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Abstract

In this paper we study Banakh’s quarter-stratifiability among generalized ordered (GO)-spaces. All quarter-
stratifiable GO-spaces have aσ-closed-discrete dense set and therefore are perfect, and have aGδ-diagonal. We
characterize quarter-stratifiability among GO-spaces and show that, unlike the situation in general topological
spaces, quarter-stratifiability is a hereditary property in GO-spaces. We give examples showing that a separable
perfect GO-space with aGδ-diagonal can fail to be quarter-stratifiable and that any GO-space constructed on a
Q-set in the real line must be quarter-stratifiable.

MR Classifications: Primary 54F05; Secondary 54E20, 54H05

1 Introduction

In [8], W. Rudin proved that ifX is a metric space, then for every topological spaceY, every separately continuous
real-valued function onX×Y is of the first Baire class. In [5] and [7], Kuratowski and Montgomery proved that
for metric spacesX,Y andZ, a function f : X×Y→ Z is Borel measurable of countable classα +1 provided f
is continuous in one of its variables and of Borel classα in the other variable. In [2], T.O. Banakh introduced a
broad generalization of metric spaces that he called “metrically quarter-stratifiable spaces” and proved the above
theorems of Rudin, Kuratowski, and Montgomery under the assumption thatX belongs to this new class.

According to Banakh [2], a topological space(X,τ) is quarter-stratifiableif there is a functiong (called a
quarter-stratification of X) from {1,2,3, · · ·}×X into τ such that

a) for eachn≥ 1, the collection{g(n,x) : x∈ X} coversX;

b) if y∈ g(n,xn) for eachn, then the sequence〈xn〉 converges toy.

If there is a metrizable topologyµ⊆ τ on X such thatg(n,x) ∈ µ for eachn and eachx, then(X,τ) is metrically
quarter-stratifiableand the functiong is said to be ametric quarter-stratificationfor (X,τ).

It is important to note that, in the definition of quarter-stratifiability,x is not required to be a point ofg(n,x),
and this distinguishes quarter-stratifiable spaces from most other types of generalized metric spaces in use today.
For example, in the definition of quarter-stratifiable spaces, replacing the assertion that each{g(n,x) : x ∈ X}
coversX by the requirement thatx∈ g(n,x) for eachn and eachx characterizes Creede’s semi-stratifiable spaces
[3]. To see how major a change this is, note that the familiar Sorgenfrey lineS is quarter-stratifiable (using
the functiong(n,x) = (x− 1

n,x− 1
2n) for each rationalx andg(n,x) = /0 for each irrationalx) but is not semi-

stratifiable because, among GO-spaces, the four properties of metrizability, developability, semi-metrizability,
and semi-stratifiability are mutually equivalent [6].

The purpose of this paper is to investigate the theory of quarter-stratifiability in the class of generalized ordered
spaces. Recall that ageneralized ordered space(GO-space) is a triple(X,<,τ) were< is a linear ordering of the
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setX andτ is aT1 topology onX that has a base of open sets whose members are order-convex. The open-interval
topologyλ of the order< always hasλ ⊆ τ. If λ = τ thenX is a linearly ordered topological space(LOTS). As
proved by E.Čech, GO-spaces are exactly those topological spaces that embed (topologically) in some LOTS.

The main results in our paper are (i) a list of properties of every quarter-stratifiable GO-space (see Proposition
2.2) that includes first-countability, hereditarily paracompactness, having aGδ-diagonal, and having aσ-closed-
discrete dense set, so that every quarter-stratifiable GO-space is perfect and there are no quarter-stratifiable Souslin
spaces; (ii) a characterization of quarter-stratifiable GO-spaces (Theorem 3.1) in terms of the special structure of
the space’s right- and left-looking points; and (iii) Theorem 4.1 showing that, unlike the situation in general
quarter-stratifiable spaces, the class of quarter-stratifiable GO-spaces is a hereditary class; and (iv) a family of
examples of GO-spaces constructed on the usual space of real numbers illustrating earlier results of the paper.

We reserve the symbolsQ, P, andR for the sets of rational, irrational, and real numbers respectively, with
their usual orders. The authors would like to thank the referee for comments that substantially improved the first
version of this paper.

2 Properties of quarter-stratifiable ordered spaces

Lemma 2.1 Suppose g(n,x) is a quarter-stratification function for any T2-space X. Then each set

F(n) = {x∈ X : x∈ g(n,z)⇒ z= x}

is a closed discrete subset of X.

Proof: Letp∈ X. Choose any pointz∈ X with p∈ g(n,z). Thenq∈ g(n,z)∩F(n) forcesq = z so thatg(n,z)∩
F(n) = {z}. Hencep is not a limit point ofF(n). But thenF(n) is closed and discrete.2

Recall that a topological spaceX is perfectif each closed subset ofX is aGδ-subset ofX.

Proposition 2.2 Let X be a quarter-stratifiable GO-space. Then:

a) X has a Gδ-diagonal;

b) the density of X equals the Lindelöf degree of X;

c) X is first countable and hereditarily paracompact;

d) X is metrically quarter-stratifiable;

e) X has aσ-closed-discrete dense subset and therefore is perfect.

Proof: In [2], Banakh proved (a) for any quarter-stratifiableT2-space and showed that density≤ Lindelöf degree
in any quarter-stratifiable space. It is well-known [6] that Lindelöf degree≤ density for any GO-space, so that (b)
is established. It is known [6] that any GO-space with aGδ-diagonal is hereditarily paracompact. Furthermore,
the Gδ-diagonal makes each point ofX a Gδ-set in X so thatX is first-countable. Thus, (c) holds. Finally,
Banakh proved in his Theorem 2.3 that any paracompact Hausdorff quarter-stratifiable space is metrically quarter-
stratifiable, so that (d) holds.

To prove assertion (e), we use (a) together with a result of Przymusinski [1] to find a metrizable topologyµ
such thatµ⊆ τ and such that(X,µ,<) is also a GO-space. LetD⊆ X be a dense subset of(X,µ) that isσ-closed-
discrete in(X,µ). Let I be the set of all isolated points of(X,τ). Once we show thatI is anFσ-subset of(X,τ)
it will follow that D∪ I is the required denseσ-closed-discrete subset of(X,τ). We will complete the proof by
applying Faber’s result [4] that any GO-space with aσ-closed-discrete dense set must be perfect.

Supposeg(n,x) is a quarter-stratification function forX. Let I(n) = {y ∈ I : y ∈ g(n,z)⇒ z = y}. Then
I(n) ⊆ F(n) whereF(n) is the set defined in Lemma 2.1, soI(n) is closed and discrete. It remains to show that
I ⊆

⋃
{I(n) : n≥ 1}, the other containment being obvious. Letp∈ I and suppose that for eachn≥ 1 there is a

pointz(n) 6= p with p∈ g(n,z(n)). But then〈z(n)〉must converge top and that is impossible becausep is isolated.
2
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Remark 2.3 In the light of 2.2(a), each quarter-stratifiable LOTS is metrizable. However, as the Sorgenfrey line
shows, a GO space can be quarter-stratifiable and non-metrizable.

The fact that quarter-stratifiable GO-spaces must be perfect contrasts sharply with the behavior of arbitrary
quarter-stratifiable spaces. Banakh [2] gave an example of a separable zero-dimensional metrically quarter-
stratifiable Tychonoff space that is not perfect. The referee pointed out that part (e) of Proposition 2.2 raises
a more general question:

Question 2.4 Is it true that each paracompact quarter-stratifiable T2-space (i.e., not necessarily a GO-space)
contains a dense subset that isσ-closed-discrete?

3 Which GO spaces are quarter-stratifiable?

In this section we characterize those GO-spaces that are quarter-stratifiable in terms of certain special sub-
setsR,E, I and L of any GO-space. For any GO-space(X,<,τ), let I(X) be the set of all isolated points
of (X,τ). DefineR(X) = {x ∈ X− I(X) : [x,→) ∈ τ} and L(X) = {x ∈ X− I(X) : (←,x] ∈ τ}. Let E(X) =
X− (I(X)∪R(X)∪L(X)). In addition, for any subsetSof X, let Sisol denote the set of relatively isolated points
of S, i.e. points ofS that are not limit points ofS.

Warning: These notations are not completely standard in GO-space theory; some authors define R(X) and
L(X) in such a way that each isolated point of X is in R(X)∩ L(X), but in this paper we will need the sets
R(X), E(X), I(X), and L(X) to be pairwise disjoint.

The referee pointed out that assertions (c) and (d) in the following theorem are equivalent to the other two.

Theorem 3.1 Let (X,τ,<) be a perfect GO-space with a Gδ-diagonal. Then the following are equivalent:
a) X is quarter-stratifiable;

b) With R(X) and L(X) as defined above, there are sets R(n),L(n) with

(b-1) R(n)⊆ R(n+1), L(n)⊆ L(n+1), R(X) =
⋃
{R(n) : n≥ 1} and L(X) =

⋃
{L(n) : n≥ 1};

(b-2)clX(R(n))∩clX(L(n))⊆ E(X)∪R(n)isol∪L(n)isol for each n≥ 1;

(b-3) if x∈ E(X) then for each n≥ 1 there is an open convex neighborhood M(n,x) of x with the
property that a< b for any a∈M(n,x)∩R(n) and any b∈M(n,x)∩L(n);

c) There is aσ-closed-discrete subset Q of X such that in the subspace X−Q there are disjoint relative-Fσ-sets A
and B with R(X)−Q⊆ A and L(X)−Q⊆ B;

d) There is some subset Q⊆ X such that both R(X)∩Q and L(X)∩Q areσ-closed discrete, and in the subspace
X−Q there are disjoint relative-Fσ-sets A and B with R(X)−Q⊆ A and L(X)−Q⊆ B.

Obviously (c) implies (d). The remainder of this section presents a sequence of lemmas that, together, prove
the rest of Theorem 3.1.

Lemma 3.2 Suppose g(n,x) is a quarter-stratification function for the GO-space X. Then

i) for each x∈R(X) there is an integer N(x)≥ 1 such that if x∈ g(k,y) and k≥N(x), then x≤ y. In addition,
if R(n) = {x∈ R(X) : N(x)≤ n} then R(n)⊆ R(n+1) and R(X) =

⋃
{R(n) : n≥ 1};

ii) for each x∈ L(X) there is an integer N(x)≥ 1 such that if x∈ g(k,y) and k≥N(x), then y≤ x. In addition,
if L(n) = {x∈ L(X) : N(x)≤ n} then L(n)⊆ L(n+1) and L=

⋃
{L(n) : n≥ 1};

iii) clX (R(n))∩clX (L(n))⊆ E(X)∪R(n)isol∪L(n)isol;

iv) for each x∈ E(X) there is a convex open set M(n,x) with the property that if a∈ R(n)∩M(n,x) and
b∈ L(n)∩M(n,x), then a< b.
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Therefore, in Theorem 3.1, (a)⇒ (b).

Proof of (3.2): Consider the first assertion. For contradiction, suppose noN(x) exists. Then there is a strictly
increasing sequenceni and pointstni < x with x∈ g(ni , tni ). For eachn≥ 1 with n 6∈ {ni : i ≥ 1}, let tn be any point
of X with x ∈ g(n, tn). Then〈tn〉 must converge tox becauseg is a quarter-stratification, and that is impossible
because no termtni is in the open set[x,→). HenceN(x) exists and assertion (i) holds. Assertion (ii) is proved
analogously.

To prove assertion (iii), suppose thatp is a limit point of bothR(n) andL(n) and thatp 6∈ E(X). Because
no point of I(X) can be a limit point of any set, we know thatp ∈ R(X) or p ∈ L(X). Consider the first case,
the other being analogous. Choose anyt ∈ X with p∈ g(n, t). Becauseg(n, t)∩ [p,→) is a neighborhood ofp
there is somex∈ R(n)∩ [p,→)∩g(n, t) with p < x. Becauseg(n, t)∩ [p,x) is a neighborhood ofp there is some
y∈ g(n, t)∩ [p,x)∩L(n). Theny< x. However,y∈ L(n) andy∈ g(n, t) imply t ≤ y while x∈R(n)∩g(n, t) forces
x≤ t so that we havet ≤ y < x≤ t and that is impossible. Hence (iii) holds.

To verify assertion (iv), supposex∈ E(X) and choose anyg(n, t) with x∈ g(n, t). As in the proof of assertion
(iii), if a ∈ R(n)∩ g(n, t) andb ∈ L(n)∩ g(n, t) thena < b. We defineM(n,x) to be the convex component of
g(n, t) that containsx. 2

Lemma 3.3 Suppose X is a perfect GO-space with a Gδ-diagonal. Then in Theorem 3.1,(b)⇒ (c)

Proof: In this proof, all closures are taken in the spaceX. Given setsR(n) andL(n) as in part (b) of the statement
of Theorem 3.1, defineQ =

⋃
{cl(R(n))∩cl(L(n)) : n≥ 1}.

Claim 1: The set Q isσ-closed-discrete.BecauseX is perfect, it is enough to show that each set cl(R(n))∩cl(L(n))
is the union of finitely many subsets, each being discrete-in-itself. To that end, fixn and let

D1 = {p∈ R(n)∩cl(L(n)) : p is relatively isolated inR(n)};
D2 = {p∈ L(n)∩cl(R(n)) : p is relatively isolated inL(n)} ;

D3 = {p : p is a limit point of bothR(n) andL(n)}.

Clearly cl(R(n))∩ cl(L(n)) = D1∪D2∪D3. The set of relatively isolated points ofR(n) (respectivelyL(n)) is
relatively discrete. Hence so areD1 andD2. For contradiction, suppose thatD3 contains a limit pointp of itself.
Choose distinct pointsq j ∈ D3 with p = lim〈q j〉. Without loss of generality, we may assume thatq1 < q2 < · · ·.
From (b-2) of Theorem 3.1, we know thatp∈ E. Let M = M(p,n) be the open neighborhood ofp described in
(b-3) of (3.1). Thena < b whenevera ∈ M ∩R(n) andb ∈ M ∩L(n). Choosei < j with qi ,q j ∈ M. Because
qi ,q j ∈ D3, there are open, convex, disjoint neighborhoodsJ1,J2 of qi andq j respectively withJi ⊆M and with
the property thatx < y wheneverx∈ J1 andy∈ J2. Becauseqi ∈ D3, qi is a limit point ofL(n) so that there is
some pointx∈ L(n)∩ J1. Similarly, there is some pointy∈ J2∩R(n). But thenx∈M∩L(n) andy∈M∩R(n)
even thoughx < y, which is impossible. Therefore,D3 contains no limit point of itself.

Claim 2: the sets R(X)−Q and L(X)−Q are contained in disjoint, relatively Fσ-subsets of X−Q. Let A =
(
⋃
{cl(R(n)) : n≥ 1})∩ (X−Q) andB = (

⋃
{cl(L(n)) : n≥ 1})∩ (X−Q). ThenA,B are relativeFσ-subsets of

X−Q andR(X)−Q⊆ A while L(X)−Q⊆ B. It remains to show thatA∩B= /0. Fix anym,n≥ 1. If m≤ n, then
cl(R(n))∩cl(L(m))⊆ cl(R(n))∩cl(L(n))⊆Q, and ifn≤m then cl(R(m))∩cl(L(n))⊆ cl(R(m))∩cl(L(m))⊆Q.
HenceA∩B = /0. 2

Lemma 3.4 Suppose that X is a perfect GO-space with a Gδ-diagonal and that X satisfies assertion d) of Theorem
3.1. Then X also satisfies assertion b) of (3.1).

Proof: In this proof, cl(S) denotes the closure of a setS in the spaceX. We have a setQ⊆ X such thatQ∩
(R(X)∪L(X)) is σ-closed-discrete inX and two disjoint relativeFσ-subsetsA,B⊆ X−Q with R(X)−Q⊆ A and
L(X)−Q⊆ B. Write A=

⋃
{A(n) : n≥ 1} andB=

⋃
{B(n) : n≥ 1} whereA(n)⊆ A(n+1),B(n)⊆ B(n+1) and

where each of the setsA(n),B(n) is relatively closed in the subspaceX−Q. Then for anym,n≥ 1, cl(A(m))∩
cl(B(n))⊆Q.
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BecauseX is perfect, the set cl(B(n)) is aGδ-subset ofX. Hence the set cl(A(n))−cl(B(n)) is anFσ-subset
of X. Write

cl(A(n))−cl(B(n)) =
⋃
{H(n, j) : n≥ 1}

whereH(n,1) ⊆ H(n,2) ⊆ ·· · are closed subsets ofX. Similarly we write cl(B(n))−cl(A(n)) as the increasing
union

⋃
{K(n, j) : j ≥ 1} of closed subsets ofK(n, j)⊆ X.

Claim 1: For every choice of i, j,m,n≥ 1, H(i, j)∩K(m,n) = /0. Consider the case wherei ≤m, the other case
being analogous. We haveH(i, j)⊆ cl(A(i))⊆ cl(A(m)) while K(m,n)⊆ cl(B(m))−cl(A(m)), as required.

We may writeR(X)∩Q as the increasing union of closed-discrete subsetsC(n) of X. Similarly, writeL(X)∩Q
as the increasing union of closed-discrete subsetsD(n) of X. For eachn≥ 1, we define

R(n) = R(X)∩ (C(n)∪H(1,n)∪H(2,n)∪·· ·∪H(n,n))

and
L(n) = L(X)∩ (D(n)∪K(1,n)∪K(2,n)∪·· ·∪K(n,n)) .

ClearlyR(n)⊆ R(n+1) andL(n)⊆ L(n+1).

Claim 2: R(X) =
⋃
{R(n) : n≥ 1} and L(X) =

⋃
{L(n) : n≥ 1}. We consider anyp∈ R(X), the argument for

points ofL(X) being analogous. Ifp∈R(X)∩Q, then for somen, p∈C(n)⊆R(n), so assumep∈R(X)−Q. Then
for somen≥ 1, p∈A(n)⊆ cl(A(n)). We claimp 6∈ cl(B(n)). For if p∈ cl(B(n)), thenp∈ cl(A(n))∩cl(B(n))⊆Q
even though we havep∈ R(X)−Q. Hencep∈ cl(A(n))−cl(B(n)) so thatp∈ H(n, j1) for some j1. If n≤ j1,
then

p∈ H(n, j1)⊂ H(1, j1)∪H(2, j1)∪·· ·∪H(n, j1)∪·· ·H( j1, j1)

so thatp∈ R( j1). If j1 < n, thenp∈ H(n, j1)⊆ H(n,n) so thatp∈ R(n). In either case,p∈
⋃
{R(n) : n≥ 1}, as

claimed.

Claim 3: No point of X is a limit point of both R(n) and L(n). Otherwise there is a pointp∈ X and sequences
ui ∈ R(n)−{p},v j ∈ L(n)−{p} of distinct points withp = lim〈ui〉 = lim〈v j〉. Consider the pointsui ∈ R(n) ⊆
C(n)∪H(1,n)∪·· ·∪H(n,n). Because the setC(n) is closed and discrete, there is somei1 such thatui 6∈C(n) for
eachi ≥ i1. Then there is an integerj1 ≤ n such that infinitely many of the pointsui belong toH( j1,n). Because
H( j1,n) is closed inX, we havep∈ H( j1,n). Similarly, by considering the pointsv j ∈ L(n), we conclude that
p ∈ K( j2,n) for some j2 ≤ n. But by Claim 1,H( j1,n)∩K( j2,n) = /0 and that is impossible. Hence Claim 3
holds.

In the light of Claim 3, no point of cl(R(n))∩ cl(L(n)) is a limit point of bothR(n) and L(n) so that in
the notation of 3.1, cl(R(n))∩ cl(L(n)) ⊆ R(n)isol ∪ L(n)isol ⊆ R(n)isol ∪ L(n)isol ∪E. Hence assertion (b-2) of
Theorem 3.1 holds.

Let p∈ E. In the light of Claim 3,p cannot be a limit point of bothR(n) andL(n). Consider the case wherep
is not a limit point ofL(n). Becausep∈E andE∩L(X) = /0 we know thatp 6∈ cl(L(n)) so that some neighborhood
M(p,n) hasM(p,n)∩L(n) = /0. But then assertion (b-3) of Theorem 3.1 holds vacuously.2

Lemma 3.5 Suppose X is a perfect GO-space with a Gδ-diagonal and that there are sets R(n) and L(n) with the
properties described in part (b) of Theorem 3.1. Then X is quarter-stratifiable.

Proof of 3.5: BecauseX has aGδ-diagonal, there is a sequence of open coversU(n) of X by convex sets such
that for eachx∈ X,

⋂
{St(x,U(n)) : n≥ 1} = {x}. We may assume thatU(n+1) refinesU(n) for eachn≥ 1.

BecauseX is perfect, the setI(X) is anFσ-subset ofX, so that we can writeI(X) =
⋃
{I(n) : n≥ 1} where each

I(n) is a closed (and discrete) subset ofX andI(n)⊆ I(n+1).

We begin by defining the setsg(n,x). If x ∈ I(X), let g(n,x) = {x} for eachn. If x ∈ R(X)∪ L(X) define
α(n,x) = sup{y ∈ L(n) : y < x} andβ(x,n) = inf{y ∈ R(n) : x < y}. The infima and suprema in the definition
of α(n,x) andβ(n,x) are taken in the Dedekind completion of the ordered set(X,<), so thatα(n,x) andβ(n,x)
might or might not be points ofX. Note thatα(n,x)≤ x≤ β(n,x) and we define

g(n,x) = (IntX ([α(n,x),β(n,x)]∩X)∩St(x,U(n)))− I(n).
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Finally, if x ∈ E(X) we defineg(n,x) = /0 if x ∈
⋃
{g(n,y) : y ∈ R(X)∪ L(X)} and otherwise we letg(n,x) =

(M(n,x)∩St(x,U(n)))− I(n).

Fix n≥ 1. We show that{g(n,x) : x∈X} coversX. Letx∈X. If x∈ I(X), thenx∈ g(n,x). Supposex∈R(X).
Thenα(n,x) ≤ x≤ β(n,x) in the Dedekind compactification ofX. If x < β(n,x) thenx∈ g(n,x) so assume that
x = β(n,x). Thenx ∈ clX(R(n)). We claim thatx is not a limit point ofL(n). If x were a limit point ofL(n)
then property (b) of Theorem 3.1 would forcex∈ E(X)∪R(n)isol∪L(n)isol. But we know thatx∈ R(X) so that
x 6∈ E(X) and becausex is a limit point of bothR(n) andL(n), x is not in R(n)isol ∪L(n)isol. Hencex is not a
limit point of L(n), as asserted. Therefore, there is somev > x such that[x,v)∩L(n) = /0. We may assume that
v ∈ St(x,U(n)). Usingx = β(n,x) we choose some pointz∈ R(n)∩ (x,v), and we computeα(n,z) = sup{y ∈
L(n) : y< x}. Because no point ofL(n) lies betweenx andz, we see thatα(n,z)≤ x and thatx< z≤ β(n,z) in the
Dedekind completion ofX. Thereforex∈ IntX ([α(n,z),β(n,z)]∩X). Becausez∈ [x,v]⊆ St(x,U(n)), convexity
of the members ofU(n) forcesx∈ St(z,U(n)). Becausex∈R(X), x 6∈ I(n) and thereforex∈ g(n,z), as required.
The case wherex ∈ L(X) is analogous, so consider the case wherex ∈ E. If x ∈

⋃
{g(n,y) : y ∈ R(X)∪L(X)}

there is nothing to prove, and ifx 6∈
⋃
{g(n,y) : y ∈ R(X)∪L(X)} thenx ∈ g(n,x). Therefore{g(n,x) : x ∈ X}

coversX.

Finally we show that ifx∈ g(n, tn) for eachn≥ 1, then the sequence〈tn〉 converges tox. The argument has
several cases. Ifx∈ E(X) thenx∈ g(n, tn) ⊆ St(tn,U(n)) forcestn ∈ St(x,U(n)) and becausex∈ E(X) that is
enough to guarantee that〈tn〉 converges tox. Next consider the case wherex ∈ I(X). Thenx ∈ I(k) for some
k≥ 1. Considern≥ k. If tn 6∈ I(X) thenx∈ g(n, tn)⊆X− I(n)⊆X− I(k) and that is impossible. Hencetn ∈ I(X)
for eachn≥ k so thatx∈ g(n, tn) = {tn} which forcestn = x for eachn≥ k.

Consider the third case, wherex∈ R(X). There is somek with x∈ R(k). Note thatx∈ g(n, tn)⊆ St(tn,U(n))
so thattn ∈ St(x,U(n)) for all n≥ 1. Becausex ∈ R(X) it will be enough to show thatx≤ tn for eachn≥ k.
Suppose there is somet j < x where j ≥ k. We consider several sub-cases, depending upon the nature of the
point t j . The pointt j cannot be inI(X) because then we would havex ∈ g( j, t j) = {t j} contrary tot j < x.
Consider the case wheret j ∈R(X)∪L(X) and computeβ( j, t j) = inf{y∈R( j) : t j < y}. Becausex∈R(k)⊆R( j),
we see thatβ( j, t j) ≤ x. Becausex ∈ R(X) it follows that x 6∈ IntX

(
[α(j, tj),β(j, tj)]∩X

)
so thatx 6∈ g( j, t j)

contrary tox∈ g(n, tn) for all n≥ 1. The only remaining possibility is thatt j ∈ E(X), in which caseg( j, t j) 6= /0
forcesg( j, t j) = M( j, t j)∩St(t j ,U( j))− I( j). Recall that no point ofL( j)∩M( j, t j) can precede any point
of R( j)∩M( j, t j) so that becausex ∈ R( j)∩ g( j, t j) ⊆ R( j)∩M( j, t j) we conclude that there is no point of
L( j) that lies inM( j, t j)∩ (←,x]. BecauseM( j, t j) is a convex open set containing botht j andx, the fact that
t j ∈ E(X) yields somew < t j with (w,x] ⊂ M( j, t j). Hence no point ofL( j) lies in (w,x]. Now we compute
α( j,x) = sup{y∈ L( j) : y< x} and we see thatα( j,x)≤w< t j . Thereforet j ∈ IntX ([α(j,x),β(j,x)]). In addition,
x∈ g( j, t j) ⊆ St(t j ,U( j)) yields t j ∈ St(x,U( j)) and becauset j 6∈ I( j) we havet j ∈ g( j,x) whenceg( j, t j) = /0,
contrary tox∈ g( j, t j).

The fourth case, wherex∈ L(X) andx∈ g(n, tn) is analogous. Therefore we have proved that〈tn〉 converges
to x wheneverx∈ g(n, tn) for eachn≥ 1 and the proof of Proposition 3.5 is complete2

4 Applications and examples

We begin this section by applying results from Sections 2 and 3 to contrast the behavior of quarter-stratifiability
in GO-spaces with the behavior of the property in general spaces. Banakh [2] proved that quarter-stratifiability is
not hereditary to closed sets by proving that any Hausdorff space with aGδ-diagonal embeds as a closed subset
of some quarter-stratifiable space. The behavior of quarter-stratifiability in GO-spaces is very different, as can be
seen from our next result.

Theorem 4.1 Let X be a quarter-stratifiable GO-space. Then any subspace of X is also quarter-stratifiable.

The proof of (4.1) needs a technical lemma that uses some special notation. Start with a GO spaceX and a subset
Y⊆X. Then(Y,τ|Y,< |Y×Y) is also a GO-space so that the setR(Y) = {p∈Y− I(Y) : [p,→)∩Y ∈ τ|Y} is defined
whereI(Y) is the set of relatively isolated points ofY. It is easy to see thatR(Y) = ((Y∩R(X))∪PR(Y,X))−
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I(Y) wherePR(Y,X) is the set of “pseudo-R-points ofY” and is defined byPR(Y,X) = {y ∈ Y : [y,→)∩Y ∈
τ|Y and[y,→) 6∈ τ}. With PL(Y,X) defined analogously, we haveL(Y) = ((L(X)∩Y)∪PL(Y,X))− I(Y).

Lemma 4.2 Suppose(X,τ,<) is any perfect GO-space and Y⊆ X. Then the sets PR(Y,X) and PL(Y,X) are
σ-closed-discrete in X.

Proof: ConsiderPR(Y,X). For eachy∈PR(Y,X) there is a pointxy < y such that(xy,y) is infinite and[xy,y)∩Y =
/0. Observe that ify1 < y2 are inPR(Y) theny1 < xy2 so that the collectionJ = {(xy,y) : y∈ PR(Y)} is pairwise
disjoint. The setU =

⋃
J is open and therefore is anFσ-subset of the perfect spaceX, sayU =

⋃
{Fn : n≥ 1}

where eachFn is closed inX andF1⊆F2⊆ ·· ·. DefineJ (n) = {J∈ J : J∩Fn 6= /0}. Then eachJ (n) is locally finite
in X (indeed, each point ofX has a neighborhood meeting at most two members ofJ (n)). Becausey∈ clX((xy,y))
for each(xy,y) ∈ J it follows that each setTn = {y∈ PR(Y,X) : (xy,y) ∈ J (n)} is closed and discrete inX. Hence
PR(Y,X) is σ-closed-discrete inX, as claimed. By a similar argument, so isPL(Y,X). 2

Proof of Theorem 4.1: BecauseX is a quarter-stratifiable GO-space,X is perfect and has aGδ-diagonal (see
Proposition 2.2) and hence the same is true for the subspaceY. Theorem 3.1 gives us aσ-closed-discrete subset
Q of X such thatR(X)−Q andL(X)−Q are contained in disjoint, relativeFσ-subsetsA,B of the subspaceX−Q.
Let Q1 = Y∩ (Q∪PR(Y,X)∪PL(Y,X)). In the light of Lemma 4.2,Q1 is a σ-closed-discrete subset ofX and
hence also ofY. Then

R(Y)−Q1⊆ (R(X)∪PR(Y,X))−Q1⊆ R(X)−Q1⊆ R(X)−Q⊂ A

becausePR(Y,X)⊆Q1. But thenR(Y)−Q1⊆ (Y∩A)−Q1 andA−Q1 is a relativeFσ-subset ofY−Q1. Similarly,
L(Y)−Q1⊆ B−Q1 which is also a relativeFσ-subset ofY−Q1. In the light of (3.1),Y is quarter-stratifiable.2

Lemma 4.3 Suppose that X is a perfect GO-space and that X= Y∪M where, in their relative topologies, Y has
a Gδ-diagonal and M is metrizable. Then X has a Gδ-diagonal.

Proof: ReplacingM by M−Y if necessary, we may assume thatM∩Y = /0. BecauseM is a metrizable GO-space,
Faber’s metrization theorem [4] assures us that there is a dense subsetD of M that isσ-discrete inM and contains
the setJ = {x ∈ M : either(←,x]∩M or [x,→)∩M is open inM}. BecauseX is perfect,D can be written as
D =

⋃
{Dn : n≥ 1} whereDn ⊆ Dn+1 and eachDn is a closed discrete subset ofX. BecauseX is first-countable

and collectionwise normal, there are collections{L(d,n) : d∈Dn} of pairwise disjoint open sets with the property
thatL(d,n)∩Dn = {d} and such that ifd ∈Dn andk≥ n, the collection{L(d,k) : k≥ n} is a local base atd. Let
L(n) be the family of all setsL(d,n) for d ∈ Dn together with the collection of convex components of the open
setX−Dn. ThenL(n) is an open cover ofX and it is straightforward to verify:

Claim 1: if x∈ D, then
⋂
{St(x,L(n)) : n≥ 1}= {x} and ifx∈ X−D, then

⋂
{St(x,L(n)) : n≥ 1} ⊆ X−D.

We know thatY has aGδ-diagonal, so there is a sequence〈U(n)〉 of relatively open covers ofY such that
if y ∈ Y, then

⋂
{St(y,U(n)) : n≥ 1} = {y}. Then there is a collectionV (n) of open subsets ofX that covers⋃

U(n) and has the property that{V ∩Y : V ∈ V (n)} refinesU(n). BecauseX is perfect, we may write the open
set

⋃
V (n) =

⋃
{F(n,k) : k≥ 1} whereF(n,k)⊆ F(n,k+1) are closed sets. LetHY(n,k) be the set of all convex

components of sets in the collectionV (n)∪{X−F(n,k)}. ThenHY(n,k) is an open cover ofX and ify∈Y, then
Y∩

⋂
{St(y,HY(n,k)) : n,k≥ 1}= {y}.

Analogously, starting with the metrizable spaceM, find open coversHM(n,k) of X such that ifx∈M, then
M∩

⋂
{St(x,HM(n,k) : n,k≥ 1}= {x}.

Now defineH (n,k) to be the collection of all convex components of members of the collection

{H1∩H2∩L : H1 ∈HY(n,k), H2 ∈HM(n,k), L ∈ L(n)}.

Then eachH (n,k) is a convex open cover ofX that refinesHY(n,k), HM(n,k) andL(n).

Claim 2: if y∈Y, then
⋂
{St(y,H (n,k)) : n,k≥ 1}= {y}. LetC =

⋂
{St(y,H (n,k)) : n,k≥ 1}. BecauseH (n,k)

refineHY(n,k) we already know thatC∩Y = {y}. We will show thatC∩M = /0. For contradiction, suppose there
is a pointx∈C∩M. BecauseC is convex, if|C∩M| ≥ 3 then IntM(C∩M) 6= /0 so thatC∩M must meet the dense
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subsetD of M. But from Claim 1 we know that becausey∈Y ⊆ X−M ⊆ X−D, the setC is disjoint fromD,
and that is impossible. In case 1≤ |C∩M| ≤ 2 then convexity ofC forces each point ofC∩M to belong toJ and
hence toD, so that once again we contradictC⊆ X−D. HenceC∩M = /0, as required to establish Claim 2.

Claim 3: If x ∈ M then
⋂
{St(x,H (n,k)) : n,k≥ 1} = {x}. BecauseH (n,k) refinesL(n), Claim 1 shows that

the assertion in Claim 3 is certain to hold wheneverx∈ D, so consider the case wherex∈M−D. Once again,
writeC =

⋂
{St(x,H (n,k)) : n,k≥ 1}. We already know thatC∩M = {x} so it is enough to show thatC∩Y = /0.

For contradiction, suppose we can choose a pointz∈C−{x}. Without loss of generality, supposex < z. Then
[x,z]⊆C, so that(←,x]∩M = (←,z)∩M, showing that(←,x]∩M is open inM. Hencex∈ J⊆D, sox is a point
of C∩D. But becausex∈M−D, Claim 1 yieldsC⊆ X−D and that is impossible. Hence Claim 3 holds.

Claims 2 and 3 show that the open coversH (n,k) for n,k≥ 1 areGδ-diagonal covers ofX, as required in the
lemma.2

Remark 4.4 Note that the Alexandroff double arrow space, i.e., the lexicographic product spaceA = [0,1]×
{0,1}, is the union of two subspaces, each having aGδ-diagonal, and yetA does not have aGδ-diagonal. There-
fore, the metrizability hypothesis in Lemma 4.3 is necessary.

In Question 1.8 of [2], Banakh asks whether aT3-space is quarter-stratifiable provided it is the union of
two closed subspaces, each being quarter-stratifiable in its relative topology. In the category of GO-spaces, that
question has an affirmative answer, as we show in part (a) of Proposition 4.5. In addition, Lemma 4.3 yields a
quarter-stratifiable sum theorem for perfect GO-spaces that have a large metrizable part.

Proposition 4.5 Let X be a GO-space. If X satisfies any of the following conditions, then X is quarter-stratifiable.

a) X =
⋃

F whereF is a σ-locally finite collection of closed subspaces of X, each of which is
quarter-stratifiable;
b) X is paracompact and has a cover by open, quarter-stratifiable subspaces;
c) X is a perfect GO-space and X= Y∪M where M is metrizable and Y is quarter-stratifiable.

Proof: In this proof, for a setS⊆X, cl(S) will always denote the closure ofSin X. To prove (a), apply Proposition
2.2 (e) to conclude that each member ofF , being a quarter-stratifiable GO-space, is perfect. But then, so is the
spaceX and therefore each member ofF is aGδ-subset ofX. Now part (3) of Banakh’s Theorem 1.6 applies to
complete the proof of (a).

To prove (b), letG be any cover ofX by quarter-stratifiable open subspaces. BecauseX is paracompact,
there is a locally-finite closed coverF of X that refinesG . In the light of Theorem 4.1 each member ofF is
quarter-stratifiable. Now apply assertion (a) of this proposition.

To prove (c), we first apply Lemma 4.3 to conclude thatX has aGδ-diagonal. Then, because the spaceX is
perfect and has aGδ-diagonal, we may use assertions (c) and (d) of Theorem 3.1. BecauseY is quarter-stratifiable,
there is a setQY ⊂Y that isσ-closed-discrete inY and has the property thatR(Y)−QY ⊆ A andL(Y)−QY ⊆ B
whereA andB are disjoint relativeFσ-subsets ofY = X−M. BecauseX is perfect, bothQY and I(Y) areσ-
closed-discrete inX. Consider the subsetsR(M) andI(M) of M. BecauseM is metrizable, Faber’s metrization
theorem for GO-spaces [4] guarantees that both sets areσ-discrete-in-themselves and hence areσ-closed-discrete
in the perfect spaceX. Let Q = QY ∪M∪ I(Y). BecauseR(X)⊆ R(Y)∪ I(Y)∪R(M)∪ I(M) we have

R(X)∩Q⊆ (R(Y)∩Q)∪ I(Y)∪R(M)∪ I(M) = (R(Y)∩QY)∪ I(Y)∪R(M)∪ I(M)

so thatR(X)∩Q is a subset of aσ-closed-discrete subset ofX. HenceR(X)∩Q is itself σ-closed-discrete inX.
Similarly, L(X)∩Q is σ-closed-discrete inX. Consider the setsR(X)−Q andL(X)−Q. We have

R(X)−Q⊆ (R(Y)−Q)∪ (I(Y)−Q)∪ (R(M)−Q)∪ (I(M)−Q)⊆ R(Y)−Q⊆ R(Y)−QY ⊆ A.

ThereforeR(Y)−Q⊆ A−Q. Note thatX−Q⊆ Y−QY so that becauseA is a relativeFσ-subset ofY−QY,
we know thatA−Q is a relativeFσ-subset of the subspaceX−Q. Similarly, L(X)−Q⊆ B−Q andB−Q is a
relativeFσ-subset ofX−Q. BecauseA−Q andB−Q are disjoint, we may apply assertion (d) of Theorem 3.1 to
conclude thatX is quarter-stratifiable.2
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Remark 4.6 The result in Part c) of (4.5) was pointed out by the referee. It contrasts with the best known result
for quarter-stratifiable spaces in general, namely thatX is quarter-stratifiable ifX is the union of two quarter-
stratifiable subspaces, one of which is a closedGδ-set. (See Theorem 1.6 in [2].)

Proposition 4.5 has a surprising corollary. Recall that for any GO-space(X,τ,<), there is a canonical LOTS
(X∗,τ∗,<∗) that containsX as a closed subspace, whereX∗ is obtained by adding a certain collection of isolated
points toX and where<∗ is a natural lexicographic extension of< (see [6]). It is often of interest to know which
topological properties ofX are passed on toX∗.

Corollary 4.7 For any GO-space X, the following are equivalent:

a) X∗ is quarter-stratifiable;

b) X is quarter-stratifiable and X∗ is perfect;

c) X∗ is metrizable;

d) X is metrizable.

Proof: That(a)⇒ (b) is in (2.2) and (4.1), above. Clearly(c)⇒ (d), and it is known (see [6]) that ifX is
metrizable, then so isX∗. Hence(d)⇒ (a). To complete the proof, we must show thatb)⇒ c), so supposeX∗ is
perfect andX is quarter-stratifiable. BecauseX∗ = X∪M, whereM is a certain set of isolated points, assertion (c)
of (4.5) yields thatX∗ is quarter-stratifiable and hence (see Lemma 2.2) has aGδ-diagonal. But any LOTS with a
Gδ-diagonal is metrizable. HenceX∗ satisfiesc). 2

Proposition 4.8 Suppose X is a perfect GO-space with a Gδ-diagonal. If X satisfies any one of the following
conditions, then X is quarter-stratifiable:

a) either R(X) or L(X) is σ-closed-discrete;

b) there is aσ-locally-finite closed coverC of X with the property that for each C∈ C , either R(C) of L(C) is
σ-discrete.

Proof: To prove (a), consider the case whereL(X) is σ-closed-discrete inX. Let Q = L(X) and apply Theorem
3.1 withA = X−Q andB = /0. To prove (b) note that each member ofC is quarter-stratifiable in the light of (a),
and then apply Proposition 4.5.2

Remark 4.9 In an earlier version of this paper, we asked whether property (b) in Proposition 4.5 characterized
quarter-stratifiable GO-spaces. The referee answered that question by using the space of Example 4.10 (c), below.

Example 4.10 Three examples concerning quarter-stratifiability of perfect GO-spaces having a Gδ-diagonal.

a) LetA be a Bernstein subset of the usual space of irrationals, i.e.,A⊆ P and neitherA nor P−A contains
an uncountable compact set. LetX = R and defineR(X) = Q, L(X) = A andE(X) = P−A. The resulting
GO-space satisfies the hypotheses of Proposition 4.8 and hence is quarter-stratifiable.

b) LetC⊆ R be a Bernstein set inR, i.e., an uncountable subsetC⊆ R with the property that neitherC nor
D = R−C contains an uncountable compact subset ofR. Let Y = R, R(Y) = C andL(Y) = D and let
E(Y) = I(Y) = /0. ThenY is a separable (and hence perfect) GO-space with aGδ-diagonal, butY is not
quarter-stratifiable in the light of Theorem 3.1, because ifR(Y) =

⋃
{R(n) : n≥ 1} andL(Y) =

⋃
{L(n) :

n≥ 1}, then by the Baire Category Theorem, for somen0 either clY(R(n0)) or clY(L(n0)) would contain an
interval [a,b]. If [a,b]⊆ clY(R(n0)) then for somen1 > n0 the set clY(R(n1))∩L(n1) must be uncountable.
Therefore, in the light of part (b) of Theorem 3.1, the setE(Y)∪R(n1)isol∪L(n1)isol is also uncountable. But
that is impossible becauseE(Y) = /0 andSisol is countable for eachS⊆Y. The case where[a,b]⊆ clY(L(n0))
is analogous. (Note that this space has all of the properties listed in Proposition 2.2.)

c) There is a quarter-stratifiable GO-spaceZ that doesnot have aσ-locally-finite closed coverC with the
property that for eachC ∈ C , eitherR(C) or L(C) is σ-closed-discrete. To constructZ, let R,L be disjoint
σ-compact subsets of the usual spaceR of real numbers with the property that for any open intervalJ in
R, bothJ∩R andJ∩L are uncountable. Modify the usual topology ofR by making all pointsp∈ R have
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neighborhoods of the form[p,b) for p < b, and by making all pointsq∈ L have neighborhoods of the form
(a,q]. Apply Theorem 3.1 withQ = /0,A = R, andB = L to see thatZ is quarter-stratifiable. It is easy to
see thatZ is a Baire space. Suppose thatC =

⋃
{C (n) : n≥ 1} is anyσ-locally-finite cover ofZ by closed

subsets ofZ. Then eachC (n) is countable (becauseZ is separable) and so some memberC0 ∈ C must have
interior in Z. HenceC0∩R andC0∩L are uncountable. BecauseC0 is separable,I(C0) is countable and
therefore(R∩C0)− I(C0)⊆ R(C0), showing thatR(C0)) must be uncountable. BecauseC0 is separable, it
follows thatR(C0) cannot beσ-closed-discrete inC0. Similarly,L(C0) cannot beσ-closed-discrete inC0. 2

As a final example of the use of Theorem 3.1 we show that any GO-space constructed on a Q-set of real
numbers is quarter-stratifiable. Recall that aQ-setis an uncountable subsetX ⊆ R with the property that each
subset ofX is a relativeFσ-subset ofX whenX carries the relative topology fromR. Q-sets exist in some models
of ZFC, but not in others. We begin with a Q-setX ⊆ R. We arbitrarily partitionX = R∪E∪ I ∪L and create
a GO-topologyτ on the setX so thatR(X) = R, E(X) = E, I(X) = I , andL(X) = L. We say that(X,τ,<) is a
GO-space constructed on X.

Corollary 4.11 If X ⊆ R is a Q-set and(X,τ,<) is any GO-space constructed on X, then(X,τ) is quarter-
stratifiable.

Proof: Every subset ofX is a relativeFσ-set in the topologyρ thatX inherits fromR and hence also in the topology
τ. Thus(X,τ) is perfect. Because the usual spaceR has aGδ-diagonal, so does(X,τ). Let Q= /0. ThenR(X)−Q
andL(X)−Q are disjoint, relativeFσ-subsets of(X,ρ) and hence also of(X,τ). By assertion (d) of Theorem 3.1,
X is quarter-stratifiable.2

Remark 4.12 Even though assertion (a) of 4.8 does not characterize quarter-stratifiable GO-spaces, it does allow
us to put quarter-stratifiable GO-spaces into a more familiar context. Recall Faber’s metrization theorem for
GO-spaces [4]: A perfect GO-space with aGδ-diagonal is metrizable provided bothR(X) andL(X) areσ-closed
discrete inX. If one, but not both, ofR(X) andL(X) is σ-closed-discrete, thenX is quarter-stratifiable, but not
metrizable.
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