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1 Introduction

In his paper on spaces with a flexible diagonal [1], A.V. Arhangel’skii defined that a space X is a rotoid if
there is a special point e ∈ X and a homeomorphism F from X2 onto itself with the properties:

(i) F (x, x) = (x, e) for all x ∈ X, and

(ii) F (e, x) = (e, x) for all x ∈ X.

The homeomorphism F can be thought of as rotating the diagonal ∆ := {(x, x) : x ∈ X} onto the
“horizontal” axis X × {e} while mapping the“vertical” axis {e} × X of X2 identically onto itself. If it
happens that every point of X can be used as the point e, then X is called a strong rotoid. Clearly, any
homogeneous rotoid is a strong rotoid.

Rotoids are one of several recent generalizations to the category of topological spaces of properties of
topological groups. It is easy to see that any topological group (G, ∗) is a rotoid – let e be the multiplicative
identity of G and define the function F (x, y) = (x, x−1 ∗ y) – and previous research [5] has shown that
theorems for topological groups can sometimes be proved for more general classes of spaces. For example,
rectifiable spaces (defined in Section 3, below) are another recent generalization of topological groups and
Gulko [5] has proved that two classical results from group theory – that first countable topological groups
and topological groups of countable π-character are metrizable – must hold for rectifiable spaces. It is easy
to see that any rectifiable space is a rotoid and, in [1], Arhangel’skii asked several questions about rotoids:

8.13: Is every (compact) strong rotoid rectifiable?

8.21: Is every first countable strong rotoid metrizable?

8.22: Is every strong rotoid with countable π-character metrizable?

1email = lutzer@math.wm.edu
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In addition, suggesting that he saw the Sorgenfrey line as a test case for Questions 8.21 and 8.22, he asked

8.20: Is the Sorgenfrey line a strong rotoid?

In this paper we prove that the Sorgenfrey line S is a strong rotoid, thereby answering Question 8.20. Our
positive answer to Question 8.20 provides a negative answer to the non-compact part of Question 8.13 and
to Questions 8.21 and 8.22 as well. Question 8.13 remains open for the compact case.

The Sorgenfrey line is a particularly well-known example of a generalized ordered space. A generalized
ordered space (GO-space) is a triple (X,<,S) where < is a linear ordering of X and where S is a Hausdorff
topology on X that has a base of order-convex sets. If it happens that S has a base of open intervals, then
(X,<,S) is a linearly ordered topological space (LOTS).

The sets of irrational, rational, and real numbers will be denoted by P,Q, and R respectively, and Z
denotes the set of all integers. In a linearly ordered set (X,<) we will use ]a, b[ to denote the set of points
strictly between a and b, while [a, b[= {x ∈ X : a ≤ x < b}, and ]a, b] is defined analogously. We adopted
those somewhat infelicitous notations for intervals because many of our proofs involve simultaneous use
of the ordered pair (a, b) and the interval from a to b, and readers of early drafts of our paper found this
confusing. There can be no confusion if (a, b) denotes an ordered pair and ]a, b[ an open interval.

The authors thank the referee for suggesting improvements of an earlier draft of this paper.

2 A family of Sorgenfrey rectangles, and some order-isomorphisms

The Sorgenfrey line is the set of real numbers topologized in such a way that for each number a, the
collection {[a, a + ε[ : ε > 0} is a neighborhood base at a. A Sorgenfrey rectangle is any set of the form
[a, b[ × [c, d[ where a < b and c < d are real numbers. By the Euclidean closure of such a rectangle we
mean [a, b]× [c, d].

Proposition 2.1 There is a countable collection T of pairwise disjoint Sorgenfrey rectangles such that:

1)
⋃
T = [0, 1[ 2 −∆

2) for each T ∈ T , the Euclidean closure of T is disjoint from ∆;

3) for each x ∈ [0, 1[ the set {T ∈ T : T ∩ (]x, 1[ × {x}) 6= ∅} is infinite and can be indexed as
{Tn : n ≥ 1} where points of Tj+1 lie to the left of points of Tj;

4) for each x ∈ [0, 1[ the set {T ∈ T : T ∩ ({x} × ]x, 1[) 6= ∅} is infinite and can be indexed as
{Tm : m ≥ 1} in such a way that points of Tk lie above points of Tk+1.

Proof: We will show how to construct Sorgenfrey rectangles [a, b[ × [c, d[ that partition the half of [0, 1[ ×
[0, 1[ lying strictly above the diagonal; this will give half of the members of T . The rectangles that partition
the half of [0, 1[ × [0, 1[ below the diagonal are obtained in an analogous way, or could be obtained by
reflecting the rectangles obtained below across the diagonal.

Let L0 be the line [0, 1[ × {1} and for k ≥ 1 let Lk be the straight line joining the points (0, 1k ) and
(1, 1). For k ≥ 1 there is a step function Sk : [0, 1[ → ]0, 1[ satisfying:
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a) the graph of Sk lies strictly between the graphs of Lk and Lk−1;

b) the jump points of Sk occur at rational numbers and those jump points are an increasing
sequence that converges to 1;

c) for each x ∈ [0, 1[ , Sk(x) is rational;

d) the horizontal segments of the graph of Sk contain their left endpoints, but not their right
endpoints.

We will show how to construct S3 between the straight lines L3 and L2. The other constructions are
analogous. Drawing pictures makes this construction clearer. Let v1 be the average of L2(0) and L3(0)
(so v1 = 5

12). Find a1 ∈ [0, 1[ with L3(a1) = v1 and let v2 be the average of the numbers v1 = L3(a1) and
L2(a1). Find a2 with L3(a2) = v2 and let v3 be the average of the numbers v2 = L3(a2) and L2(a2). In
general, given a1, · · · , an and v1, · · · , vn, let vn+1 be the average of the numbers vn = L3(an) and L2(an)
and find an+1 so that L3(an+1) = vn+1. This recursion gives points an (which will be called the jump
points of S2) and vn which will be the set of values of S3. Note that each vn ∈ Q. For 0 ≤ x < a1 we
define S3(x) = v1 and for n ≥ 2 and an−1 ≤ x < an we define S3(x) = vn. Notice that because the graph
of S3 lies between the lines L3 and L2, while the graph of S2 is constructed between the lines L2 and L1,
we have S3(x) < S2(x) for all x ∈ [0, 1[.

Once we have the step functions Sj for all j ≥ 1, we will use the graphs of Sj and Sj+1 and their jump
points to describe the edges of the Sorgenfrey rectangles that we will put into T . Once again, drawing
pictures will help. The top tier of rectangles is described as follows, using the step function S1: List the
jump points of S1 as a0 = 0 < a1 < a2 < · · · and use the Sorgenfrey rectangles [0, a1[ × [S1(0), 1[ and in
general, [aj , aj+1[ × [S1(aj), 1[.

The next tier of rectangles is defined using S1 and S2. List the jump points of S2 as b0 = 0 <
b1 < b2 < · · ·. If there is no jump point of S1 in the interval [b0, b1[, then use the Sorgenfrey rectangle
[b0, b1[ ×[S2(0), S1(0)[. If there are jump points of S1 in the interval [b0, b1[ list them as b0 < c1 < · · · ck < b1
and use the rectangles [b0, c1[ × [S2(0), S1(0)[ , [c1, c2[ × [S2(c1), S1(c1)[ , · · · , [ck, b1[ × [S2(ck), S1(ck)[.
This process is repeated in each interval [bj , bj+1[ of consecutive jump points of S2, and then repeated using
each pair Sk, Sk+1 of consecutive step functions. The resulting collection of Sorgenfrey rectangles satisfies
the parts of (1) through (4) above that deal with points above the diagonal. 2

Lemma 2.2 Given real numbers a < b and c < d the function

habcd(x) = c+
d− c
b− a

(x− a)

is an order-isomorphism from [a, b[ onto [c, d[, and the inverse of habcd is hcdab. If a, b, c, d are rational
numbers, then habcd maps [a, b[ ∩Q and [a, b[ ∩ P onto the rational and irrational numbers (respectively)
in [c, d[. 2

3 The Sorgenfrey line is a strong rotoid

This section is devoted to a rather technical proof of our claim that the Sorgenfrey line is a rotoid. Because
the Sorgenfrey line is homogeneous, it will follow that it is a strong rotoid. This answers several questions
from [1] as noted in the Introduction.
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We know that the Sorgenfrey line is homeomorphic to [0, 1[ with the topology in which {[a, a+ε[ : ε > 0}
is a neighborhood base at each point a ∈ [0, 1[, so we will write S = [0, 1[. In the rotoid definition, we will
choose e = 0 and construct a homeomorphism F : S2 → S2 that has F (x, x) = (x, 0) and F (0, y) = (0, y)
for all x, y ∈ S.

Proposition 3.1 The Sorgenfrey line is a rotoid.

Proof: We will show that S is a rotoid by defining a continuous function F : S2 → S2 that satisfies
F (x, x) = (x, 0), F (0, x) = (x, x), and F (0, y) = (0, y), and where F (F (x, y)) = (x, y) for all x, y ∈ [0, 1[.
To that end, we will describe some special notation, then define the function F steps D-1) through D-6),
then prove that F is self-inverse in steps SI-1) through SI-3), and finally prove that F is continuous in
steps C-1) through C-6). Once that is done, we will know that F is the homeomorphism needed to prove
that S is a rotoid.

Special notation

For k ≥ 1 let D(k) := [ 1
2k
, 1
2k−1 [ × [ 1

2k
, 1
2k−1 [. The sets D(k) will be called the basic diamonds of S2.

Define two step functions σ and τ , as follows, both having domain ]0, 1[ and range [0, 1]. For each
x ∈]0, 1[ there is a unique k ≥ 1 such that 1

2k
≤ x < 1

2k−1 , and we define σ(x) = 1
2k

and τ(x) = 1
2k−1 . The

horizontal pieces of the graphs of σ and τ are, respectively, the bottom and top of the basic diamonds
D(k). It will be important to note that each horizontal segment of the graph of σ contains a left endpoint,
but not a right endpoint, and the same is true of τ .

For each x ∈ [0, 1[ let B(x) := {x} × [0, σ(x)[ and for n ≥ 1, subdivide B(x) into sub-segments

B(x, n) := {x} × [σ(x)2n , σ(x)
2n−1 [. Further subdivide each B(x, n) into two halves using the midpoint M of the

vertical component of B(x, n). We denote the lower half by BL(x, n) = {x}× [σ(x)2n ,M [ and the upper half

by BU (x, n) = {x} × [M, σ(x)
2n−1 [.

For each x ∈ S with x 6= 0, there is a unique diamond D(k) containing (x, x). Note that (x, x)
might be the southwest corner point of D(k), but it cannot be the northeast corner point of D(k). Define
HL(x) = ]x, 1

2k−1 [ ×{x} and V L(x) = {x}× ]x, 1
2k

[. Let L(x) = V L(x)∪{(x, x)}∪HL(x). The set L(x)
is an L-shaped subset of the basic diamond D(k) and HL(x) and V L(x) are, respectively, the horizontal
and vertical segments of L(x) (each excluding (x, x)).

For each x ∈ ]0, 1[ we subdivide HL(x) as follows. Find the unique k so that (x, x) ∈ D(k) =
[ 1
2k
, 1
2k−1 [ 2. Recalling Proposition 2.1, we list all members of the collection T that intersect HL(x)

as T1, T2, · · · where each point of Tj+1 lies to the left of each point of Tj . We can write each Tj =
[aj , bj [ × [cj , dj [, and then we have · · · < b3 = a2 < b2 = a1 <

1
2k−1 ≤ b1. Define HL(x, n) := HL(x)∩Tn =

[an, bn[ × {x} for each n ≥ 2, and let HL(x, 1) = [a1,
1

2k−1 [ × {x}.

Analogously, for each x ∈ ]0, 1[ we subdivide the vertical segment V L(x) using the list of all members
of T that intersect V L(x), obtaining vertical sub-segments V L(x, n) for n ≥ 1.

Definition of F (x, y) :

The definition of F (x, y) has six parts, called D-1 through D-6, depending on the location of (x, y) in
S2. We proceed by cases.

D-1) Let F (x, x) = (x, 0) and F (x, 0) = (x, x) for each x ∈ S.

D-2) Define F (0, y) = (0, y) for each y ∈ S.

D-3) If (x, y) ∈ S2 has τ(x) ≤ y then let F (x, y) = (x, y). In other words, H is the identity map above the
basic diamonds D(k).

4



D-4) If (x, y) ∈ D(k) for some k ≥ 1 and y < x (so that (x, y) lies below the diagonal, directly to the right
of the diagonal point (y, y)), then (x, y) is in the horizontal line HL(y) through (y, y). Find the unique
n with (x, y) ∈ HL(y, n). The set HL(y, n) has the form [a, b[ × {y}. Consider the vertical segment
B(y) = {y} × [0, σ(y)[ which is subdivided into pairwise disjoint sub-segments B(y, j). As in the Special
Notation section of our proof, the sub-segment B(y, n) is divided into an upper and lower half using the
midpoint of the set of its second coordinates, and the upper half BU (y, n) has the form has the form
{y} × [c, d[. Consequently, Lemma 2.2 gives us an order isomorphism habcd : [a, b[ → [c, d[ and we define
F (x, y) = (y, habcd(x)).

D-5) If (x, y) ∈ D(k) for some k ≥ 1 and y > x (so that (x, y) lies directly above the point (x, x) on
the diagonal), then (x, y) is in the vertical line V L(x) and therefore in a unique sub-segment V L(x,m)
which has the form V L(x,m) = {x} × [p, q[. The vertical segment B(x) = {x} × [0, σ(x)[ contains the
sub-segment B(x,m) which is divided into two halves BU (x,m) and BL(x,m) as in the Special Notation
section. The set BL(x,m) has the form BL(x,m) = {x} × [r, s[ so that Lemma 2.2 gives us an order
isomorphism hpqrs : [p, q[ → [r, s[. Now define F (x, y) = (x, hpqrs(y)).

D-6) If (x, y) has 0 < y < σ(x), then (x, y) is below the basic diamonds B(k), and (x, y) ∈ B(x) =
{x}× [0, σ(x)[. Then there is a unique sub-segment of B(x, k) of B(x) that contains (x, y) so that (x, y) ∈
BU (x, k) or (x, y) ∈ BL(x, k). Consider the case where (x, y) ∈ BL(x, k). We will map (x, y) into the
vertical line V L(x) in the following way. The set BL(x, k) has the form BL(x, k) = {x} × [t, u[ and the
sub-segment V L(x, k) of V L(x) has the form V L(x, k) = {x}× [v, w[. From Lemma 2.2 we have the order
isomorphism htuvw : [t, u[ → [v, w[ and we define F (x, y) = (x, htuvw(y)). Next consider the case where
(x, y) ∈ BU (x, k). Write BU (x, k) = {x} × [e, f [. The set HL(x, k) has the form HL(x, k) = [g, h[ × {x}.
From Lemma 2.2 we have a function hefgh : [e, f [ → [g, h[ and we define F (x, y) = (hefgh(y), x). The
other case, where (x, y) ∈ BU (x, k), is analogous, except that F (x, y) will belong to HL(x, k).

We now have a function F : S2 → S2.

The function F is self-inverse.

We will show that F (F (x, y)) = (x, y) for all (x, y) ∈ S2. There are several cases, called SI-1, SI-2, and
SI-3, to consider.

SI-1) If (x, y) = (0, y) of if (x, y) = (x, x), or if (x, y) = (x, 0), or if τ(x) ≤ y < 1, it is immediate from the
definition if F that F (F (x, y)) = (x, y).

SI-2) Consider the case where (x, y) ∈ D(n) with y < x (so that (x, y) lies below the diagonal). Then (x, y) ∈
HL(y) and there is a unique k with (x, y) ∈ HL(y, k) and HL(y, k) has the form HL(y, k) = [a, b[ × {y}.
The sub-segment B(y, k) has two halves and we consider BU (y, k) which has the form BU (y, k) = {y}×[c, d[.
Then, using the order isomorphism habcd : [a, b[ → [c, d[, we have F (x, y) = (y, habcd(x)). To simplify
notation, write u = habcd(x). We must compute F (y, u). Because (y, u) ∈ BU (y, k) = {y} × [c, d[ we
know that F (y, u) will lie in HL(y, k) = [a, b[ × {y} and will be given by F (y, u) = (hcdab(u), y). But
hcdab(u) = hcdab(habcd(x)) = x because of the way our order isomorphisms were chosen in Lemma 2.2.
Consequently, F (F (x, y)) = (x, y) as claimed. The case where (x, y) ∈ D(n) with x < y is analogous.

SI-3) Finally consider the case where the point (x, y) has 0 < y < σ(x), i.e., where (x, y) lies below one
of the basic diamonds D(n). Then there is a unique k with (x, y) ∈ B(x, k) and so (x, y) ∈ BL(x, k) or
(x, y) ∈ BU (x, k). Consider the case where (x, y) ∈ BL(x, k) and suppose BL(x, k) = {x} × [t, u[. Then
we mapped (x, y) into V L(x, k) = {x} × [v, w) by the rule F (x, y) = (x, htuvw(y)). To simplify notation,
write z = htuvw(y). Because (x, z) ∈ V L(x, k) = {x} × [v, w[ we know that F (x, z) will be a point of
BL(x, k) = {x} × [t, u[ and so we have F (x, z) = (x, hvwtu(z)). But hvwtu(z) = hvwtu(htuvw(y)) = y
because of Lemma 2.2. Consequently, F (F (x, y)) = (x, y) in this case. The remaining possibility, where
(x, y) ∈ BU (x, k), is analogous.
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At this stage we know that F (F (x, y)) = (x, y) for all (x, y) ∈ S2.

The function F is continuous.

To prove that F is continuous at (x, y) requires different arguments for points in different parts of S2.
We consider six separate cases that we will call C-1) through C-6).

C-1) First, suppose (x, y) ∈ S2 − {(0, 0)} has 0 < x and τ(x) ≤ y < 1, or x = 0 and 0 < y. Then
F (x, y) = (x, y) and the set of all points of this type is an open subset of S2, so that F is continuous at
each such point.

C-2) Second, consider the point (x, y) = (0, 0) and suppose a sequence 〈(xn, yn)〉 converges to (0, 0). We
may assume (xn, yn) 6= (0, 0) for each n. Separately consider two subsequences, namely, those points with
τ(xn) ≤ yn and those points with yn < τ(xn). If there are infinitely many points of the first type, then
their images certainly converge to (0, 0) because for such a point F (xn, yn) = (xn, yn). Notice that every
point (xn, yn) of the second type has the property that F (xn, yn) lies below the graph of τ and therefore
the subsequence of such points (if infinite) will converge to (0, 0). Therefore lim〈F (xn, yn) : n ≥ 1〉 = (0, 0)
as required.

C-3) Third, consider a point (x, y) = (x, x) on the diagonal, with x 6= 0. There is a unique diamond
D(k) with (x, x) ∈ D(k) and we defined F (x, x) = (x, 0). Let ε > 0 and let V = [x, x + ε[ × [0, ε[ be
any neighborhood of F (x, x). We may assume that ε < σ(x) and that for each x′ ∈ [x, x + ε[ we have
σ(x′) = σ(x). (This is possible because no horizontal segment of the graph of σ can contain its right
endpoint.) We will find a δ > 0 so small that the set U = [x, x + δ[ 2 has F [U ] ⊆ V . We do this in two
steps. First we find δ1 > 0 such that if (x′, y′) ∈ [x, x + δ1[

2 and if (x′, y′) lies below the diagonal, then
F (x′, y′) ∈ U . Analogously we can find δ2 > 0 such that if (x′, y′) ∈ [x, x + δ2[

2 lies above the diagonal,
then F (x′, y′) ∈ V . Then we let δ = min(δ1, δ2). Because these two steps are so similar, we describe only
the first.

Because σ(x) = σ(x′) whenever x ≤ x′ < x+ ε we know that B(x) = {x}× [0, σ(x)[ and B(x′) = {x′}×
[0, σ(x′)[ have exactly the same set of second coordinates. Therefore, if we write π2 for second coordinate
projection, we have π2[B(x)] = π2[B(x′)] for all x′ ∈ [x, x+ ε[, and we also have π2[B(x, k)] = π2[B(x′, k)]

and π2[B
U (x, k)] = π2[B

U (x′, k)] for all x′ ∈ [x, x+ ε[. Because limj→∞
σ(x)
2j

= 0 and the segment B(x, j)

lies below y = σ(x)
2j

, we may choose N so large that
⋃
{B(x, j) : j ≥ N} ⊆ {x} × [0, ε[ ⊆ V . Then for each

x′ ∈ [x, x+ ε[ we have
⋃
{B(x′, j) : j ≥ N} ⊆ {x′} × [0, ε[ ⊆ V so that

(∗)
⋃
{B(x′, j) : x ≤ x′ < x+ ε, j ≥ N} ⊆ [x, x+ ε[ × [0, ε[ = V.

Consider the horizontal line HL(x) = ]x, 1
2k−1 [ × {x} which lies inside of the diamond D(k). Using

Proposition 2.1 we can list all members of T that intersect HL(x) as T1, T2, ... where each point of Tj+1

lies to the left of each point of Tj . The rectangle Tj has the form Tj = [aj , bj [ × [cj , dj [ and we have
x < · · · < b3 = a2 < b2 = a1 < b1. In addition, we have limj→∞ aj = x so we may choose M ≥ N with the
property that aj < x+ ε whenever j ≥M .

Recall that Tj = [aj , bj [ × [cj , dj [ and that each Tj intersects HL(x), with HL(x, j) = Tj ∩HL(x) =
[aj , bj [ ×{x}. Because no set T1, · · · , TM contains its top edge, there is some η > 0 with the property that
[ai, bi[ × [x, x+ η[ ⊆ Ti for 1 ≤ i ≤ M . Consider any x′ ∈ [x, x+ η[ and let T ′n be a listing in decreasing
order of all members of T that intersect HL(x′) as in Proposition 2.1. The collection T is pairwise disjoint,
so that because HL(x′) ∩ T1 6= ∅, we conclude that T ′1 = T1. Similarly T ′i = Ti for 1 ≤ i ≤ M so that if
j ≥M then HL(x′, j) ⊆ ]x′, aM [×{x′} ⊆ [x, aM [ × [x, x+ η[.
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Let δ1 = min(ε, η, aM − x) and note that if x′ ∈ [x, x + δ1[ then x ≤ x′ < x + η so that the subset
]x′, aM [ × {x′} of HL(x′) has

(∗∗) ]x′, aM [ × {x′} ⊆
⋃
{H(x′, j) : j ≥M}.

Now consider any (x1, y1) ∈ [x, x+ δ1[
2 that lies below the diagonal (i.e., y1 < x1). Then (y1, y1) ∈ ∆ and

(x1, y1) ∈ HL(y1). Because x ≤ y1 < x+ δ1 ≤ x+ η and x ≤ y1 < x1 < x+ δ1 ≤ aM , equation (**) gives

(∗ ∗ ∗) (x1, y1) ∈ ]y1, aM [ × {y1} ⊆
⋃
{HL(y1, j) : j ≥M}.

Consequently, the unique k such that (x1, y1) ∈ HL(y1, k) must have k ≥M so we know that F (x1, y1) ∈
B(y1, k). Because M ≥ N , equation (*) now gives F (x1, y1) ∈ B(y1, k) ⊆ V . As noted above, an analogous
argument provides a δ2 > 0 such that if (x2, y2) ∈ [x, x + δ2[

2 and (x2, y2) lies above the diagonal, then
F (x2, y2) ∈ V . If we let δ = min(δ1, δ2) then F [[x, x+ δ[ 2] ⊆ V so we have proved that F is continuous at
each point (x, x) ∈ S2.

C-4) Fourth, for any k ≥ 1, consider any point (x, y) ∈ D(k) − ∆. To show that F is continuous at
(x, y), there are two cases depending upon whether (x, y) lies above or below the diagonal. Because the
two cases are analogous, we consider only the first, where x < y. Recall how F (x, y) was defined. We
have (x, y) ∈ V L(x). List all members of T that intersect V L(x) as T1, T2, · · · where the points of Tj
lie above the points of Tj+1. Write Tj = [aj , bj [ × [cj , dj [. These sets subdivide V L(x) into vertical
segments V L(x, j) = V L(x) ∩ Tj = {x} × [cj , dj [. Choose the unique N with (x, y) ∈ V L(x,N). For
notational convenience, write V L(x,N) = {x} × [c, d[. Next consider the set B(x) which is divided into
sub-segments B(x, k), each of which is, in turn, divided in half by BL(x, k) and BU (x, k). Use BL(x,N),
which has the form BL(x,N) = {x} × [e, f [. Then F (x, y) = (x, hcdef (y)) where hcdef : [c, d[ → [e, f [ is
the order-isomorphism found in Lemma 2.2.

Write p = hcdef (y) and for ε > 0 consider any neighborhood V of F (x, y) = (x, p) having the form
V = [x, x+ ε[ × [p, p+ ε[. We may assume that ε is so small that p+ ε < σ(x) and that if x ≤ x′ < x+ ε,
then σ(x′) = σ(x). It follows that π2[B(x, j)] = π2[B(x′, j)] for every j (where π2 is second coordinate
projection), provided x′ ∈ [x, x+ ε[. In particular, for x ≤ x′ < x+ ε we have BL(x′, N) = {x′} × [e, f [.

We will find a neighborhood U = [x, x + δ[ × [y, y + δ[ such that F [U ] ⊆ V . We find δ in two steps.
First note that hcdef is continuous at y ∈ [c, d[ and is order-preserving, so that there is a δ1 > 0 such that
y + δ1 < d and if y ≤ y′ < y + δ1, then p = hcdef (y) ≤ hcdef (y′) < hcdef (y) + ε = p+ ε. Next, consider the
sets T1, · · · , TN where Tj = [aj , bj [ × [cj , dj [. Because none of these sets contains its right edge, there is an
η > 0 such that [x, x+ η[ × [cj , dj [ ⊆ Tj for 1 ≤ j ≤ N . Shrinking η if necessary, we may assume η < ε.
Then for any x′ ∈ [x, x+ η[ it follows that V L(x′, j) = {x′} × [cj , dj [ for 1 ≤ j ≤ N .

Recall that we are writing [cN , dN [ = [c, d[. Consequently, for x ≤ x′ < x + η we have V L(x′, N) =
{x′} × [c, d[ and for any (x′, y′) ∈ V L(x′, N) we have F (x′, y′) = (x, hcdef (y′)).

Now let δ = min(η, δ1) and consider U = [x, x + δ[ × [y, y + δ[. For any (x′, y′) ∈ U we have
F (x′, y′) ∈ [x, x+ ε[ × [p, p+ ε[ = V , as required to prove continuity of F at any point (x, y) ∈ D(k)−∆.

C-5) Fifth, consider any point (x, y) ∈ S2 with x > 0 and 0 < y < σ(x). Then (x, y) ∈ B(x) and there is
a unique n with (x, y) ∈ B(x, n) and hence either (x, y) ∈ BL(x, n) or (x, y) ∈ BU (x, n). The two cases
are analogous, so we describe only the second. Write BU (x, n) = {x} × [r, s[. Because (x, y) ∈ BU (x, n)
we know that there is some basic diamond D(k) with F (x, y) ∈ HL(x, n) ⊆ D(k). In order to write
down the formula for F (x, y) we list all members of T that intersect the horizontal segment HL(x) as
T1, T2, · · · in such a way that points of Tj+1 lie to the left of points of Tj . Write Tj = [tj , uj [ × [vj , wj [,
so that HL(x, n) = [tn, un[ × {x}. For notational simplicity, we write t = tn and u = un. Then
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F (x, y) = (hrstu(y), x) where hrstu is the order isomorphism given by Lemma 2.2. For any ε > 0 consider
the neighborhood V = [hrstu(y), hrstu(y) + ε[ × [x, x+ ε[ of F (x, y).

We will find δ > 0 so that if U = [x, x+ δ[ × [y, y+ δ[ then f [U ] ⊆ V . Our first step is to find a δ1 > 0
so that y + δ1 < σ(x) and for each x′ ∈ [x, x+ δ1[ we have σ(x′) = σ(x). Then for each x′ ∈ [x, x+ δ1[ we
have BU (x′, n) = {x′} × [r, s[.

The function hrstu : [r, s[ → [t, u[ is continuous and order-preserving, and y ∈ [r, s[. Therefore,
corresponding to the the ε > 0 given above (in C-5), there is a δ2 > 0 such that if y ≤ y′ < y + δ2 then
hrstu(y) ≤ hrstu(y′) < hrstu(y) + ε.

Let δ = min(δ1, δ2, η) and suppose (x′, y′) ∈ U := [x, x + δ[ × [y, y + δ[. Then σ(x′) = σ(x) so that
π2[B

U (x′, n)] = π2[B
U (x, n)] = [r, s[. Next consider the horizontal line HL(x′). List the members of T

that intersect HL(x′) as T ′1, T
′
2, · · · so that points of T ′j+1 lie to the left of points of T ′j for all j ≥ 1. The

fact that y ≤ y′ < y+δ ≤ y+η and the special properties of η guarantee that T ′1 = T1, · · · , T ′n = Tn so that
HL(x′, n) = [tn, un[ × {x′} = [t, u[ × {x′}. Therefore F (x′, y′) ∈ [hrstu(y), hrstu(y) + ε[ × [x, x+ ε[ = V
as required to complete the proof of the fifth case.

C-6) In the sixth (and final) case, we show that F is continuous at (x, 0) ∈ S2 provided x > 0. We know
that F (x, 0) = (x, x) belongs to some basic diamond D(k). For ε > 0 consider any basic neighborhood
V = [x, x+ ε[ 2 ⊆ D(k) of (x, x). We will find a neighborhood U1 of (x, 0) such that if (x′, y′) ∈ U1 and if
(x′, y′) ∈ BU (x′, j) for some j, then F (x′, y′) ∈ V . Analogously, there is a neighborhood U2 of (x, 0) such
that is (x′, y′) ∈ U2 and (x′, y′) ∈ BL(x, j) for some j, then F (x′, y′) ∈ V . Then we let U = U1 ∩ U2.

To find U1 we begin by listing all members of T that intersect the horizontal line HL(x) ⊆ D(k) as
T1, T2, · · · where points of Tj+1 lie to the left of points in Tj . Write Tj = [aj , bj [ × [cj , dj [. There is some
N with x < bN < x+ ε and then there is some η > 0 with the property that [aj , bj [ × [x, x+ η)[ ⊆ Tj for
1 ≤ j ≤ N . We may assume that η < ε. Then if x ≤ x′ < x + η, we have π1[HL(x′, j)] = π1[HL(x, j)] =
[aj , bj [ for 1 ≤ j ≤ N (where π1 is first coordinate projection) so that

(****) if x ≤ x′ < x+ η and j ≥ N , then HL(x′, j) ⊆ ]x′, bN ]× {x′} ⊆ [x, x+ ε[ 2 = V .

The vertical segment B(x) = {x} × [0, σ(x)[ is partitioned by the sets B(x, j). Let dN be the top
point of B(x,N) and let δ = min(δ1, dN , η, ε). Define U = [x, x + δ[ × [0, δ[ and suppose (x′, y′) ∈ U has
(x′, y′) ∈ BU (x′, j) for some j. Then y′ ∈ π2[BU (x′, j)] = π2[B

U (x, j)] so that y′ < δ ≤ dN gives j ≥ N .
Therefore F (x′, y′) ∈ HL(x′, j) and HL(x′, j) ⊆ V by (****), and this completes the continuity proof in
the sixth and final case.

At this stage we know that F is continuous and self-inverse, and therefore is the required homeomor-
phism. 2

It is natural to ask which subspaces of the Sorgenfrey line are rotoids in their subspace topologies.

Proposition 3.2 Let X be either the set of rational numbers, or the set of irrational numbers, topologized
as a subspace of the Sorgenfrey line S. Then X is a rotoid.

Proof: If X = Q, then X with the Sorgenfrey topology is homeomorphic to Q with its usual metric
topology, and (Q,+) is a topological group and therefore a rotoid.

The case where X = P (which we will call the irrational Sorgenfrey line) is more complicated because
the irrational Sorgenfrey line is not homeomorphic to any topological group, being first-countable and not
metrizable. Note that the irrational Sorgenfrey line is homeomorphic to its subspace P∩ [

√
2,
√

2+1[. If we
use e =

√
2 as the special point of P∩[

√
2,
√

2+1[, then the proof of Proposition 3.1 can be modified to apply
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to (P∩[
√

2,
√

2+1[)2 rather than [0, 1[ 2 provided one is careful to make sure that all mappings involved will
take the irrational numbers onto themselves. The easily-defined order isomorphisms habcd : [a, b[ → [c, d[
in Lemma 2.2 will suffice provided the points a, b, c, d ∈ Q. Alternately, use a recursion to find an order
isomorphism from Q ∩ [a, b[ onto Q ∩ [c, d[ and then extend that mapping to P ∩ [a, b[ by taking suprema.
The resulting function kabcd has the required properties. 2

Up to this point, our results are ZFC results. Enhancing ZFC with additional axioms gives other types
of subspaces of S that are rotoids. For example, one consequence of the Proper Forcing Axiom (PFA) is
that if X and Y are any ℵ1-dense2 subsets of R, then X and Y are order-isomorphic [6].

Proposition 3.3 Assume PFA. Then any ℵ1-dense subset of R is a rotoid when it carries the Sorgenfrey
topology.

Proof: Suppose X is ℵ1-dense in R. Then PFA allows us to get order-isomorphisms habcd : ]a, b[ ∩X →
]c, d[ ∩X for each a < b and c < d. We can modify the step functions Sk used in the proof of Proposition
2.1 to guarantee that the values of the functions Sk are not in X, i.e., {Sk(x) : x ∈ X, k ≥ 1} ∩ X = ∅.
Now the proof of Proposition 3.1 can be used to show that if X carries the Sorgenfrey topology, then X is
a rotoid. 2

Before leaving the Sorgenfrey line, let us note that there is a property that is stronger than being a
rotoid, namely, the property of being a rectifiable space. As originally defined, a space X is rectifiable [5]
if there is a point e ∈ X and a homeomorphism G from X2 onto itself with two properties:

(i) G(x, x) = (x, e) for all x ∈ X, and

(ii) for any x, y ∈ X,G(x, y) ∈ V ert(x) := {x} ×X.

Proposition 8.12 in [1] shows that a space X is rectifiable if and only if there is a homeomorphism H from
X2 onto itself that satisfies three properties:

(i) H(x, x) = (x, e) for all x ∈ X, and

(ii) for any x, y ∈ X,G maps V ert(x) := {x} ×X onto itself;

(iii) for any x ∈ X, H(e, x) = (e, x).

Therefore (as Arhangel’skii points out) every rectifiable space is a rotoid. The rotoid homeomorphism
F in the proof of Proposition 3.1 does not satisfy property (ii) above because it maps part of each set
V ert(x) into the horizontal part of the L-shaped set L(x). Might there be another rotoid homeomorphism
for the Sorgenfrey line that satisfies (i), (ii), and (iii)? The answer is ”No” and this answers Arhangel’skii’s
Question 8.13.

Example 3.4 The Sorgenfrey line is a strong rotoid that is not rectifiable.

Proof: The Sorgenfrey line is a strong rotoid but cannot be rectifiable because A. Gulko proved in [5] that
any first-countable rectifiable space that is at least T0 must be metrizable. 2

2A subspace X ⊆ R is ℵ1-dense if X ∩ ]a, b[ has cardinality ℵ1 for each open interval ]a, b[ ⊆ R.
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4 Other examples and questions

The real line R, being a topological group, must be a rotoid. Hence so is any open interval ]a, b[ ⊆ R.
Slightly less obvious is that any closed interval [a, b] ⊆ R is also a rotoid. That follows from our next
proposition.

Proposition 4.1 The closed interval [−1, 1] ⊆ R is a rotoid.

Proof: Consider the linear homeomorphism f(x, y) = (x, x + y) from R2 onto itself. This function maps
the x-axis onto the diagonal with f(x, 0) = (x, x) and maps the y-axis onto itself with f(0, y) = (0, y). Let
X = [−1, 1]. The image of the square X2 under f is a parallelogram with vertices (1, 2), (1, 0), (−1,−2)
and (−1, 0), and there is a homeomorphism g from that parallelogram onto X2 that sends each point p
of the parallelogram to itself provided p lies on the x-axis, on the y-axis, or on the diagonal. (Drawing
a picture of the parallelogram and of X2 on the same set of axes makes this clear.) Then the composite
h := g ◦ f |X2 is a homeomorphism from X2 onto itself that has h(x, 0) = (x, x) and h(0, y) = (0, y) for
each x, y ∈ [−1, 1] so that h−1 : X2 → h2 is the homeomorphism required by the rotoid definition. 2

Our next result can be used to show that many spaces cannot be rotoids. This result is due to
Arhangel’skii (see Theorem 2.4 in [1]).

Proposition 4.2 Suppose X is a rotoid with at least one isolated point. Then X is discrete.

Proof: Suppose X is a rotoid with special point e and homeomorphism F : X2 → X2. In case the special
point e is not an isolated point of X, choose any isolated point p ∈ X. Then the homeomorphism F sends
the isolated point (p, p) of X2 to the non-isolated point (p, e) of X2 and that is impossible. In case the
special point e is isolated in X, then the line L = X × {e} is a clopen subset of X2. Then F−1[L] = ∆ is
also clopen in X2 and that makes X a discrete space. 2

Corollary 4.3 Let M be the Michael line.3 Then M is not a rotoid. 2

Corollary 4.4 Let X be a stationary subset of a regular initial ordinal. Then X is not a rotoid. 2

Recall that a generalized ordered space (GO-space) X fails to be paracompact if and only if X contains
a closed copy of a stationary set in some regular uncountable cardinal [4] and that the same is true for the
much larger class of monotonically normal spaces [2]. Therefore, Corollary 4.4 combined with the theorem
of Balogh and Rudin [2] suggests our next question:

Question 4.5 Suppose X is a GO-space that is a rotoid. Is X paracompact? More generally, must Y be
paracompact if Y is monotonically normal and a rotoid?

A partial answer to that question is a corollary to our next result, which applies to any rotoid (not
just to GO-spaces). It generalizes Proposition 5.1 in [1], which is stated for the more restrictive class of
diagonal resolvable spaces.

Proposition 4.6 If X is a rotoid in which the special point e is a Gδ, then X has a Gδ-diagonal. In
particular, any first-countable rotoid has a Gδ-diagonal.

3The Michael line is the set of real numbers topologized in such a way that rational numbers have their usual open-interval
neighborhoods and irrational numbers are isolated.
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Proof: Suppose e is the special point and F : X2 → X2 is the homeomorphism for the rotoid X. Let
{V (n) : n ≥ 1} be a sequence of open sets with {e} =

⋂
{V (n) : n ≥ 1} and let W (n) = V (n) × {e} for

each n. Recall that ∆ = F−1[X × {e}]. Then we have ∆ =
⋂
{F−1[W (n)] : n ≥ 1}, as required. 2

Corollary 4.7 Any first countable LOTS that is a rotoid must be metrizable, and any first-countable
monotonically normal space that is a rotoid must be hereditarily paracompact.

Proof: Any such space has a Gδ-diagonal. That is enough to make a LOTS metrizable. If X is monoton-
ically normal with a Gδ-diagonal, then any subspace of X also has a Gδ-diagonal, so that no subspace of
X can be homeomorphic to a stationary subset of a regular uncountable cardinal. 2

Experience shows that many theorems that are false for GO-spaces are true for the more restrictive
class of LOTS. Therefore, even though Proposition 3.1 shows that there are non-metrizable GO-spaces that
are rotoids, it is fair to wonder whether a LOTS that is a rotoid, or that is rectifiable, must be metrizable.
Corollary 4.7 does not settle the question because, as our next example shows, there is a space X that is
a LOTS and is rectifiable (and hence a rotoid) that is not first countable.

Example 4.8 There is a non-first-countable linearly ordered topological space (LOTS) that is a rectifiable
space in the sense of Gulko [5] (the definition appears at the end of Section 3) and hence also a rotoid.

Proof: As noted in [3] there is an η1 set (X,≺) that is a linearly ordered topological field under the interval
topology of ≺. Let e be the zero element of the field and define G : X2 → X2 by G(x, y) = (x, y−x). This
G shows that X is rectifiable and is a rotoid. 2

The referee pointed out that examples of non-metrizable LOTS that are topological groups can be
obtained by taking the Gδ topology on large σ-products of the two point group D = {0, 1}.

Question 4.9 Which subspaces of the Sorgenfrey line are rotoids? (See Propositions 3.2 and 3.3.)

Example 4.10 The topological sum of two rotoids may fail to be a rotoid.

Proof: Let A be the set of negative irrationals and let B be the set of positive rationals, each topologized
as a subspace of the Michael line M . The subspace A is discrete and has cardinality c, so that A is
homeomorphic to G where G is the free Abelian group with c generators with the discrete topology. The
subspace B is homeomorphic to the usual group of rational numbers. Hence, each of A and B is a rotoid.
But Proposition 4.2 shows that the subspace X = A ∪ B of M is not a rotoid, even though X is the
topological sum of the rotoids A and B. 2
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