
taken inQ, and that⇓�(r) is directed. In caser ∈ P, both are automatic. To complete this part of the
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proof, we will show thaty+ ∈ ⇓�(y+) for eachy∈ I . To that end, supposeE is a directed subset ofQ
and thaty+ � sup�(E) where the supremum is taken in(Q,�). If y+ ∈ E there is nothing to prove, so
assumey+ /∈ E. For anye∈ E we know thate� y+ so that the definition of� givesy∈ P andev y.
But theny is an upper bound forE in (Q,�) that is strictly belowy+ and that is impossible. Therefore
y+ ∈ ⇓�(y+) for eachy+ ∈ Q. Hencey+ is a common extension of any two members of⇓�(y+) so
that⇓�(y+) is directed, andy+ = sup�(⇓(y+)), as required.

As noted above, max(Q) = {y : y ∈ X− I}∪ {y+ : y ∈ I}. To complete the proof, we show that
the relative Scott topology on max(Q) is the topologyτ described in the statement of the proposition.
Supposez∈ U ∈ τ. If z∈ I , thenz is identified with the pointz+ ∈ max(Q) and because we know
that z+ ∈ ⇓�(z+) we also havez+ ∈ ⇑�(z+). Hence⇑�(z+)∩max(Q) = {z+} showing thatU is a
neighborhood ofz in the relative Scott topology. Next supposez∈ U ∈ τ with z∈ X− I . ThenU
is a neighborhood ofz in the original topologyσ so that there is somep ∈ P with z∈ ⇑v(p) and
⇑v(p)∩max(P) ⊆ U . But thenz∈ ⇑�(p)∩max(Q) ⊆ U , as required to show thatU is relatively
Scott open. Conversely, consider any set⇑�(r)∩max(Q) wherer ∈ Q. If r ∈ P, this is the same as
⇑v(r)∩max(P) which is open inσ and hence also inτ. In caser 6∈ P, thenr = y+ for somey ∈ I
and we have⇑�(r)∩max(Q) = {y+} ∈ τ. Thus, every basic open set in the relative Scott topology on
max(Q) is τ-open. Hence the relative Scott topology on max(Q) coincides withτ, as required.2

Generalized ordered spaces(GO-spaces) are Hausdorff spaces(X,τ) that admit a linear order<
such that there is a base forτ consisting of order-convex sets. An easy way to obtain GO-spaces is to
start with some linearly ordered set(X,<) and choose three disjoint subsetsR,L, andI of X. Isolate
each point ofI , and let basic neighborhoods of any pointx∈Rhave the form[x,b) for x< b∈X. Basic
neighborhoods of points ofy ∈ L have the form(a,y] for a < y, and points ofX− (R∪ L∪ I) have
their usual open interval neighborhoods. GO-spaces have been widely used as sources of examples in
topology. The most famous are the Michael and the Sorgenfrey lines, as well as spaces (and subspaces)
of ordinals.

Example 2.2 The Michael line is representable as the space of maximal elements of a continuous
dcpo.

Proof: The usual real line is representable as the set of maximal elements of the poset{[a,b] : a≤
b, a,b∈ R} ordered by reverse inclusion. LetI be the set of all irrational numbers and apply Proposi-
tion 2.1.2

It is harder to prove that the Sorgenfrey line is representable as the space of maximal elements of
some continuous dcpo, but our next example shows that it is true.

Example 2.3 The Sorgenfrey line S is representable as the space of maximal elements of some contin-
uous dcpo.

Outline of Proof: For each pair of real numbersa < b, let S(a,b) be a strictly increasing sequence〈xn〉
with a = x1, limn→∞ xn = b, and|xn+1−xn| ≤ b−a

2 . LetC0 = Z and, givenCn, let

Cn+1 =
⋃
{S(a,b) : a < b, a,b∈Cn, (a,b)∩Cn = /0}.

Let C =
⋃
{Cn : 0≤ n < ω}. Note that ifa < b are consecutive points of someCn, thenb−a≤ 1

2n .
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Let A = R×{0,1} carry the open interval topology of the lexicographic order. For real numbers
a < b let J(a,b) = [(a,1),(b,0)]. EachJ(a,b) is a compact, convex subset ofA. Now define

Q(ω) = {({(x,0),(x,1)},ω) : x∈ R−C}∪{({(x,1)},ω) : x∈ R}

and for eachn with 0≤ n < ω let

Q(n) = {(J(a,b),n) : a < b,b∈C(n) and(a,b)∩C(n) = /0}.

Let Q =
⋃
{Q(n) : 0≤ n≤ ω}. Define a relationv in Q by the rule that forq1,q2 ∈ Q, q1 v q2 if and

only if one of the following holds:

a) q1 = q2;

b) for i = 1,2, qi = (J(ai ,bi),ni) ∈Q−Q(ω), J(a2,b2)⊆ J(a1,b1), andn1 < n2;

c) q1 = (J(a,b),n) ∈Q−Q(ω), q2 ∈Q(ω) andq2 ⊆ IntA(J(a,b));

d) qi = (pi ,ω) andp2 ⊆ p1.

Then(Q,v) is a poset. IfE is a nonempty directed subset ofQ that does not contain its own maximum
element, thenE∩Q(ω) = /0 and{π1(e) : e∈ E} is a directed collection of compact, convex subsets of
A. Lemma 1.2 gives a sequencee1 v e2 v ·· · of distinct elements ofE whereπ2(ei) < π2(ei+1) for
eachi. The width restriction on consecutive points inCni , whereni = π2(ei), forces

⋂
{π1(e) : e∈E} ⊆

{(x,0),(x,1)} for somex∈ R. If somee∈ E has the forme= (J(x,b),n), then sup(E) = {(x,1)} and
otherwise sup(E) = {(x,0),(x,1)}. Therefore,(Q,v) is a dcpo.

For anyq∈Q with π2(q) < ω we haveq� q so thatq∈ ⇓(q). Thereforeq is a common extension
of any two members of⇓(q), making⇓(q) a directed set, andq= sup(⇓(q)). For distinctq1,q2∈Q(ω)
it never happens thatq1 � q2 and for anyq∈ Q(ω), ⇓(q) = {q′ ∈Q−Q(ω) : q′ v q}. Hence⇓(q) is
directed and has sup(⇓(q)) = q. Therefore,Q is a continuous dcpo.

The set of maximal elements ofQ is given by max(Q) = {{(x,1)} : x∈R}. For eachx∈R there are
membersq= (J(x,b),n)∈Q with ε = b−x arbitrarily small, so that max(Q)∩⇑(q) = [x,x+ε). Hence
the topology induced on max(Q) by the Scott topology onQ is exactly the Sorgenfrey line topology.2

Example 2.4 Suppose X is any subspace of any space of ordinals. Then X is representable as the
space of maximal elements of some continuous dcpo.

Proof: There is a strictly increasing functionf from the ordered setX onto some initial ordinal[0,β).
The function f might fail to be a homeomorphism fromX with its given topology onto[0,β) with its
usual open interval topology because for some isolated pointx∈ X, f (x) might be a limit ordinal in
[0,β). Let I = { f (x) : x∈X is isolated andf (x) is a limit ordinal}. Because, in its usual order topology,
[0,β) is locally compact, it is representable as max(P) for come continuous dcpo(P,v). LetY be the
space obtained by isolating every point of the setI . In the light of Proposition 2.1, the spaceY is
representable as the subspace of maximal elements of some continuous dcpo, andY is homeomorphic
to X. 2

Subspaces of ordinals are not the only spaces that are hereditarily domain-representable. In a
subsequent paper, we will show that ifX is a countableT1-space with exactly one non-isolated point,
then every subspace ofX is homeomorphic to the space of maximal elements of some continuous dcpo
with the Scott topology.

Question 2.5 For which spaces X is it true that every subspace of X is representable as the space of
maximal elements of some continuous dcpo with the Scott topology? Must such an X be scattered?
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3 Subspaces of domain-representable spaces

One can think of domain-representability as a kind of topological completeness property, related to
being a Baire space. The property of being a Baire space, and most other completeness properties
associated with being a Baire space, are open-hereditary properties and are hereditary to denseGδ-sets,
but are not closed-hereditary. (See [1].) In addition, ifX has a dense subspaceY that is a Baire space,
thenX is also a Baire space. In this section we show that representability as the space of maximal
elements of some continuous dcpo follows that same pattern to a large degree, but not entirely.

Example 3.1 Any completely regular space Y is a closed subset of a space X that can be represented
as the space of maximal elements of a continuous dcpo. Hence there is a space X that is representable
as the space of maximal elements of a continuous dcpo and a closed subset Y⊆ X that is not cannot
be represented as the space of maximal elements of any continuous dcpo.

Proof: Given a completely regular spaceY, we know that the compact Hausdorff spaceβY can be
represented as the space of maximal elements of some continuous dcpo (see Theorem 1.1). LetX be
the space that is obtained fromβY by isolating all points ofβY−Y. By Proposition 2.1,X is also
representable as the space of maximal elements of some continuous dcpo, andY is a closed subspace
of X. To obtain the second assertion of the example from the first, letQ be the usual set of rational
numbers, constructβQ and isolate all points ofβQ−Q. BecauseQ is not a Baire space, it cannot be
represented as the space of maximal elements of a continuous dcpo. (The second assertion also follows
from Example 2.2.)2

Example 3.1 answers a question of K. Martin [9]. While domain-representability is not a closed-
hereditary property, it is open-hereditary. (According to an e-mail from K. Martin, Reinhold Heckmann
was the first to observe that domain-representability is an open-hereditary property.) Our next result
goes much further.

Theorem 3.2 Suppose that a space X can be represented as the space of maximal elements of some
continuous dcpo(P,v) and that Y is a Gδ-subspace of X. Then there is a continuous dcpo(Q,�) such
that Y is homeomorphic to the spacemax(Q). Furthermore,(Q,�) is algebraic.

Proof: WriteX = max(P,v). BecauseY is aGδ-subset ofX, there must be Scott-open subsetsO(n) of
P with O(n+1)⊆O(n) andY = X∩

⋂
{O(n) : n < ω}. Let

Qn = {(p,n) : p∈O(n) and⇑(p)∩Y 6= /0}

and define
Qω = {(p,ω) : p∈

⋂
{O(n) : n < ω}}.

Let Q =
⋃
{Qn : n≤ ω}. Notice that ify∈Y, then(y,ω) ∈Q.

We claim that(p,ω) ∈Qω if and only if for eachn< ω we have⇓(p)∩O(n) 6= /0. For suppose that
(p,ω)∈Qω. Then for eachn< ω we havep∈O(n) so that for somepn∈P we havep∈⇑(pn)⊆O(n).
The Interpolation Lemma 1.4 gives us somep′n∈P with pn� p′n� p so thatp′n∈⇓(p)∩O(n) showing
that⇓(p)∩O(n) 6= /0 for eachn < ω. Conversely, if⇓(p)∩O(n) 6= /0 for eachn < ω, then somepn has
pn � p andpn ∈O(n) so that,O(n) being Scott open, we havep∈O(n).

We define a relation� onQ by the rule that if(p,m),(q,n)∈Q (with m,n≤ω) , then(p,m)� (q,n)
if and only if one of the following holds:
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a) (p,m) = (q,n);

b) m< n < ω andp� q;

c) p� q andm< n = ω;

d) pv q andm= n = ω.

Then� is a partial order onQ and the relation(p1,ω)� (p2,n2) never happens forn2 < ω.

The rest of the proof involves a sequence of steps. We will carefully distinguish between the partial
ordersv and�, but we will use� to denote the “far below” relation in both(P,v) and in(Q,�),
relying on context to make the meaning clear. In addition, we will write sup(S) meaning the supremum
of S in P or Q, depending upon whetherS⊆ P or S⊆Q. Similarly we will write⇓(x) rather than⇓P(x)
or ⇓Q(x) and are confident that readers will know which we mean by deciding whetherx∈ P or x∈Q.

Step 1: (Q,�) is a dcpo. We will show that ifE is a nonempty directed subset ofQ, then sup(E) ∈Q.
If E contains a maximal elemente∗ of itself then sup(E) = e∗ ∈ Q so suppose that no point ofE is
maximal inE. The setπ1[E] = {π1(e) : e∈ E} is a non-empty directed subset ofP, so that some
p∗ ∈ P hasp∗ = sup(π1[E]).

We claim that(p∗,ω) ∈Q. There are two cases to consider. In the first, supposeE∩Qω 6= /0. Then
somee∈E hase= (p,ω) so thate∈Q yieldsp∈

⋂
{O(n) : n< ω}. Thenpv p∗ yieldsp∗ ∈

⋂
{O(n) :

n < ω} because eachO(n) is Scott open, and therefore(p∗,ω) ∈ Q. In the second case, suppose that
E∩Qω = /0. Choose distinctei = (pi ,ni)∈E with ei � ei+1. Thenni < ni+1 so thatpi ∈O(ni). Because
pi v p∗, p∗ ∈O(ni) because eachO(ni) is Scott open. Hencep∗ ∈

⋂
{O(ni) : i ≥ 1}=

⋂
{O(n) : n≥ 1},

showing that(p∗,ω) ∈Q.

Knowing thatq∗ = (p∗,ω) ∈ Q, we can show thatq∗ is an upper bound forE in Q. For lete∈ E.
In casee = (p,n) with n < ω, somee1 ∈ E−{e} hase� e1. According to part (b) or (c) of the
definition of�, we must haveπ1(e) � π1(e1) v sup(π1[E]) = p∗ so thatπ1(e) � p∗ and therefore
e� (p∗,ω) = q∗. In casee= (p,ω), thenπ1(e)v sup(π1[E]) = p∗ and part (d) of the definition of�
shows thate� (p∗,ω) = q∗.

We complete the proof that sup(E) = q∗ by showing thatq∗ � q wheneverq is an upper bound for
E in Q. Given an upper boundq we know thatπ1(e)v π1(q) for eache∈ E. Becausep∗ = sup(π1[E])
it follows that p∗ = π1(q∗)v π1(q). Either because somee∈ E hasπ2(e) = ω, or because we can find
distinctei ∈ E with π2(ei) < π2(ei+1), we know thatπ2(q) = ω. But thenπ1(q∗)v π1(q) is enough to
show thatq∗ � q, as required.

Step 2: If (p,n) ∈ Q with n < ω, then(p,n) � (p,n) in Q. To verify that assertion, supposeE is a
nonempty directed set inQ with (p,n)� sup(E). The non-trivial case is whereE contains no maximal
element of itself. As proved in Step 1, we then know that sup(E) = (p∗,ω) wherep∗ = sup(π1(E)) in
P. Then(p,n)� sup(E) = (p∗,ω) so thatp� p∗ in P. Now we invoke Lemma 1.4 to find somer ∈ P
with p� r � p∗ in P. Becauser � p∗ = sup(π1(E)), somee1 = (p1,m1) ∈ E hasp� r v π1(e1).
Either because some element ofE has second coordinateω or because we can choose distinct points
e2,e3, · · · of E with e1 � e2 � e3 � ·· · and withπ2(ei) < π2(ei+1) < ω for eachi, we can finde∗ ∈ E
with e1 v e∗ andn < π2(e∗). But then(p,n)� e∗ ∈ E as required to show that(p,n)� (p,n).

Step 3: If (p∗,ω) ∈ Q then(p∗,ω) = sup(E∗) whereE∗ = {(p,n) ∈ Q : 1≤ n < ω and p∈ ⇓(p∗)∩
O(n)}. To verify that assertion, first note that(p∗,ω) is clearly an upper bound forE∗. Next observe
thatE∗ ∩Q(n) 6= /0 for each fixedn < ω, because(p∗,ω) ∈ Q yields p∗ ∈ O(n) and then somer ∈ P
with p∗ ∈ ⇑(r)⊆O(n). Lemma 1.4 gives somes with r � s� p∗ and then(s,n) ∈ E∗. Next consider
any upper boundq∈Q for E∗. We will show that(p∗,ω)� q. BecauseE∗∩O(n) 6= /0 for eachn < ω,
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we know thatπ2(q) = ω so thatq has the formq = (p,ω) for somep∈ P. Therefore we will have the
desired(p∗,ω)� q provided we can provep∗ v π1(q). To do that, we will show thatπ1(q) is an upper
bound for⇓(p∗) in P and that will yieldp∗ = sup(⇓(p∗)v π1(q) as required.

Consider anyt ∈ ⇓(p∗). We know thatp∗ ∈
⋂
{O(n) : n < ω} ⊆ O(1), so that there is somes∈ P

with p∗ ∈ ⇑(s) ⊆ O(1). Thens� p∗ so that Lemma 1.4 provides somer ∈ P with s� r � p∗.
Because the directed set⇓(p∗) contains botht andr, someu∈ ⇓(p∗) hasr, t v u. Thens� r v u and
sou∈ ⇑(s)⊆O(1). Thereforeu∈O(1)∩⇓(p∗) showing that(u,1)∈E∗. Becauseq is an upper bound
for E∗ we know that(u,1) � q and thereforeu� π1(q). But thent v u� π1(q) givest � π1(q) so
thatπ1(q) is an upper bound for⇓(p∗). Hencep∗ v π1(q) as required to show that(p∗,ω) � q. This
completes Step 3.

Step 4: If (p̂,ω),(p∗,ω) ∈ Q, then(p̂,ω) � (p∗,ω) never happens inQ. Consider the setE∗ defined
usingp∗ in Step 3. We know that(p∗,ω) = sup(E∗) so that if(p̂,ω)� (p∗,ω), then some(p,n) ∈ E∗

would have(p̂,ω)� (p,n) and becausen < ω that can never happen.

Step 5: (Q,�) is a continuous poset, i.e., for eachq ∈ Q, ⇓(q) is directed andq = sup(⇓(q)). In
caseq has the formq = (p,n) with n < ω, Step 2 givesq ∈ ⇓(q) so thatq is a common extension
of any two members of⇓(q) andq = sup(⇓(q)). Now consider the case whereq = (p∗,ω) ∈ Q. Let
q1,q2 ∈ ⇓(p∗,ω). From Step 4, eachqi has the formqi = (pi ,ni) with ni < ω. Becauseqi � (p∗,ω)
in Q andni < ω, we know thatπ1(qi) � p∗ in P. Let m = n1 + n2. Because(p∗,ω) ∈ Q we may
chooser ∈ ⇓(p∗)∩O(m). Becausep1, p2, r belong to the directed set⇓(p∗), somes∈ ⇓(p∗) has
p1, p2, r v s. Becauses� p∗ in P, Lemma 1.4 givest ∈ P with s� t � p∗. Becauset � p∗ we
have(t,m) � (p∗,ω). Applying Step 3 to(t,m), we obtain(t,m) � (t,m) � (p∗,ω) in Q so that
(t,m) ∈ ⇓((p∗,ω)). Becausepi v s� t andni < m we have(pi ,ni) � (t,m), so that⇓((p∗,ω)) is
directed. It follows that sup(⇓((p∗,ω))) exists inQ. Obviously sup(⇓((p∗,ω)))� (p∗,ω).

Now consider the directed setE∗ in Step 3. For each(p,n) ∈ E∗ we havep ∈ ⇓(p∗) so that
(p,n)� (p∗,ω). Apply Step 3 to see that(p,n)� (p,n)� (p∗,ω) so that(p,n) ∈ ⇓((p∗,ω)). Hence
E∗ ⊆ ⇓((p∗,ω)) so we must have

(p∗,ω) = sup(E∗)� sup(⇓((p∗,ω)))� (p∗,ω).

We conclude that sup(⇓((p∗,ω))) = (p∗,ω), as required to complete Step 5.

Step 6: The set of maximal elements of(Q,�) is given by max(Q) = {(y,ω) : y∈Y}. Consider any
y∈Y⊆X = max(P). Theny∈

⋂
{O(n) : n< ω} so that(y,ω)∈Q. Because no element ofP is strictly

abovey, it follows that(y,ω) is maximal inQ.

Conversely, suppose thatq is a maximal element ofQ. If q = (p,n) with n < ω, it follows from the
definition ofQ that⇑(p)∩Y 6= /0. Choosey∈Y∩⇑(p). Then(y,ω)∈Q, andp� ygives(p,n)� (y,ω),
contrary to maximality of(p,n) in Q. Hence any maximal elementq of Q has the formq = (p,ω).
Becausep∈ P we may choose somex(p) ∈ X with pv x(p). Because(p,ω) ∈Qω we know thatp∈⋂
{O(n) : n≥ 1} and thereforepv x(p) givesx(p) ∈ X∩ (

⋂
{O(n) : n≥ 1}) = Y. Then(x(p),ω) ∈Q

andq = (p,ω)� (x(p),ω) so that maximality ofq givesp = x(p) ∈Y, as required to complete Step 6.

Step 7: The continuous dcpo(Q,�) is algebraic. Letq ∈ Q. We must show that the setK(q) of
compact elements of⇓(q) is directed and has sup(K(q)) = q. If q= (p,n) for n< ω thenK(q) = ⇓(q),
and if q = (p∗,ω) then the setE∗ constructed in Step 3 is directed, and hasE∗ ⊆ ⇓((p∗,ω)) and
(p∗,ω) = sup(E∗). Finally, each element ofE∗ is compact in the light of Step 2.

Step 8: If Y is topologized as a subspace ofX, thenY is homeomorphic to the subspace max(Q) of Q.
Defineh : Y →max(Q) by h(y) = (y,ω). Thenh is 1-1 and onto.
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We claim thath is continuous. Supposeh(y) ∈ ⇑(q) for someq ∈ Q. By Step 3,q cannot have
π2(q) = ω soq has the formq = (p,n) with n < ω. Because(y,ω) ∈ ⇑((p,n)) we have(p,n)� (y,ω)
in Q so that(p,n)� (y,ω) and thereforep� y in P. Consequently,⇑(p)∩Y is a relative neighborhood
of y in the relativized Scott topology fromP. Consider anyz∈ ⇑(p)∩Y. We havep� z in P so that
(p,n) � (y,ω) in Q. Because of Step 4, we have(p,n) � (p,n) � (z,ω) so thath(z) ∈ ⇑((p,n)) as
required.

Finally, we claim thath is an open mapping. Consider any basic neighborhoodU = ⇑(p)∩Y is the
relative Scott topology onY. We must show thath(U) is a relative neighborhood ofh(y) in max(Q).
We know thaty∈Y ⊆ O(1) so that becausey = sup(⇓(y)) we may chooser ∈ ⇓(y)∩O(1). Because
r � y we certainly have that⇑(r)∩Y 6= /0, so that(r,1) ∈ Q. Consider the basic open set⇑(r,1). We
know thatr � y in P so that(r,1)� (y,ω) in Q, and because(r,1)� (r,1) in Q we have(r,1)� (y,ω)
in Q. Thus(y,ω) ∈ ⇑((r,1)). To complete Step 8, we will show that⇑((r,1))∩max(Q)⊆ h(U), so let
q∈ ⇑((r,1))∩max(Q). Thenq = (z,ω) with z∈Y. From(r,1)� (z,ω) in Q, we know thatr � z in
P, so thatz∈ ⇑(r)∩Y = U . Henceq = (z,ω) ∈ h(U) as required.2

Our proof of Theorem 3.2 gives another proof of the following result that, K. Martin has told us,
was originally obtained by Philip Sunderhauf.

Corollary 3.3 If a space X can be represented as the space of maximal elements of some continuous
dcpo P, then X can also be represented as the space of maximal elements of some continuous dcpo Q
that is algebraic.

Proof: LetY = X. ThenY is aGδ-subset ofX so that Theorem 3.2 applies to complete the proof.2

Example 3.1 showed that, in general, the property of being represented as the space of maximal
elements of some continuous dcpo is not hereditary to closed sets. However, in perfect spaces (= each
closed set is aGδ-set) we have the following immediate consequence of Theorem 3.2:

Corollary 3.4 If X is a perfect space (= closed sets are Gδ-sets) that can be represented as the space
max(P) for some continuous dcpo, then each closed subspace Y of X can be represented asmax(Q)
for some continuous, algebraic dcpo Q.2

We close this section by noting that anyČech-complete space can be represented as the set of
maximal elements of a continuous, algebraic dcpo. Because locally compact Hausdorff spaces and
completely metrizable spaces areČech-complete, this generalizes a theorem of Edalat and Heckman
[5] that any completely metrizable space can be represented as the space of maximal elements of some
continuous, algebraic dcpo, and also generalizes a theorem in [7] that any locally compact Hausdorff
space can be represented as the space of maximal elements of a continuous dcpo. In addition, it answers
Question (vii) of K. Martin [8].

Theorem 3.5 Suppose Y is ǎCech-complete space. Then there is a continuous, algebraic dcpo(P,v)
with Y = max(P).

Proof: LetX = βY be theČech-Stone compactification ofY. BecauseY is Čech-complete,Y is a dense
Gδ-subset ofX. It is known (see [11]) thatX, being compact Hausdorff, can be represented as max(P)
whereP is a continuous algebraic dcpo. Apply Theorem 3.2 to conclude thatY can also be represented
as max(Q) for some continuous, algebraic dcpo.2
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It would be natural to ask whether Corollary 3.5 could be generalized further, by replacingGδ-
subsets of compact Hausdorff spaces by Arhangelskii’s p-embedded subspaces of compact Hausdorff
spaces. The answer is “No” because any metric space is p-embedded in itsČech-Stone compactifica-
tion; now consider the metric spaceQ.

The converse of Theorem 3.5 holds for metrizable spaces (see Theorem 1.1) but is false for other
types of spaces, e.g., for Moore spaces. A result announced by G.M. Reed in a conference talk shows
that M.E. Rudin’s space in [6] is domain-representable but notČech-complete. (In fact every Rudin-
complete space (see [1]) is domain-representable.) The converse of 3.5 is also false among generalized
ordered spaces, as Examples 2.2, 2.3, and 2.4 show.

Compact Hausdorff spaces can be represented as the space max(P) for someScott domain(P,v),
i.e., a continuous dcpoP with a least element and with the additional property that ifp1, p2 ∈ P have
p1, p2v p3 for somep3∈P, then sup{p1, p2} exists inP (see [11]). It is always possible to add a single
minimal element to any dcpo(Q,�), and one might wonder whether some variation of the construction
in Proposition 3.2 could show that anyČech-complete space can be represented as max(R) for some
Scott domainR. That cannot be done because of another example announced by G.M. Reed in several
talks. He has constructed aČech-complete Moore space that is not the space of maximal elements of
any Scott domain.

Example 3.6 There is a metrizable space X that has a dense subspace Y that is domain-representable,
and yet X is not.

Proof: LetY = {( k
n, 1

n) : k,n ∈ Z andn > 0} and letX = Y∪{(q,0) : q ∈ Q}, and topologizeX as
a subspace of the plane. (This is the space of Exercise 14, page 253, in [2].) ThenY, being a set
of isolated points, is completely metrizable, and is dense inX. But X is not completely metrizable,
because it hasQ as a closed subspace. According to Theorem 1.1,Y is domain-representable, butX is
not. 2

Remark 3.7 It is well-known that open mappings and perfect irreducible mappings preserve the Baire
space property and that perfect mappings do not (e.g., the projectionπ(x,y) = (x,0) with the space
X of Example 3.6 as domain is a perfect mapping that does not preserve the Baire space property).
It would be interesting to know the extent to which various types of mappings preserve the property
of domain-representability. A closely related question is whether the product spaceX×K must be
domain-representable, given thatX is domain-representable andK is a compact Hausdorff space.
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