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Abstract: In this paper we investigate the role of domain representability and Scott-domain representabil-
ity in the class of Moore spaces and the larger class of spaces with a base of countable order. We show, for
example, that in a Moore space, the following are equivalent: domain representability; subcompactness;
the existence of a winning strategy for player α (= the non-empty player) in the strong Choquet game
Ch(X); the existence of a stationary winning strategy for player α in Ch(X); and Rudin completeness. We
note that a metacompact Čech-complete Moore space described by Tall is not Scott-domain representable
and also give an example of Čech-complete separable Moore space that is not co-compact and hence not
Scott-domain representable. We conclude with a list of open questions.
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1 Introduction
To say that a topological space X is domain-representable means that X is homeomorphic to the set of
maximal elements of some continuous dcpo endowed with the relative Scott topology. (Definitions appear
in Section 2.) We now know that domain representability is stronger than the Baire space property (= each
countable intersection of dense open sets is dense) and has close ties with other completeness properties.
For example, complete metric spaces and locally compact Hausdorff spaces are domain-representable
and, more generally, so are Čech-complete spaces [3] and spaces with one of the “Amsterdam properties,”
(regular co-compactness, base-compactness, or subcompactness) [4], [1]. In another direction, Martin
[17] linked domain representability to Choquet’s completeness properties by proving that in any domain
representable space X , Player α has a winning strategy in the strong Choquet game Ch(X), and in [4] we
provided a partial converse by showing that if a space X has a Gδ-diagonal and if player α has a stationary
winning strategy in the strong Choquet game Ch(X), then X must be domain-representable.
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Martin’s result combines with work of Choquet to show that among metrizable spaces, domain repre-
sentability is equivalent to Čech completeness and to complete metrizability. In this paper we study the
role of domain representability in certain generalized metric spaces, namely Moore spaces and the class
of spaces having a base of countable order (BCO) in the sense of Wicke and Worrell [29]. In Section 3,
we show that for BCO spaces, domain representability is equivalent to subcompactness, to the existence
of a monotonically complete BCO, to the existence of a winning strategy for Player α in Choquet’s game
Ch(X), and to the existence of a stationary winning strategy for Player α in Ch(X). Further, we show that
any domain-representable BCO space can be represented as a Gδ-subset of an ideal domain in the sense
of [18].

Because every Moore space has a BCO, the above equivalences also hold for Moore spaces. Further-
more, in the light of Section 3.2.2 in [1], domain representability in a Moore space is equivalent to a Moore
space property known as weak completeness or as Rudin completeness. An example due to Mary Ellen
Rudin [12] shows that weak completeness is, as its name suggests, strictly weaker than the classical com-
pleteness property in Moore spaces, called Moore completeness or simply completeness, and it is known
that among completely regular Moore spaces, Moore completeness is equivalent to Čech-completeness
(see Section 3.2.2 of [1]). Therefore, our results in Section 3 also show that the equivalence of Čech-
completeness and domain representability that holds in metrizable spaces will break down in the wider
class of Moore spaces, with Čech-completeness being strictly stronger than domain-representability.

As it happens, there is a domain-theoretic property that is stronger than domain-representability,
namely Scott-domain-representability. Martin’s results in [17] show that any Scott-domain-representable
Moore space is completely regular and Moore-complete, and hence Čech-complete 1. A question in [19]
asks whether Scott-domain-representability and Moore completeness are equivalent in the class of com-
pletely regular Moore spaces. In Section 4 of this paper we present details of a negative answer to that
question. The results in Section 4 were previously announced by the third author in several domain-theory
conferences, but the details have not been published.

Throughout this paper, all spaces are assumed to be at least T3. Relevant definitions, of which there are
many, appear in Section 2, below. We want to thank Keye Martin and the referee for suggesting numerous
improvements of an earlier draft of our paper.

2 Background
Domain theory: Let (Q,v) be a partially ordered set. A subset E ⊆ Q is directed if for each e1,e2 ∈ E,
some e3 ∈ E has e1,e2 v e3.To say that (Q,v) is a dcpo (= directed-complete-partial-order) means that
every non-empty directed subset E ⊆ Q has a supremum in Q, i.e., that there is an upper bound q ∈ Q
for the set E such that q v q′ for every upper bound q′ ∈ Q of the set E. For a,b ∈ Q we say that a � b
provided that for any directed set E with b v sup(E), some e ∈ E has a v e. The set of all maximal
elements of (Q,v) will be denoted by max(Q). Zorn’s lemma shows that for each a in a dcpo (Q,v),
some b ∈ max(Q) has a v b. To say that a dcpo (Q,v) is continuous means that for each b ∈ Q, the set
⇓(b) = {a ∈ Q : a � b} is directed and has b = sup(⇓(b)). A domain is a continuous dcpo. A domain Q

1Consequently, any Scott-domain-representable metrizable space is completely metrizable, and the authors of [20] con-
jectured that for metrizable spaces, Scott-domain-representability and Čech completeness are equivalent. That conjecture has
recently been proved in [16].
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is said to be an ideal domain if each non-maximal q ∈Q has q� q [18]. Two elements q1,q2 of a domain
Q are said to have a common extension in Q if there is some q ∈ Q with qi v q for i = 1,2. A domain
(Q,v) is a Scott domain if sup({q1,q2}) ∈ Q whenever q1,q2 have a common extension in Q and Q has a
minimal element 2. We say that a set S ⊆ Q is bounded in Q if for some q ∈ Q,s v q for each s ∈ S. In a
Scott domain Q, every nonempty bounded set has a supremum in Q.

For a domain (Q,v), the collection {⇑(q) : q ∈ Q} (where ⇑(q) = {b ∈ Q : q � b}) is a basis for a
topology on Q known as the Scott topology. To say that a space X is domain-representable means that for
some domain (Q,v), X is homeomorphic to the space max(Q) endowed with the relative Scott topology.
In case the domain Q is a Scott-domain, we say that X is Scott-domain representable.

Topological game theory: The Choquet game Ch(X) (sometimes called the “strong Choquet game”) in
a topological space X is an infinite two-person game that begins when Player α specifies the space X in
which the game is to be played. Then Player β responds by choosing a pair (U1,x1) where U1 is open in
X and x1 ∈U1. Player α responds by specifying an open set V1 with x1 ∈V1 ⊆U1. Player β then specifies
a pair (U2,x2) with U2 open and x2 ∈U2 ⊆ V1, and Player α responds by choosing an open set V2 with
x2 ∈V2 ⊆U2. A partial play of Ch(X) is any finite sequence X ,U1,x1,V1,U2,x2,V2, · · · ,Un,xn,Vn in which
xk ∈Vk ⊆Uk for each k ≥ 1, and a play of the game is an infinite sequence X ,U1,x1,V1,U2,x2,V2, · · · with
xn ∈Vn ⊆Un for all n ≥ 1. (Because it will be clear that the game is being played in a given space X , we
will henceforth not mention Player α’s opening move.)

Player α wins the play U1,x1,V1,U2,x2,V2, · · · provided
T
{Vn : n ≥ 1} 6= /0 (equivalently,

T
{Un : n ≥

1} 6= /0). A strategy for Player α is a sequence 〈σn〉 of functions that tell Player α how to specify the set
Vn = σn(U1,x1, · · · ,Un,xn) with xn ∈Vn ⊆Un, and 〈σn〉 is a winning strategy for Player α provided Player
α wins any play of Ch(X) in which the function σn is used by Player α to specify the sets Vn.

Any locally compact Hausdorff space is an example of a space in which Player α has a winning
strategy in the Choquet game. In response to any partial play (U1,x1, · · · ,Un,xn), Player α could use the
rule “Let σn(U1,x1, · · · ,Un,xn) be any open set V with xn ∈V ⊆ cl(V )⊆Un where cl(V ) is compact.” This
certainly gives a winning strategy for Player α in Ch(X), but more is true. Note that the strategy 〈σn〉 in
the locally compact example has the special property that Player α’s response σn(U1,x1, · · · ,Un,xn) really
depends only on Player β’s most recent move (Un,xn) and does not consider the number n or any of the
earlier-chosen sets. Any strategy that depends only on the previous move, and not on any part of the earlier
history of a partial play, is called a stationary strategy. It is easy to see that Player α also has a stationary
winning strategy in the Choquet game Ch(X) provided X is a complete metric space. More generally,
Porada [22] has shown that Player α has a stationary winning strategy in the Choquet game played on any
Čech-complete space, and K. Martin showed in [17] that Player α has a stationary winning strategy in
Ch(X) whenever X is representable using a special kind of domain called a Scott domain (defined above).

Some completeness properties: It is well-known that there are metric spaces that are Baire spaces 3 and yet
their squares are not. On the other hand, it is known that if X is a complete metric space, then the product
space Xκ is a Baire space no matter how large the cardinal κ might be. Over the years, many topological
properties have been isolated to explain that phenomenon, all generalizing the notion of completeness
in a metric space. Prominent among these are the “Amsterdam properties” introduced by deGroot and
his students. The weakest of the Amsterdam properties is subcompactness [10], where we say that a

2The restriction that Q have a minimal element is not a major one because we will focus on the set of maximal elements of
Q. If Q does not already have a minimal elements, we can simply add one.

3i.e., the intersection of countably many dense open subsets of the space is dense in the space
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space X is subcompact if it has a base B of open sets such that
T

F 6= /0 whenever F ⊆ B is a regular
filter base. (Recall that a collection F is a regular filter base if, given F1,F2 ∈ F , some F3 ∈ F has
cl(F3) ⊆ F1 ∩F2.) Such a base is called a subcompact base for X . Another Amsterdam property called
regular co-compactness was introduced in [11]: a space is regularly co-compact if it has a base B of
open sets such that

T
{cl(C) : C ∈ C} 6= /0 whenever C ⊆ B and {cl(C) : C ∈ C} is centered (= has the

finite intersection property). We will use the term regularly co-compact base to describe a base with the
properties in that definition. Clearly, any regularly co-compact space is subcompact. A notion that is
weaker then regular cocompactness is called cocompactness. A topological space X is cocompact if there
is a collection C of closed subsets of X with the properties that (i) given x ∈U where U is open in X , some
C ∈ C has x ∈ Int(C)⊆C ⊆U and (ii) if D ⊆ C is centered, then

T
D 6= /0.

In the next section we describe various completeness properties in Moore spaces and BCO spaces, and
the referee suggested that it would be helpful to readers for us to summarize the relations among the above
completeness properties in completely regular spaces. Obviously Scott-domain representable spaces are
domain representable. Less obvious is that Scott-domain representable spaces are co-compact ([16] and
see Lemma 4.1, below) and that in Scott-domain representable spaces, Player α has a stationary winning
strategy in the strong Choquet game [17]. Regularly cocompact spaces are obviously cocompact (but not
conversely, as can be seen from the Sorgenfrey line [1]) and subcompact. Subcompact spaces are domain
representable, and in a subcompact space Player α has a stationary winning strategy in the strong Choquet
game Čech-complete spaces are domain representable, being Gδ-subsets of compact spaces [3], and in any
Čech-complete space, Player α has a stationary winning strategy in the strong Choquet game [22].

Moore spaces and their completeness conditions: Moore spaces are a classical generalization of metrizable
spaces. A Moore space is a T3-space having a development, i.e., a sequence 〈G(n)〉 of open covers of X
such that for each point x ∈ X , the collection {St(x,G(n)) : n ≥ 1} is a neighborhood base at x. There are
several non-equivalent types of completeness properties in Moore spaces (see Chapter 3 of [1] for details).
One is called “weak completeness” or “Rudin completeness” and is defined as follows: a Moore space is
Rudin complete if it has a development 〈Gn〉 such that

a) Gn+1 ⊆ Gn for each n ≥ 1;

b) if Gn ∈ Gn and cl(Gn+1)⊆ Gn for each n ≥ 1, then
T
{Gn : n ≥ 1} 6= /0.

The development with properties (a) and (b) is usually called a weakly complete development. A stronger
completeness property in Moore spaces is called Moore completeness or simply “completeness,” and re-
quires that there be a development 〈G(n)〉 for X with the property that G(n+1) refines G(n) for all n and
with the property that

T
{Mk : k ≥ 1} 6= /0 whenever 〈Mk〉 is a nested sequence of nonempty closed sets

such that the set Mk is contained in some member of G(k). It is known (see Section 3.2.2 of [1]) that weak
completeness is equivalent to (countable) subcompactness in a Moore space, while Moore completeness
is equivalent to (countable) Čech-completeness.

BCO spaces and their completeness conditions: An even broader class than Moore spaces is the class of
BCO-spaces [29]. BCO abbreviates “base of countable order,” where we say that a base B for a space is a
base of countable order if any sequence 〈Bn〉 of distinct members of B with Bn+1 ⊆ Bn is a local base at
any point of the set S =

T
{Bn : n≥ 1}. (Note that the set S might be empty.) An equivalent description of

BCO spaces is given in [29]:
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Theorem 2.1 A T3-space X has a BCO if and only if there is a sequence Bn of bases for X such that
whenever the sets Bn ∈ Bn have p ∈ Bn+1 ⊆ Bn, then {Bn : n ≥ 1} is a local base at p.

The key difference between the characterization given in Theorem 2.1 and in the original definition is that
the sets Bn in Theorem 2.1 are not required to be distinct.

There is a completeness condition associated with BCO-theory: a base B for a T3-space is a monoton-
ically complete BCO if for any decreasing sequence 〈Bn〉 of distinct members of B with cl(Bn+1) ⊆ Bn,
then the set T =

T
{Bn : n ≥ 1} 6= /0 and the collection {Bn : n ≥ 1} is a neighborhood base at every point

of T (so that the set T must be a singleton). Another approach to BCO theory (using sieves of open sets)
was introduced in [5], and we will use it in Section 3, below. Gruenhage [15] gives a particularly clear
proof of the sieve characterization of spaces with BCOs. Minor modifications of that proof give a related
characterization of spaces with a monotonically complete BCO that we will need in the next section.

Theorem 2.2 A T3 space (X ,τ) has a monotonically complete base of countable order if and only if there
is a tree (T,v) with levels T1,T2, · · · and a function G : T → τ−{ /0} such that:

a) {G(t) : t ∈ T1} covers X;

b) if t ∈ Tn then G(t) =
S
{G(t ′) : t ′ ∈ Tn+1 and t v t ′};

c) if t1, t2, · · · is a branch of T , then the set S =
T
{G(tn) : n ≥ 1} 6= /0 and {G(tn) : n ≥ 1} is a local

base at each point of S. 2

3 Domain-representability in BCO-spaces
As noted in the Introduction, among metrizable spaces, domain representability, the existence of a winning
strategy for Player α in Ch(X), and Čech completeness are mutually equivalent, while in Moore spaces,
they are not. Our goal is to study the place of domain representability in the hierarchy of completeness
properties in the even larger class of BCO spaces. In this section we present a sequence of lemmas that
prove the following result.

Theorem 3.1 Let X be a T3-space having a base of countable order. Then the following are equivalent:

a) X has a monotonically complete BCO;

b) X is subcompact;

c) Player α has a stationary winning strategy in the Choquet game Ch(X);

d) Player α has a winning strategy in the Choquet game Ch(X);

e) X is domain-representable.

In addition, for any domain-representable BCO space X, there is an ideal domain Q such that max(Q) is
homeomorphic to X and is a Gδ-subset of Q with the Scott topology.
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Parts of Theorem 3.1 are already known. The equivalence of a) and b) is due to Wicke and Worrell
[28]. The implication b) ⇒ e) is a special case of Theorem 2.1 of [4]. Colleagues have told us that the
rest of our equivalences can be obtained using an approach similar to Topsoe’s characterization of sieve-
completeness using a variant of the game Ch(X). Our goal in this section is to give a more self-contained
proof of Theorem 3.1.

Outline of Proof of Theorem 3.1: Lemma 3.2 shows that a)⇒ b) in any T3-space and Lemma 3.3 shows
that b) ⇒ c) in any T3-space. Clearly c) ⇒ d) in any space. In Lemma 3.4 we use a result of Chaber,
Choban, and Nagami [5] to prove that d)⇒ a) in any T3-space having a BCO. Thus, items a) through d)
are equivalent in any T3-space having a BCO. To complete the proof of Theorem 3.1, we recall Martin’s
result [17] that e)⇒ d) in any space, and we use Lemma 3.5 to show that a)⇒ e). The Theorem’s final
assertion about ideal domains and Gδ-subsets is proved as part of Lemma 3.5. 2

Lemma 3.2 In a T3-space X, any monotonically complete BCO is a subcompact base.

Proof: Let B be a monotonically complete BCO for the T3-space X , and suppose that F ⊆ B is a regular
filter base. We must show that

T
F 6= /0. If F has a minimal element (with respect to set-inclusion), there

is nothing to prove, so suppose we can choose distinct Bn ∈ F with cl(Bn+1)⊆ Bn. Because the sequence
Bn was chosen from a monotonically complete BCO, we know that the set S =

T
{Bn : n≥ 1} 6= /0 and that

{Bn : n≥ 1} is a local base at each point of S. Because X is T1 it follows that S is a singleton, say S = {q}
for some q ∈ X . If q 6∈ cl(B) for some B ∈ F , then Bn∩B = /0 for some n and that is impossible because
B,Bn ∈ F guarantees that some B′ ∈ F has /0 6= B′ ⊆ Bn∩B. Hence q ∈

T
F . 2

Lemma 3.3 If X is a subcompact T3-space, then Player α has a winning stationary strategy in the Choquet
game Ch(X).

Proof: Let B be a subcompact base for X . Given any pair (U,x) with U open and x ∈ U , let σ(U,x)
be any member B ∈ B with x ∈ B ⊆ cl(B) ⊆ U . If U1,x1,V1,U2,x2,V2, · · · is a play of Ch(X) in which
Vn = σ(Un,xn), then {Vn : n≥ 1} is a regular filter base in B so that

T
{Vn : n≥ 1} 6= /0, guaranteeing a win

for Player α. 2

Lemma 3.4 Suppose that X is a T3-space with a base of countable order. If Player α has a winning
strategy in the Choquet game Ch(X), then X has a monotonically complete base of countable order.

Proof: Let 〈Bn〉 be a sequence of bases for X as described in Theorem 2.1 and let 〈σn〉 be a winning
strategy for Player α in Ch(X). Define L1 = {(U1,x1) : x1 ∈U1 ∈B1} and for (U1,x1)∈ L1 let G(U1,x1) =
σ1(U1,x1). Let

L2 = {(U1,x1,U2,x2) : (U1,x1) ∈ L1, x2 ∈U2 ⊆ G(U1,x1) and U2 ∈ B2}

and for (U1,x1,U2,x2) ∈ L2 let G(U1,x1,U2,x2) = σ2(U1,x1,U2,x2). In general, given Lk and G defined
on Lk, we let Lk+1 be the collection of all (U1,x1, · · · ,Uk,xk,Uk+1,xk+1) with

(U1,x1, · · · ,Uk,xk) ∈ Lk, xk+1 ∈Uk+1 ⊆ G(U1,x1, · · · ,Uk,xk) and Uk+1 ∈ Bk+1.

For (U1,x1, · · · ,Uk,xk,Uk+1,xk+1) ∈ Lk+1 we let

G(U1,x1, · · · ,Uk,xk,Uk+1,xk+1) = σk+1(U1,x1, · · · ,Uk,xk,Uk+1,xk+1).
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Now let T =
S
{Lk : k ≥ 1} and define a relation v on T by the rule that if t j = (U1,x1, · · · ,U j,x j) ∈ L j

and tk = (V1,y1, · · · ,Vk,yk) ∈ Lk, then

t j v tk if and only if j ≤ k and (Ui,xi) = (Vi,yi) for 1 ≤ i ≤ j.

(In other words, v is end-extension.) Then (T,v) is a tree and if t ∈ Tk, then the function G satisfies
G(t) =

S
{G(t ′) : t ′ ∈ Tk+1 and t v t ′}. To complete the proof, suppose that ti ∈ Li with ti v ti+1 for

each i ≥ 1, that is, suppose 〈ti〉 is a branch of T . Then there is a sequence of pairs (Ui,xi) such that
ti = (U1,x1, · · · ,Ui,xi). Furthermore if Wi = G(U1,x1, · · · ,Ui,xi) then Wi = σi(U1,x1, · · · ,Ui,xi) = G(ti) so
that U1,x1,W1,U2,x2,W2, · · · is a play of the game Ch(X) in which Player α has used the winning strategy
〈σk〉. Consequently the set S =

T
{Wi : i≥ 1}=

T
{G(ti) : i≥ 1} 6= /0. Let q ∈ S. Because Wi+1 ⊆Ui ⊆Wi

we know that q ∈Ui for each i≥ 1 so that because Ui ∈ Bi, we know that {Ui : i≥ 1} must be a local base
at q (remember that 〈Bi〉 was chosen using Theorem 2.1). Hence {Wi = G(ti) : i ≥ 1} is also a local base
at q. Now Theorem 2.2 completes the proof. 2

Lemma 3.5 Suppose X is a T3-space with a monotonically complete BCO. Then there is a domain Q such
that max(Q) is a Gδ-subset of Q (in the Scott topology) and X is homeomorphic to max(Q). In addition,
in the terminology of [18], Q is an ideal domain.

Proof: Because X has a monotonically complete BCO (as defined in Section 2), X has a λ-base, i.e., a base
B such that if 〈Bn〉 is a strictly decreasing sequence of members of B , then the set T =

T
{cl(Bn) : n ≥ 1}

is non-empty, and if x ∈ T and if x ∈U where U is open in X , some Bn has Bn ⊆U . Because X is T3, it
follows that the set T is a singleton.

Let Q0 = {(B,n) : B ∈ B, |B|> 1,n ≥ 1} and let Qω = {B(x) : x ∈ X} where B(x) = {B ∈ B : x ∈ B}.
For q1,q2 ∈ Q = Q0∪Qω, we define q1 v q2 if and only if one of the following holds:

a) q1 = q2;

b) qi = (Bi,ni) ∈ Q0 with n1 < n2, cl(B2)⊆ B1 and B1 6= B2;

c) q1 = (B1,n1) ∈ Q0, q2 = B(y) ∈ Qω, and B1 ∈ B(y).

Then v is a partial order on Q, and max(Q) = Qω. Note that the following prohibited relationship never
occurs:

(*) q1 v q2 where q1 ∈ Qω and q2 ∈ Q0.

The rest of the proof involves verifying a sequence of claims. If q is any ordered pair, then for i =
1,2, πi(q) denotes the ith coordinate of q.

Claim 1: (Q,v) is a dcpo. It will be enough to show that if E is a directed subset of Q that contains
no maximal element of itself, and if F (E) = {B ∈ B : ∃e ∈ E with π1(e) ⊆ B}, then F (E) ∈ Qω and
sup(E) = F (E). Because E contains no maximal element of itself, E ∩Qω = /0 so that E ⊆ Q0. Choose
distinct ei ∈ E with ei v ei+1 for each i and write ei = (Bi,ni). Then the sets Bi are distinct, cl(Bi+1)⊆ Bi
and ni < ni+1. Because B is a λ-base for X , we know that for some point x ∈ X , x ∈

T
{cl(Bi) : i ≥ 1}=T

{Bi : i ≥ 1} and that {Bi : i ≥ 1} is a local base at x.

We claim that x ∈
T
{π1(e) : e ∈ E}. If not, choose ê1 ∈ E with x 6∈ π1(ê1), and choose ê2 ∈ E−{ê1}

with ê1 v ê2. Then x 6∈ cl(π1(ê2)) so that for some ei, π1(ei)∩π1(ê1) = /0. That is impossible because
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ei and ê2 both belong to the directed set E. Therefore,
T
{π1(e) : e ∈ E} = {x}. Consequently, F (E) =

B(x) ∈ Qω. Once we know that F (E) ∈ Q, it is clear that F (E) = sup(E). Thus, Claim 1 holds.

Claim 2: If q ∈ Q0 then q � q. Write q = (B0,n0) and suppose that E is a directed set with (B0,n0) v
sup(E). If E contains a maximal element of itself, there is nothing to prove, so assume that no member of
E is maximal in E. Then (as in the proof of Claim 1) we choose distinct ei = (Bi,ni) ∈ E with ei v ei+1,
find a point x ∈

T
{π1(e) : e ∈ E} such that {π1(ei) : i≥ 1} is a local base at x and sup(E) = {B ∈ B : ∃e ∈

E with π1(e)⊆B}= B(x). From (B0,n0)vB(x) we know that x∈B0 so that for some ei ∈E, π1(ei)⊆B0.
Because 〈π2(e j)〉 is a strictly increasing sequence of natural numbers, we may choose j > i with n j > n0.
Then (B0,n0)v e j ∈ E as required to prove Claim 2.

Claim 3: If x is a non-isolated point of X , then B(x) � B(x) is false. Let E = {(B,n) : x ∈ B ∈ B}.
Because x is not isolated and X is T3, the set E is directed by v and no member of E is maximal in E.
Consequently sup(E) = B(x). However, no member (B,n) ∈ E has B(x) v (B,n) because that would
involve the relationship prohibited in (*). Consequently, B(x)� B(x) fails.

Claim 4: If x is an isolated point of X , then B(x)� B(x). Suppose E is a nonempty directed subset of Q
with B(x) v sup(E). Then sup(E) = B(x) because B(x) is a maximal element of Q. We will show that
some e0 ∈ E has B(x) v e0. If E contains a maximal element of itself, we may let e0 be that maximal
element and we have B(x) v sup(E) = e0 ∈ E, as required. Consider the case where E does not contain
a maximal element of itself. Then E ⊆ Q0 and, from Claim 1, we know that sup(E) = {B ∈ B : ∃e ∈
Ewith π1(e)⊆ B}. Because x is isolated, we have {x} ∈ B(x) = sup(E) so that some e = (B,n) ∈ E ⊆Q0
has B ⊆ {x}. But then |B| = 1 and that is prohibited by our definition of Q0. Consequently, the second
case cannot occur and the proof of Claim 4 is complete.

Claim 5: (Q,v) is continuous. Let q ∈ Q0. Then Claim 2 shows that q ∈ ⇓(q) so that q is a common
extension of any two members of ⇓(q) and q = sup(⇓(q)). The same argument applies if q = B(x)
where x is isolated. Finally suppose q = B(x) where x is not isolated. Then Claim 3 shows that ⇓(q) ⊆
{(B,n) ∈ Q0 : (B,n)v q} and if (B,n) ∈ Q0 has (B,n)v q then Claim 2 gives (B,n)� (B,n)v q so that
(B,n)∈ ⇓(q). Therefore ⇓(q) = {(B,n)∈Q0 : x ∈ B}. To see that ⇓(q) is directed, suppose (Bi,ni)∈ ⇓(q)
for i = 1,2. Then x ∈ B1 ∩B2 so that because x is not isolated, there is some y ∈ (B1 ∩B2)−{x} and
then some B3 ∈ B with x ∈ B)3 ⊆ cl(B3) ⊆ (B1∩B2)−{y}. Let n3 = n1 + n2. Then (B3,n3) ∈ ⇓(q) and
(B1,ni) v (B3,n3) for i = 1,2. Hence ⇓(q) is directed. Then, because ⇓(q) is a directed subset of Q0,
Claim 1 shows that

sup(⇓(q)) = {C ∈ B : ∃(B,n) ∈ ⇓(q) with B ⊆C}= {C ∈ B : ∃B ∈ B with B ⊆C}= B(x) = q,

as required to complete the proof of Claim 5.

Claim 6: The function h : X → Q given by h(x) = B(x) is a homeomorphism from X onto max(Q) where
the latter space carries the relative Scott topology. This verification is routine.

Claim 7: The set max(Q) is a Gδ subset of Q. For each n ≥ 1, the set Un =
S
{⇑((B,n)) : (B,n) ∈ Q0} is

an open subset of Q, and max(X) =
T
{Un : n ≥ 1}.

Claim 8: (Q,v) is an ideal domain in the sense of [18] because Claim 2 shows that every element q ∈
Q−max(Q) has q � q, so that each member of Q is either maximal or compact (in the sense of domain
theory). 2

Because every Moore space is T3 and has a BCO, Theorem 3.1 has the following consequence for
Moore spaces.
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Corollary 3.6 The following properties of a Moore space X are equivalent:

a) X has a monotonically complete BCO;

b) X is subcompact;

c) Player α has a stationary winning strategy in the Choquet game Ch(X);

d) Player α has a winning strategy in the game Ch(X);

e) X is domain-representable;

f) X is weakly complete.

In addition, if X is a domain-representable Moore space, then there is an ideal domain Q with X homeo-
morphic to max(Q) and max(Q) a Gδ-subset of Q.

Proof: Because a Moore space is T3 and has a BCO, Theorem 3.1 shows that properties (a) through (e)
are equivalent, and the domain Q constructed in 3.1 is an ideal domain with max(Q) a Gδ-subset of Q. In
[1], weak completeness is called “Rudin completeness” and Section 3.2.2 of that paper shows that weak
completeness of a Moore space is equivalent to subcompactness of a Moore space. 2

Choquet [6] proved that, in a metric space, Player α has a winning strategy if and only if Player α

has a stationary winning strategy, and Theorem 3.1 extends that result to a much larger class of spaces. It
would be interesting to know the extent to which Theorem 3.1 could be generalized, by finding examples
of spaces in which Player α has a winning strategy in Ch(X), but not a stationary winning strategy. The
literature is somewhat confusing at this point. A theorem of Galvin and Telgarsky [14] shows that in the
game Ch(X), Player I has a winning strategy if and only if Player I has a stationary winning strategy. To
understand how that theorem fits with our question, recall that Player I in [14] is the player aiming for an
empty intersection, so their Player I is our Player β.

As noted in Section 2, Martin [17] proved that if X is representable by a Scott domain, then Player α

has a stationary winning strategy in the strong Choquet game on X . Our Corollary 3.6, combined with
examples in the next section (of complete Moore spaces that are not Scott-domain representable) provides
examples showing the converse of Martin’s theorem is false.

4 Scott-domain representable Moore spaces

The previous section ended by showing that a Moore space X is homeomorphic to max(Q) for some
continuous dcpo (Q,v) if and only if X is weakly complete (also called “Rudin complete”). As noted
in Section 2, there is a more restrictive type of domain, called a Scott domain, and a more restrictive
type of completeness in Moore spaces, called Moore completeness. Martin [17] proved that any Scott-
domain-representable Moore space must be Moore complete and asked whether the converse is true. The
goal of this section is to answer that question in the negative and to present examples of Scott-domain-
representable Moore spaces of various types. The results of this section were discussed by the third author
in a series of conference talks over several years, but details have not been published.
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To see that Scott-domain-representability is more restrictive than domain-representability, recall that
Scott-domain representable spaces are all completely regular, while there are many domain-representable
spaces that are not even regular. (Consequently, Martin’s question, above, about Moore-complete Moore
spaces must be restricted to completely regular spaces, because there are well-known examples of regular,
Moore-complete Moore spaces that are not completely regular [30].) The following lemma, probably due
to Kopperman, Kunzi, and Waszkiewicz [16], states another important property of Scott-domain repre-
sentable spaces.

Lemma 4.1 Suppose S is a Scott domain. Let X = max(S). Then X is cocompact and the collection
C := {↑(s)∩X : s ∈ S} has the following properties:

a) members of C are relatively closed subsets of X

b) if U is an open subset of X and z ∈U then for some C ∈ C we have z ∈ IntX(C)⊆C ⊆U

c) if D ⊆ C is a centered collection (i.e., has the finite intersection property), then
T

D 6= /0.

Finding a completely regular, Moore-complete (equivalently, Čech-complete) Moore space that cannot
be represented as max(D) for any Scott domain D is our next goal.

Example 4.2 There is a completely regular, metacompact, non-metrizable, Moore-complete Moore space
T that is not Scott-domain representable.

Proof: Tall introduced a machine for constructing non-metrizable metacompact Moore spaces and used it,
in [24], to construct metacompact Moore spaces that are Čech-complete and yet not co-compact (which
was defined in Section 2).

To describe Tall’s spaces, let Y be any uncountable subset of R and let D = {(p,q) ∈Q×Q : q > 0}.
For each y ∈ Y choose a sequence 〈d(y,k)〉 of points of D whose Euclidean distance from (y,0) satisfies
||(y,0)−d(y,k)||< 1

k . Let F be the collection of all nonempty finite subsets of Y , and let D∗ = D×F . Let
T = (Y ×{0})∪D∗. Topologize T in such a way that each point (d,F) ∈ D∗ is isolated, and so that basic
neighborhoods of the point (y,0) ∈ T have the form N(y,k) = {(y,0)}∪{(d(y, j),F) : j ≥ k and y ∈ F}.
Let N (k) = {{(d,F)} : (d,F) ∈D∗}∪{N(y,k) : y ∈Y}. Then 〈N (k)〉 is a Moore-complete development
for T and N (k) is point-finite. In fact, the only member of N (k) that contains (y,0) ∈ T is the set N(y,k).
The space T is metacompact [24].

The rest of this proof is devoted to showing that no Scott-domain Q has max(Q) homeomorphic to T .
We argue by contradiction: we will suppose that there is a Scott domain (Q,v) with T homeomorphic to
max(Q) (we will abuse notation and write T = max(Q)) and we will show that there is a base B for T
with respect to which T is regularly co-compact, contrary to the main result in [24].

Suppose (Q,v) is a Scott domain that represents the space T . Apply Lemma 4.1 to obtain the collec-
tion C = {T ∩↑(q) : q ∈ Q}. Let

B := {C ∈ C : for some y ∈ Y,y ∈ IntT (C)⊆C ⊆ N(y,1)}∪{{x} : x is isolated in T}.

Observe that every point of N(y,1)−{y} is isolated in T . Consequently, each member of B is open in T
(as well as closed in T ). But then Lemma 4.1 shows that B is a regularly cocompact base for T , and that
is impossible. 2
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The space described in Example 4.2 is not normal. Under MA plus the negation of the Continuum
Hypothesis, if one begins with a Q-set Y , then the resulting space is a normal, Čech-complete Moore
space that is not Scott-domain representable.

The next result in this section provides another example of a Čech-complete Moore space that is not
Scott-domain representable. Unlike the previous example (which was metacompact but not separable),
this space is separable but not metacompact.

Example 4.3 There is a completely regular, Čech-complete, separable Moore space that is not cocompact
and hence not Scott-domain representable.

Proof: Consider ωω, the set of all functions from ω to itself. For f ,g ∈ω ω, define f ≤∗ g to mean that for
some n ∈ ω, f (m) ≤ g(m) for all m ≥ n. A set F ⊆ω ω is bounded in ωω if there is some g with f ≤∗ g
for all f ∈ F . There exist unbounded subsets of ωω, and any unbounded set F has ω1 ≤ |F | ≤ 2ω. If F
is unbounded and F =

S
{Fn : n ≥ 1} then one of the sets Fn is also unbounded in ωω. For a discussion

of unbounded sets, see [7]. For any function f ∈ ωω, define f̂ (0) = f (0) and for n ≥ 1 define f̂ (n) =
1+max{ f (n), f̂ (n−1)}. Then f̂ is (strictly) increasing and if F is unbounded, then so is { f̂ : f ∈ F}.

Fix any unbounded subset F ⊆ω ω of increasing functions and choose any set X of irrational numbers
in [0,1] with |X | ≥ |F |. Then we may index F using X as F = { fx : x ∈ X} with repetitions allowed, if
necessary.

Let D0 = {0,1} and in general Dn = { j
2n : 0 ≤ j ≤ 2n}. For each x ∈ X and each n < ω, there are

consecutive points L(x,n),R(x,n) ∈ Dn with L(x,n) < x < R(x,n).

We split each x∈X into two points xL and xR which we think of as being located on the real line exactly
where x was located, with xL < xR. (Technically, we could use the lexicographic product X ×{−1,1} and
let xL = (x,−1),xR = (x,1).)

Let Z = {xs : s ∈ {L,R},x ∈ X}∪{(d,2−k, j) : k < ω,d ∈ Dk, j < ω}. We topologize Z by isolating
every point (d,2−k, j) and by using the sets

Bn(xL) = {xl}∪{(L(x,k),2−k, j) : k ≥ n, j ≥ fx(k)}

and
Bn(xR) = {xR}∪{(R(x,k),2−k, j) : k ≥ n, j ≥ fx(k))}

as basic neighborhoods of the points xL and xR respectively. It is easy to see that this topology makes Z
into a separable Moore space that is Moore-complete and hence Čech complete.

For contradiction, suppose that Z is co-compact with respect to some collection C of closed sets (i.e.,
C has properties a), b), and c) in Lemma 4.1). For each x ∈ X choose sets G(x,L),G(x,R) ∈ C with

xL ∈ IntZ(G(x,L))⊆ G(x,L)⊆ B1(xL)

and
xR ∈ IntZ(G(x,R))⊆ G(x,R)⊆ B1(xR).

There are integers j,k with B j(xL)⊆ G(x,L)⊆ B1(xL) and Bk(xR)⊆ G(x,R)⊆ B1(xR). Hence there is an
integer n(x) = j + k with

Bn(x)(xL)⊆ G(x,L)⊆ B1(xL)
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and
Bn(x)(xR)⊆ G(x,R)⊆ B1(xR).

Define Xk = {x∈ X : n(x) = k} and Fk = { fx : x∈ Xk}. Then X =
S
{Xk : k < ω} so that F =

S
{Fk : k < ω}.

Consequently, there is some n0 < ω such that the set Fn0 is unbounded. Then there is some m > n0 (in fact,
infinitely many) with the property that { fx(m) : x ∈ Xn0} is an unbounded set of positive integers. Choose
xi ∈ Xn0 with the property that fxi(m) > i. Observe that

(*) if S is any infinite subset of {xi : i < ω}, then { fs(m) : s∈ S} is an unbounded set of positive integers.

This fact will be needed in the proof of the second claim, below.

Because the set Dm = { j
2m : 0 ≤ j ≤ 2m} is finite, there are consecutive members e < e′ of Dm with

the property that the set W = [e,e′]∩{xi : i < ω} is infinite. Consider the sets Dm+1,Dm+2, · · ·. There is
a first M > m such that DM has consecutive points a < b < c such that both W ∩ [a,b] and W ∩ [b,c] are
nonempty and one is infinite. Define

G = {G(x,R) : x ∈W ∩ [a,b]}∪{G(y,L) : y ∈W ∩ [b,c]}.

Then G ⊆ C .

For the rest of the proof, assume that W ∩ [a,b] is infinite and W ∩ [b,c] 6= /0. The other case is analo-
gous. Because W ⊆ Xn0 , we have the relations

Bn0(xR)⊆ G(x,R)⊆ B1(xR) for each x ∈W ∩ [a,b]

and
Bn0(yL)⊆ G(y,L)⊆ B1(yL) for each y ∈W ∩ [b,c].

Claim 1: The collection B = {Bn0(xR) : x ∈W ∩ [a,b]}∪{Bn0(yL) : y ∈W ∩ [b,c]} is centered (= has the
finite intersection property) and therefore so is G . Recall that a < b < c are consecutive points of DM.
Therefore if x ∈W ∩ [a,b] and y ∈W ∩ [b,c] then R(x,M) = b = L(y,M). Because M > n0 it follows that
if x ∈W ∩ [a,b], the set Bn0(xR) contains all points (b,2−M, j) for j > fx(M). Similarly, if y ∈W ∩ [b,c],
the set Bn0(yL) contains all points (b,2−M, j) for j > fy(M). Provided we consider only a finite number
of points x ∈ W ∩ [a,b] and only a finite number of points y ∈ W ∩ [b,c] we obtain points (b,2−M, j)
that belong to each of finitely many sets Bn0(xR) and Bn0(yL). Therefore the collection B is centered, as
claimed. Hence so is G .

Claim 2: The collection B∗ = {B1(xR) : x ∈ W ∩ [a,b]} ∪ {B1(yL) : y ∈ W ∩ [b,c]} has
T

B∗ = /0 and
therefore

T
G = /0. For contradiction, suppose that

T
B∗ 6= /0. Observe that no point xR or xL belongs toT

B∗ so that some point of the form (d,2−k, j) is in
T

B∗. Then d ∈ Dk.

Either k < M or k ≥ M. Suppose k < M. The definition of M guarantees that there are consecutive
points u < v of Dk with W ⊆ [u,v]. Choose x ∈W ∩ [a,b] and y ∈W ∩ [b,c]. Then x,y ∈ [u,v] so that
R(x,k) = v and L(y,k) = u. However, (d,2−k, j) ∈ B1(xR) so that d = R(x,k) and (d,2−k, j) ∈ B1(yR) so
that d = L(y,k) showing that u = v, which is false. Therefore k < M is impossible. Next consider the case
where k ≥ M. For each x ∈W ∩ [a,b] the fact that (d,2−k, j) ∈ B1(xR) guarantees that d = R(x,k) and
j ≥ fx(k)≥ fx(M)≥ fx(m) (because each fx is increasing). Because the set W ∩ [a,b] is an infinite subset
of {xi : i < ω}, it follows from assertion (*) above that { fx(m) : x ∈W ∩ [a,b]} is an unbounded set of
positive integers, and hence so is { fx(k) : x ∈W ∩ [a,b]}. But that is false, because fx(k)≤ j.
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Claims 1 and 2 show that the subcollection G of C is centered and has empty intersection. Now apply
Lemma 4.1 to conclude that Z is not Scott-domain representable. 2

Clearly one can obtain separable Moore spaces with additional special properties related to normality
by carefully choosing the set X in Example 4.3. In [13], it is shown that there is a model of set theory in
which there exists a Q-set concentrated on the rationals. Hence, in this model there exists a Q-set Y and a
non λ-set of the same cardinality κ. The existence of the non λ-set implies there exists an unbounded set
of functions F from ω to ω of cardinality κ. Now, if we use the set Y instead of X in Example 4.3, in a
manner similar to that of the examples in [23], the resulting space is a consistent example of a countably
paracompact, non-normal, separable, Čech-complete Moore space that is not Scott-domain representable.
However, in [26] Fleissner announced that under the continuum hypothesis, each countably paracompact,
separable Moore space is metrizable. Hence under CH, each countably paracompact, separable, Čech-
complete Moore space is Scott-domain representable. Thus, we have

Corollary 4.4 The statement that each countably paracompact, separable, Čech-complete Moore space
is Scott-domain representable is independent of and consistent with ZFC.2

We close this section by showing that many of the classical examples in Moore space theory are Scott-
domain representable.

Proposition 4.5 Suppose X is a Moore space that can be written as X = D∪K where D is a closed,
discrete subset of X and each point of K is isolated. Suppose that for each x ∈D there is an open set U(x)
such that

a) U(x)∩D = cl(U(x)∩D = {x}, and

b) if x and y are distinct points of D, then U(x)∩U(y) is finite.

Then X is representable as max(D) where D is an algebraic Scott domain.

Proof: Using the sets U(x) we can find a development G(n) = {g(n,x) : x ∈ X} for X such that

1)
T
{

S
{g(n,x) : x ∈ D} : n ≥ 1}= D

2) if x ∈ K then g(n,x) = {x} for each n ≥ 1;

3) for each x and each n, x ∈ g(n,x)⊆U(x);

4) for each m,n ≥ 1, if x 6= y are points of D, then g(m,x)∩g(n,y) is finite.

For each n ≥ 1, let

Pn = {(gn(x),n) : x ∈ X}∪{(F,n) : F ⊆ K, |F |< ω and F ⊆ g(n,x) for some x ∈ X}.

Let Q0 ==
S
{Pn : n ≥ 1} and Qω = X ×{ω}, and Q = Q0∪Qω. For q1,q2 ∈ Q define q1 v q2 to mean

that one of the following holds:

i) q1 = q2;
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ii) q1 = (r,m) ∈ Pm and q2 = (s,n) ∈ Pn with s ⊆ r and n ≤ m;

iii) q1 = (r,n) ∈ Pn and q2 = (x,ω) with x ∈ X , and x ∈ r.

Then v is a partial order on Q, and max(Q) = {(x,ω) : x ∈ X}.

Consider any non-empty directed subset E ⊆ Q that contains no maximal element of itself. Then E ⊆ Q0
and either

a) there is some x ∈ K such that all but finitely many elements of E are of the form ({x},n) for n < ω;
or

b) there is some x ∈ D such that E ⊆ {g(n,x) : n ≥ 1}.

In either case, sup(E) = (x,ω) ∈ Qω. Consequently, Q is a dcpo.

Given that any directed subset E ⊆ Q either contains a maximal elements of itself, or else satisfies (a)
or (b), it is easy to prove that if q ∈Q0, then q� q and that if (x,ω) ∈Qω then R(x,ω)� (x,ω) is false. It
follows that for any q ∈Q, ⇓(q) = {p ∈Q0 : pv q} so that ⇓(q) is directed and has q as its supremum, so
that Q is a continuous dcpo. Next, observe that if two non-maximal elements qi = (Ri,ni) ∈Q0 for i = 1,2
have a common extension in Q, then (R1 ∩R2,max(n1,n2)) ∈ Q is the supremum of the set {q1,q2}. It
follows that Q is a Scott domain. Finally, note that max(Q) = Qω and the function h(x) = (x,ω) is a
homeomorphism from X onto max(Q), so the proof is complete. 2

Example 4.6 Isbell’s space Ψ [9] is a Moore space that is non-metrizable, pseudo-compact, Moore-
complete, and separable, and is Scott-domain representable.

Proof: Neighborhoods of non-isolated points in Ψ are constructed using members of a maximal almost-
disjoint family of subsets of ω. Hence Proposition 4.5 shows that Ψ is Scott-domain-representable. (Alter-
natively, note that Ψ is a locally compact Hausdorff space, and that any locally compact Hausdorff space
is Scott-domain-representable.) 2

Example 4.7 Heath’s V-space is a non-metrizable, metacompact Moore space that is homeomorphic to
the space of maximal elements of some Scott domain.

Proof: Heath’s V-space is the set X = R× [0,∞) topologized in such a way that each point (x, t) with t > 0
is isolated and such that the collection V (x) = {V (x,k) : k ≥ 1} is a neighborhood base at (x,0), where
V (x,k) = {(y, t) ∈ X : t =±(y−x)≤ 1

k}. Geometrically, the set V (x,k) is a letter V that touches the x-axis
only at (x,0) and whose arms are parts of ±45-degree lines through (x,0). It is easy to see that X is a
non-metrizable, metacompact Moore space and that the space satisfies the hypotheses of Proposition 4.5.

Remark 4.8 We note that if there is a Q-set S ⊆ R and if we use only those points (x,0) for x ∈ S, then
the resulting Heath V -space is non-metrizable, normal, metacompact, and Scott-domain-representable.

Remark 4.9 In studying Moore spaces that are regularly co-compact or Scott-domain-representable, it is
important to realize that such a space can have one base B that is regularly co-compact and also another
base C with the property that no subcollection C ′ ⊆ C can be a regularly co-compact base for the space.
An example of this type appears in [2].
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5 Open Questions
Many questions remain open about the relation between domain-representability and previously defined
types of Baire-category completeness.

Question 5.1 Find an example of a T3-space that is domain-representable but not subcompact. (In the
light of our results in Section 3, such a space cannot be a Moore space, and cannot have a BCO.)

Question 5.2 Find an example of a T3, domain-representable space X such that Player α does not have
a stationary winning strategy in the Choquet game Ch(X) (even though Player α would have a winning
non-stationary strategy in Ch(X) in the light of Martin’s results in [17]). (We remark that the paper of
Galvin and Telgarsky [14] did not settle this question, because their Player I is our player β.)

Question 5.3 Find an example of a T3-space X in which Player α has a stationary winning strategy in the
Choquet game Ch(X) and yet X is not domain representable.

Question 5.4 Characterize Scott-domain representability in the class of Moore spaces. (Kopperman,
Kunzi, and Waszkiewicz [16] have characterized Scott-domain representability among completely regular
spaces using a variant of de Groot’s co-compactness, and Miškin [21] has characterized related properties
(regular co-compactness and base-compactness) in Moore spaces, but we are not aware of any Moore-
space characterization of Scott-domain representability.)

Question 5.5 In ZFC, is it true that every normal, separable Čech-complete Moore space must be Scott-
domain-representable? (Compare Corollary 4.4.)
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