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1 Introduction

A topological space is domain representable if it is homeomorphic to the subspace of maximal elements of
a domain, topologized with the Scott topology. (See Section 2 for definitions.) A wide range of topological
spaces are domain representable – for example, any completely metrizable space, the Sorgenfrey line, the
Michael line, and any space of ordinals. A central problem in domain representation theory is to determine
which spaces are domain representable.

Domain representability is a kind of Baire-category completeness property that lies toward the top of
the hierarchy of strengthenings of the Baire space property (that any countable intersection of dense open
sets must be dense). For example, every subcompact regular T3-space [4] is domain-representable [2],
every domain-representable space is strongly Choquet complete [7], and every strongly Choquet complete
space is a Baire space. (See Section 4 for definitions related to completeness.)

For any space X , let Cp(X) be the set of all continuous, real-valued functions on X , equipped with
the pointwise convergence topology. In this paper, we investigate domain representability and strong
completeness properties of Cp(X).

For completely regular T1-spaces, Cp(X) is a dense subspace of the full topological product RX . The
literature shows that while the full product space RX has Baire-category completeness properties like
subcompactness [4] and strong Choquet completeness, it is difficult for the subspace Cp(X) to have such
properties [5, 6, 9, 11]. Starting with work by Lutzer and McCoy [5] Pytkeev and van Douwen gave
restrictive necessary and sufficient conditions on X for Cp(X) to be a Baire space [9, 11]. Lutzer and
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McCoy characterized spaces X for which Cp(X) is weakly Choquet complete [5] as being the spaces in
which each countable set is closed. More recently, starting with ideas of van Mill and Lutzer, Tkachuk [6]
proved that if X is completely regular then Cp(X) is never subcompact, unless X is discrete (in which case
Cp(X) = RX ).

A natural question asks for a characterization of those spaces X whose function space Cp(X) is domain
representable. In the light of Tkachuk’s result on subcompact Cp(X) we make the following conjecture,
which would be a strengthening of Tkachuk’s theorem:

Conjecture: If X is a completely regular T1-space, then Cp(X) is domain representable if and
only if X is discrete.

In this paper, we prove a special case of our conjecture, namely

Main Theorem Suppose that, for the completely regular space X, there is a cardinal κ such
that every subset S ⊆ X with |S|< κ is closed and such that X contains a transfinite sequence
{y(α) : α < κ} that converges to some point of X−{y(α) : α < κ}. Then Cp(X) is not domain
representable. Consequently, for a completely regular pseudo-radial T1-space X (and hence
for any generalized ordered space X), the following are equivalent:

a) Cp(X) is domain representable;

b) X is discrete (so that Cp(X) = RX );

c) Cp(X) is Scott-domain representable.

An easy consequence of our result (taking κ = ω) is that Cp(X) is not domain representable if X is
first-countable and not discrete. A slightly more complicated consequence is that if X = [0,ω1] is the gen-
eralized ordered space in which each countable ordinal is isolated and ω1 has its usual neighborhoods, then
Cp(X) is not domain representable. This second example puts limits on how far Tkachuk’s result about
subcompact Cp(X) can be generalized, because it shows that the function space Cp(X) can be strongly
Choquet complete when X is not discrete. See Example 4.2.

Our paper is organized as follows. Section 2 presents definitions and preliminary results. Section 3
gives the proof of the Main Theorem and Section 4 discusses the equivalence of Oxtoby’s pseudocomplete-
ness, weak Choquet completeness, and strong Choquet completeness for function spaces Cp(X) where X
is pseudonormal and completely regular. See Section 4 for definitions.

Throughout the paper, all spaces will be at least T3 and R will denote the usual set of real numbers.

2 Definitions and preliminary results
We will think of cardinal numbers as initial ordinals, and for any set S, we let |S| denote the cardinality of
S. If α is an ordinal, then |α| ≤ α.

Basic neighborhoods of a function f ∈ Cp(X) have the form O( f ,S,ε) := {g ∈ Cp(X) : for all x ∈
S, g(x) ∈ ( f (x)− ε, f (x)+ ε)} where S ⊆ X is finite and ε > 0.
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Given a partially ordered set (P,v), a non-empty set D ⊆ P is bounded if there is some p ∈ P with
d v p for each d ∈D. For a nonempty bounded subset D⊆ P, sup(D) is an upper bound for D in P that is
less than or equal to every upper bound for D. Note that sup(D) may, or may not, exist in P. Throughout
this paper, if a poset (P,v) is given and D is a nonempty subset of P, we will write sup(D) ∈ P to mean
that the supremum of D exists in P. A non-empty set D ⊆ P is directed if, for each pair d1,d2 ∈ D, some
d3 ∈D has d1,d2 v d3. A directed complete partial order (dcpo) is a partially ordered set with the property
that if D ⊂ P is nonempty and directed then sup(D) exists in P. If p,q are elements of a partially ordered
set, we write p� q to mean that if a directed set D has qv sup(D) then some d ∈D has pv d. We define
⇑(p) = {q ∈ P : p � q} and ⇓(q) = {p ∈ P : p � q}. A partially ordered set is continuous if for each
q ∈ P, the set ⇓(q) is directed and has q = sup(⇓(q)). A domain is a continuous dcpo, and a Scott domain
is a continuous dcpo P with the additional property that if p,q,r ∈ P and p,q v r, then sup{p,q} ∈ P.

We will need three lemmas about domains. The first is called the Interpolation Lemma and appears in
[8].

Lemma 2.1 Suppose (P,v) is a domain and p,r ∈ P have p � r. Then for some q ∈ P, p � q � r.

Lemma 2.2 If p,q,r are points in a domain P with p ∈ ⇑(q)∩⇑(r) then there is some s ∈ P with p ∈
⇑(s)⊆ ⇑(q)∩⇑(r) and q,r � s � p.

Proof: We have q,r ∈ ⇓(p) so that because ⇓(p) is directed, some s1 ∈ ⇓(p) has q,r v s1 � p. Now use
the Interpolation Lemma to find s ∈ P with s1 � s � p. 2

Lemma 2.3 Suppose P is a domain and E ⊆ P has the property that
T
{⇑(e) : e ∈ E} 6= /0. Then there is

a set E∗ ⊆ P with:

a) E ⊆ E∗;

b) E∗ is directed;

c) for each e ∈ E∗ some ê ∈ E∗ has e � ê;

d) |E∗|= |E| ·ω.

Proof: Fix g ∈
T
{⇑(e) : e ∈ E}. In this proof, we will apply the following statement recursively. Start

with some F ⊆ E and the fixed g ∈
T
{⇑(p) : p ∈ F}, Then for each f1, f2 ∈ F we have g ∈ ⇑( f1)∩⇑( f2)

and we apply Lemma 2.2 to obtain r1( f1, f2) ∈ P with

g ∈ ⇑(r1( f1, f2))⊆ ⇑( f1)∩⇑( f2)

and with f1, f2 � r1( f1, f2)� g. Recursively apply Lemma 2.1 to find rk( f1, f2) ∈ P with

f1, f2 � r1( f1, f2)� r2( f1, f2)� ··· � g

and let Rg(F) = F ∪{rk( f1, f2) : 1 ≤ k < ω and f1, f2 ∈ F}.

Now let E1 be the set E given in the statement of Lemma 2.3. Let E2 = Rg(E1). Note that g ∈ ⇑(e) for
each e∈E2 and that |E2|= |E1| ·ω. Recursively define Ek+1 = Rg(Ek) and then let E∗ =

S
{Ek : 1≤ k < ω}.

Clearly E∗ is directed and has the other properties required by the lemma. 2
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In a domain P, the collection {⇑(p) : p∈ P} is a base for the Scott topology on the set P. The subspace
max(P) consisting of all maximal elements of P has a special role to play. We say that a topological
space Y is domain representable if and only if there is some domain P such that Y is homeomorphic to
the subspace max(P), endowed with the relative Scott topology. In such a case, we often abuse notation
and write Y = max(P). In particular, in Section 3 we will consider situations where Cp(X) is a domain-
representable function space and we will write Cp(X) = max(P) where P is some domain.

The following result must be well-known but we could not find it in the literature, nor could several
domain theorists whom we consulted.

Proposition 2.4 For any set X, the topological product RX is Scott-domain representable.

Proof: Because the proof is the natural one, we only sketch it. We will say that a function φ is useful if
the domain of φ is the set X and for each x ∈ X ,φ(x) is either the entire set R or is a closed, bounded
interval [ax,bx] ⊆ R, with ax = bx being allowed. Let B(φ) = Π{φ(x) : x ∈ X} and let P := {B(φ) :
φ is useful}. Let v be reverse-inclusion in the set P. Then (P,v) is a poset and a set D ⊆ P is directed
if and only if for each B(φ1),B(φ2) ∈ D,B(φ1)∩B(φ2) contains some B(φ3) ∈ D, and for any directed set
D,sup(D) = B(ψ) where ψ(x) :=

T
{φ(x) : φ ∈ D} for each x ∈ X . One proves that B(φ) � B(ψ) if and

only if ψ(x)⊆ IntR(φ(x)) for each x ∈ X and the set Restrict(φ) := {x ∈ X : φ(x) 6= R} is finite. Maximal
elements of P have the form B(φ) where for all x ∈ X ,φ(x) is a singleton. Consequently there is a natural
1-1, onto function from RX to max(P) that sends f ∈ RX to B(φ f ) given by φ f (x) = { f (x)} for all x ∈ X .
Because φ � φ f means that Restrict(φ) is finite, this mapping is a homeomorphism. 2

Let κ be a limit ordinal. A transfinite sequence in a set Y is a function σ : [0,κ)→Y . We often identify
the transfinite sequence with a listing of its points, writing σ = {y(α) : α < κ}. To say that the transfinite
sequence {y(α) : α < κ} converges to the point z ∈ X means that for each neighborhood U of z, there is
some β < κ with the property that y(α) ∈U for each α ∈ [β,κ). It is easy to show that if {y(α) : α < κ}
converges to z ∈ X and if L ⊆ [0,κ) is cofinal in κ, then {y(α) : α ∈ L} also converges to z. Consequently,
we may replace any transfinite sequence by a sub-sequence indexed by a regular cardinal. It is also easy
to see that if {y(α) : α < κ} is a transfinite sequence converging to z ∈ X −{y(α) : α < κ}, where κ is a
regular infinite cardinal, then some subsequence of distinct points converges to z.

A space X is pseudo-radial provided a set Y ⊆ X fails to be closed if and only if there is a transfinite
sequence σ in Y and a point z ∈ X −Y to which σ converges (see [1]). First-countable spaces and general-
ized ordered spaces are well-known examples of pseudo-radial spaces. Recall that a generalized ordered
space is a triple (X ,<,τ) where < is a linear ordering of X and τ is a Hausdorff topology on X such that
each point of X has a τ-neighborhood base consisting of order-convex (possibly degenerate) sets. If τ is
the usual open interval topology of the linear order, then (X ,<,τ) is a linearly ordered topological space
(LOTS). Čech proved that topological space is a GO-space if and only if it can be embedded topologically
into some LOTS.

3 Proof of the Main theorem
In this section, we prove the main theorem announced in the Introduction. To that end, consider a com-
pletely regular space X and a cardinal κ such that subsets of X of size smaller than κ are closed and
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discrete, and we suppose that X also contains a non-trivial transfinite sequence {y(α) : α < κ} that con-
verges to some point z ∈ X −Y , where Y = {y(α) : α < κ}. We want to show that Cp(X) is not domain
representable. For contradiction, suppose that Cp(X) is domain representable, say Cp(X) = max(P) where
(P,v) is some domain. Our proof will produce a function h : X → X that must be continuous, and yet
cannot be continuous.

Claim 1: We claim that κ > ω. If κ = ω then our transfinite sequence is a simple infinite sequence
{y(n) : n < ω} that converges to z ∈ X −Y . For each n ≥ 1, let

Gn := {g ∈Cp(X) : for some i, j > n, |g(i)−g( j)|> 1}.

Then Gn is a dense open set in Cp(X) and
T
{Gn : 1 ≤ n < ω} = /0. That is impossible because Cp(X),

being domain representable, is a Baire space [7]. Therefore κ > ω and Claim 1 is established.

We will say that a pair (λ,C) is acceptable if

1) λ is a limit ordinal with ω ≤ λ < κ;

2) C ⊆ P is a directed set;

3) |C| ≤ |λ|;

4) if p ∈C then some p′ ∈C has p � p′;

5) if f ∈ max(P) has f ∈
T
{⇑(p) : p ∈C} then f (z) = 0 and for some α ≥ λ, f (y(α)) = 1.

Let Ψ be the collection of all acceptable pairs, and partially order Ψ by the rule that (λ1,C1)� (λ2,C2)
if and only if either (λ1,C1) = (λ2,C2) or else λ1 < λ2 and C1 ⊆C2.

Claim 2: Ψ 6= /0.

To prove Claim 2 we will exhibit an acceptable pair (ω,C). First note that, in the light of Claim
1, the point y(ω) belongs to the transfinite sequence. Because X is completely regular, there is some
f0 ∈Cp(X) with f0(y(ω)) = 1 and f0(z) = 0. Let S0 = {y(ω),z} and let ε0 = 1. The basic neighborhood
O( f0,S0,ε0) in Cp(X) is a relatively open subset of max(P) so there is some p0 ∈ P with f0 ∈ ⇑(p0)∩
max(P)⊆O( f0,S0,ε0). Then there is a finite set S1 and some ε1 ∈ (0, 1

2) with f0 ∈O( f0,S1,ε1)⊆⇑(p0)∩
max(P). Necessarily S0 ⊆ S1. Because f0 ∈O( f0,S1,ε1) we may find p1 ∈ P with f0 ∈ ⇑(p1)∩max(P)⊆
O( f0,S1,ε1) ⊆ ⇑(p0). It follows from Lemma 2.2 that we may assume p0 � p1. Continue this process
recursively to obtain finite sets S0 ⊆ S1 ⊆ ·· · ⊆ Sk and positive numbers εk < 2−k and elements p0 � p1 �
··· � pk ∈ P with

f0 ∈ ⇑(pk+1)∩max(P)⊆ O( f0,Sk+1,εk+1)⊆ ⇑(pk)for each k < ω.

Let C = {pk : k < ω}. It is clear that (ω,C) satisfies the first four parts of the definition of an acceptable pair.
To verify the fifth, suppose f ∈max(P) = Cp(X) has f ∈

T
{⇑(pk) : k < ω}. Then f ∈ ⇑(pk)∩max(P)⊆

O( f0,Sk,εk) for each k so that z ∈ S0 ⊆ Sk yields | f (z)− f0(z)|< εk < 2−k showing that f (z) = f0(z) = 0.
Similarly, f (y(ω)) = f0(y(ω)) = 1. Hence (ω,C) ∈ Ψ and Claim 1 holds.

Because (Ψ,�) is a nonempty poset, Zorn’s Lemma provides a maximal chain Φ ⊆ Ψ. Let πi be
projection onto the ith coordinate for i = 1,2. Then π1[Φ] = {λ : some element of Φ has first coordinate λ}
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which is a subset of [0,κ). Let µ = sup(π1[Φ]). Then µ ≤ κ. Because Φ is a chain, each λ ∈ π1[Φ] is
the first coordinate of exactly one member of Φ, and we denote that member by (λ,Cλ). Consequently,
|Φ| ≤ |µ| ≤ µ ≤ κ. Also, let D =

S
{Cλ : (λ,Cλ) ∈ Φ}. Then D is a directed subset of P, so sup(D) ∈ P.

Choose any maximal element g0 ∈ max(P) = Cp(X) with sup(D) v g0. Note that for each d ∈ D, some
d̂ ∈ D has d � d̂ v sup(D)v g0, so that g0 ∈

T
{⇑(d) : d ∈ D}.

Claim 3: We claim that µ = κ. If not, then µ < κ so that |µ| ≤ µ < κ = |κ|. From above g0 ∈ ⇑(d)∩max(P)
for each d ∈ D. That yields a finite set Td ⊆ X and a positive δd with g0 ∈ O(g0,Td,δd)⊆ ⇑(d)∩max(P)
for each d ∈ D. We may assume that z ∈ Td for all d ∈ D. Let T =

S
{Td : d ∈ D}. Being a union of at

most |µ| many finite sets, |T | ≤ |µ|< κ so that T is closed and discrete.

Because κ is a regular uncountable cardinal and µ < κ, we know that µ+ω < κ. We know that |T |< κ

so we may choose some γ ∈ [µ+ω,κ) with y(γ) 6∈ T . Because y(γ) 6∈ T , complete regularity of X gives a
continuous function g1 ∈Cp(X) with g1(x) = g0(x) for each x∈ T and g1(y(γ)) = 1. Because g1(x) = g0(x)
for all x ∈ T , we know that g1 ∈ O(g0,Td,δd)⊆ ⇑(d) for each d ∈ D.

Let R0 = {y(γ),z} and η0 = 1. Consider the relatively open set O(g1,R0,η0). We may find q0 ∈ P
with g1 ∈ ⇑(q0)∩max(P) ⊆ O(g1,R0,η0). Following the pattern in Claim 1, we recursively find finite
sets Rk, positive numbers ηk < 2−k, and points qk ∈ P with q0 � q1 � ··· � qk, R0 ⊆ R1 ⊆ ·· · ⊆ Rk
and g1 ∈ ⇑(qk)∩max(P) ⊆ O(g1,Rk,ηk) ⊆ ⇑(qk−1) whenever k ≥ 1. We note that any g ∈ max(P)∩T
{⇑(qk) : k < ω} has g(z) = g0(z) = 0 and g(y(γ)) = g0(y(γ)) = 1. Let E = D∪{qk : k < ω} and note

that g1 ∈
T
{⇑(e) : e ∈ E}. Now apply Lemma 2.3 to find a directed set E∗ ⊆ P containing E, with

|E∗| = |E| = |D| = |µ| = |µ + ω|. Therefore (µ + ω,E∗) ∈ Ψ and (µ + ω,E∗) is strictly above every
(λ,Cλ) ∈Φ, contradicting the fact that Φ is a maximal chain in (Ψ,�). Therefore, Claim 3 is established.

At this stage of the proof, we have constructed the directed set D =
S
{Cλ : (λ,Cλ) ∈Φ} and we know

that {λ < κ : for some C,(λ,C) ∈Φ} is cofinal in [0,κ). Then sup(D) ∈ P because P is a domain. Choose
any h ∈ max(P) = Cp(X) that has sup(D) v h. Then h ∈

T
{⇑(d) : d ∈ D} ⊆

T
{⇑(d) : d ∈Cλ} for each

λ∈ π1[Φ]. Because h∈
T
{⇑(d) : d ∈D}we know that h(z) = 0. Because h is continuous and the transfinite

sequence {y(α) : α < κ} converges to z, there is some β < κ such that h(y(α)) ∈ (−1
2 , 1

2) for all α ∈ [β,κ).
Because {λ : (λ,Cλ) ∈Φ} is a cofinal subset of [0,κ), for some (λ,Cλ) ∈Φ we have β < λ < κ. Using the
fifth property of the acceptable pair (λ,Cλ), because h ∈

T
{⇑(d) : d ∈ D} ⊆

T
{⇑(d) : d ∈Cλ} we know

that for some δ ≥ λ we have h(y(δ)) = 1. That contradiction completes the proof that, for the types of
spaces considered in the Main Theorem, Cp(X) cannot be domain representable unless X is discrete.

Now consider any pseudo-radial space X . If X is not discrete, then there is a minimal cardinal κ such
that some set of cardinality κ is not closed. Let M be such a non-closed set. Then there is some z ∈ X −M
and some transfinite sequence {y(α) : α < λ} in M that converges to z. As noted above, we may assume
that λ is a regular cardinal. Consequently we may assume that y(α) 6= y(β) whenever α < β < λ. Because
|M|= κ we conclude that λ≤ κ. Because sets of cardinality < κ are closed, we know that κ≤ λ, so κ = λ.
Now we have exactly the situation described in the first part of the proof so we know that Cp(X) cannot
be domain representable. Hence (a) implies (b) in the Main Theorem. That (b) implies (c) follows from
Proposition 2.4, and trivially (c) implies (a).2
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4 Other strong completeness conditions in Cp(X)

Starting in the 1950s, several strong completeness conditions were studied in an attempt to understand
products of Baire spaces. Oxtoby [10] called a space X pseudocomplete if there is a sequence 〈Pn〉 of
pseudobases ( = π-bases) such that

T
{Pn : n ≥ 1} 6= /0 whenever Pn ∈ Pn with cl(Pn+1)⊆ Pn. (Remember

that all spaces in this paper are at least regular.) Choquet [3] introduced two topological games. In
the first, now called the weak Choquet game, Players 1 and 2 alternate specifying non-empty open sets
U1,U2,U3, · · · having Un+1 ⊆Un for each n. The second game, called the strong Choquet game, is a non-
symmetric version of the first: Player 1 specifies a pair (x1,U1) where U1 is open and x1 ∈ U1. Then
Player 2 chooses an open set U2 with x1 ∈U2 ⊆U1. In general, Player 1 specifies a pair (x2n+1,U2n+1)
with U2n+1 open and x2n+1 ∈U2n+1 ⊆U2n. Then Player 2 responds by choosing an open set U2n+2 with
x2n+1 ∈U2n+2 ⊆U2n+1. In both Choquet games, Player 2 wins the game if

T
{Un : n ≥ 1} 6= /0, and the

question is whether Player 2 has a winning strategy, i.e., a strategy for choosing responses that leads to a
win for Player 2, no matter what Player 1 does. If Player 2 has a winning strategy for the weak Choquet
game (resp. the strong Choquet game), then the space X is said to be weakly Choquet complete (resp.
strongly Choquet complete). The winning strategy in either of the Choquet games is allowed to depend
upon the entire history of the game up to the point where Player 2 must choose the next open set. In
some references, Player 2 is said to have “perfect information.” But it might happen in the strong Choquet
game (resp., weak Choquet game) that Player 2 can determine U2n+2 knowing only the pair (x2n+1,U2n+1)
(resp., knowing only the set U2n+1) and in that case the strategy used by Player 2 is called a stationary
strategy.

In general, weak and strong Choquet completeness are distinct concepts. For example, a metric space
that is not complete and has a dense set of isolated points will be weakly Choquet complete, but not
strongly Choquet complete. However, in function spaces Cp(X) the situation is quite different, as our next
result shows. The hypothesis of the next proposition includes a property called pseudonormaility. To say
that a space X is pseudonormal means that two disjoint closed sets, one of which is countable, can be sep-
arated by open sets and, as pointed out in Lemma 8.3 of [5], in a completely regular pseudonormal space,
any continuous function defined on a countable, closed, discrete subspace can be extended continuously
over the entire space.

Proposition 4.1 Suppose X is a completely regular pseudonormal space. Then the following are equiva-
lent:

a) Cp(X) is strongly Choquet complete and Player 2 has a stationary strategy in the strong Choquet
game;

b) Cp(X) is strongly Choquet complete;

c) Cp(X) is weakly Choquet complete;

d) Cp(X) is pseudocomplete;

e) Cp(X) has nonempty intersection with every nonvoid Gδ-subset of the product space RX ;

f) every countable subset of X is closed.
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Proof: The equivalence of statements c), d), e), and f) was established in Theorem 8.4 of [5]. Obviously
a) implies b).

To see that b) always implies c), let σ be a winning strategy for Player 2 in the strong Choquet game,
and suppose that Player 1 opens the weak Choquet game by specifying a nonempty open set U1. Player 2
picks any point x1 ∈U1 and then uses σ to determine the response to U2 = σ(x1,U1). If Player 1 responds
to U2 by specifying the nonempty open set U3, then Player 2 chooses any point x3 ∈U3 and uses strategy
σ to choose U4 = σ((x1,U1),U2,(x3,U3)). Continuing in this fashion guarantees a win for Player 2 in the
weak Choquet game.

To prove that f) implies a) we define a stationary winning strategy for Player 2 in the strong Choquet
game in Cp(X). In response to any pair (g,U) proposed by Player 1 at any stage of the game, Player
2 should find a finite set S and a positive ε so that the basic open set O(g,S,2ε) ⊆ U and then Player
2 should respond with σ(g,U) = O(g,S,ε). To see the role of the number 2 in this strategy, consider
three consecutive moves in the game, say U2k = O( f ,S,δ) followed by Player 1’s response (g,U), fol-
lowed by Player 2’s response U2k+2 = O(g,T,ε). Because O( f ,S,δ) ⊇ U ⊇ O(g,T,2ε) we know that
S ⊆ T and for any x ∈ S we have ( f (x)− δ, f (x) + δ) ⊇ (g(x)− 2ε,g(x) + 2ε) ⊇ [g(x)− ε,g(x) + ε].
Now suppose that Player 2 uses the strategy σ to choose the even-numbered terms in the sequence
( f1,U1),U2,( f3,U3),U4, · · ·. Then U2k+2 = O(g2k+1,S2k+2,ε2k+2) for some finite set S2k+2 with S2k ⊆
S2k+2 for each k. Let T =

S
{S2k : k ≥ 1}. Then T is countable and for each x ∈ S2k ⊆ T there is some real

number h(x)∈
T
{(g2 j−1(x)−ε2 j,g2 j−1(x)+ε2 j) : k≤ j < ω}. This defines a function h : T →R. Because

T is countable, T is closed and discrete in X so that h : T → R is continuous. Because X is completely
regular and pseudonormal, the function h has a continuous extension ĥ ∈Cp(X). Then ĥ ∈

T
{Uk : k ≥ 1}

as required to show that the second player’s strategy σ is a winning strategy in the strong Choquet game
on Cp(X). 2

Combining our results in Sections 3 and 4 gives a simple example showing that our conjecture in
Section 1 cannot be extended to include the situation where Cp(X) is strongly Choquet complete but not
domain representable.

Example 4.2 There is a GO-space X such that Cp(X) is strongly Choquet complete and yet Cp(X) is not
domain representable.

Proof: Let X = [0,ω1] where each countable ordinal is isolated and ω1 has its usual neighborhoods. Then X
is a GO-space so that by our Main Theorem, Cp(X) is not domain representable. However by Proposition
4.1, Cp(X) is strongly Choquet complete (and Player 2 has a stationary winning strategy). 2
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