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Abstract

In this paper we study Banakh's quarter-stratifiability among generalized ordered (GO)-spaces. All quarter-
stratifiable GO-spaces haveseclosed-discrete dense set and therefore are perfect, and K&vdiagonal. We
characterize quarter-stratifiability among GO-spaces and show that, unlike the situation in general topological
spaces, quarter-stratifiability is a hereditary property in GO-spaces. We give examples showing that a separable
perfect GO-space with @s-diagonal can fail to be quarter-stratifiable and that any GO-space constructed on a
Q-setin the real line must be quarter-stratifiable.

MR Classifications Primary 54F05; Secondary 54E20, 54H05

1 Introduction

In [8], W. Rudin proved that iK is a metric space, then for every topological spécevery separately continuous
real-valued function oX x Y is of the first Baire class. In [5] and [7], Kuratowski and Montgomery proved that

for metric spaceX,Y andZ, a functionf : X xY — Z is Borel measurable of countable class- 1 providedf

is continuous in one of its variables and of Borel class the other variable. In [2], T.O. Banakh introduced a
broad generalization of metric spaces that he called “metrically quarter-stratifiable spaces” and proved the above
theorems of Rudin, Kuratowski, and Montgomery under the assumptioX thelongs to this new class.

According to Banakh [2], a topological spa¥,1) is quarter-stratifiableif there is a functiorg (called a
quarter-stratification of X from {1,2,3,---} x X into T such that

a) for eactm > 1, the collection{g(n,x) : x € X} coversX;
b) if y € g(n,x,) for eachn, then the sequendeg,) converges tg.

If there is a metrizable topology C T on X such thag(n,x) € p for eachn and eaclx, then(X, 1) is metrically
quarter-stratifiableand the functiory is said to be anetric quarter-stratificatiorior (X, 1).

It is important to note that, in the definition of quarter-stratifiabilitys not required to be a point @f(n, x),
and this distinguishes quarter-stratifiable spaces from most other types of generalized metric spaces in use today.
For example, in the definition of quarter-stratifiable spaces, replacing the assertion thag@ash: x € X}
coversX by the requirement thate g(n, x) for eachn and eactx characterizes Creede’s semi-stratifiable spaces
[3]. To see how major a change this is, note that the familiar SorgenfreySlisequarter-stratifiable (using
the functiong(n,x) = (x — %,x— 2—1n) for each rationak andg(n,x) = 0 for each irrationak) but is not semi-
stratifiable because, among GO-spaces, the four properties of metrizability, developability, semi-metrizability,
and semi-stratifiability are mutually equivalent [6].

The purpose of this paper is to investigate the theory of quarter-stratifiability in the class of generalized ordered
spaces. Recall thatgeneralized ordered spa¢&O-space) is a tripl€X, <, 1) were< is a linear ordering of the
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setX andt is aT; topology onX that has a base of open sets whose members are order-convex. The open-interval
topologyA of the order< always has\ C 1. If A =T thenX is alinearly ordered topological spack OTS). As
proved by ECech, GO-spaces are exactly those topological spaces that embed (topologically) in some LOTS.

The main results in our paper are (i) a list of properties of every quarter-stratifiable GO-space (see Proposition
2.2) that includes first-countability, hereditarily paracompactness, hav@gdiagonal, and having a-closed-
discrete dense set, so that every quarter-stratifiable GO-space is perfect and there are no quarter-stratifiable Souslin
spaces; (ii) a characterization of quarter-stratifiable GO-spaces (Theorem 3.1) in terms of the special structure of
the space’s right- and left-looking points; and (iii) Theorem 4.1 showing that, unlike the situation in general
quarter-stratifiable spaces, the class of quarter-stratifiable GO-spaces is a hereditary class; and (iv) a family of
examples of GO-spaces constructed on the usual space of real numbers illustrating earlier results of the paper.

We reserve the symbol3, P, andR for the sets of rational, irrational, and real numbers respectively, with
their usual orders. The authors would like to thank the referee for comments that substantially improved the first
version of this paper.

2 Properties of quarter-stratifiable ordered spaces

Lemma 2.1 Suppose @, x) is a quarter-stratification function for any,¥pace X. Then each set
F(n)={xeX:xeg(nz =z=x}
is a closed discrete subset of X.

Proof: Letp € X. Choose any poirt € X with p € g(n,z). Theng € g(n,z) "F(n) forcesq = z so thatg(n,z) N
F(n) = {z}. Hencepis not a limit point ofF (n). But thenF (n) is closed and discreté]

Recall that a topological spaéeis perfectif each closed subset &f is aGs-subset oiX.

Proposition 2.2 Let X be a quarter-stratifiable GO-space. Then:

a) X has a G-diagonal,

b) the density of X equals the Lindébegree of X;

c¢) X is first countable and hereditarily paracompact;

d) X is metrically quarter-stratifiable;

e) X has ao-closed-discrete dense subset and therefore is perfect.

Proof: In [2], Banakh proved (a) for any quarter-stratifiablespace and showed that densityl indelof degree

in any quarter-stratifiable space. It is well-known [6] that Liridelegree< density for any GO-space, so that (b)

is established. It is known [6] that any GO-space witBgdiagonal is hereditarily paracompact. Furthermore,

the Gs-diagonal makes each point &f a Gs-set in X so thatX is first-countable. Thus, (c) holds. Finally,
Banakh proved in his Theorem 2.3 that any paracompact Hausdorff quarter-stratifiable space is metrically quarter-
stratifiable, so that (d) holds.

To prove assertion (e), we use (a) together with a result of Przymusinski [1] to find a metrizable tgpology
such thapt C T and such thatX, p, <) is also a GO-space. L&t C X be a dense subset Of, ) that iso-closed-
discrete in(X,p). Letl be the set of all isolated points 6X,T). Once we show thdtis anF;-subset of X, 1)
it will follow that D U is the required dense-closed-discrete subset 6X,1). We will complete the proof by
applying Faber’s result [4] that any GO-space with-alosed-discrete dense set must be perfect.

Supposey(n,X) is a quarter-stratification function fof. Letl(n) ={yel:yeg(n,z) = z=y}. Then
I(n) C F(n) whereF(n) is the set defined in Lemma 2.1, B) is closed and discrete. It remains to show that
I CU{l(n) : n> 1}, the other containment being obvious. lget | and suppose that for eadh> 1 there is a
pointz(n) # pwith p € g(n,z(n)). But then(z(n)) must converge tp and that is impossible becaugés isolated.
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Remark 2.3 In the light of 2.2(a), each quarter-stratifiable LOTS is metrizable. However, as the Sorgenfrey line
shows, a GO space can be quarter-stratifiable and non-metrizable.

The fact that quarter-stratifiable GO-spaces must be perfect contrasts sharply with the behavior of arbitrary
quarter-stratifiable spaces. Banakh [2] gave an example of a separable zero-dimensional metrically quarter-
stratifiable Tychonoff space that is not perfect. The referee pointed out that part (e) of Proposition 2.2 raises
a more general question:

Question 2.4 Is it true that each paracompact quarter-stratifiablg-gpace (i.e., not necessarily a GO-space)
contains a dense subset thatislosed-discrete?

3 Which GO spaces are quarter-stratifiable?

In this section we characterize those GO-spaces that are quarter-stratifiable in terms of certain special sub-
setsR E,| andL of any GO-space. For any GO-spafe, <,1), let I(X) be the set of all isolated points

of (X,1). DefineR(X) ={xe X—I(X):[x,—) €1} andL(X) = {x e X—1(X): («,x € 1}. LetE(X) =

X — (1(X)UR(X)UL(X)). In addition, for any subses of X, let S*°' denote the set of relatively isolated points

of S i.e. points ofSthat are not limit points o&.

Warning: These notations are not completely standard in GO-space theory; some authors @xfinen&
L(X) in such a way that each isolated point of X is id@RNL(X), but in this paper we will need the sets
R(X), E(X), 1(X), and L(X) to be pairwise disjoint.

The referee pointed out that assertions (c) and (d) in the following theorem are equivalent to the other two.

Theorem 3.1 Let (X, 1,<) be a perfect GO-space with as@liagonal. Then the following are equivalent:
a) X is quarter-stratifiable;

b) With RX) and L(X) as defined above, there are se(®RL(n) with
(b-1) Rn) CR(n+1), L(n) CL(n+1), R(X)=U{R(n) : n>1} and LX) = J{L(n) : n>1};
(b-2) clx (R(n)) Nclx (L(n)) € E(X) UR(n)s?'UL(n)s® for each n> 1;

(b-3) if x e E(X) then for each n> 1 there is an open convex neighborhoodryk) of x with the
property that a< b for any ac M(n,x) "R(n) and any be M(n,x) NL(n);

c) There is ao-closed-discrete subset Q of X such that in the subspac@Xhere are disjoint relative{~sets A
and B with RX) —QC Aand LX) - QCB;

d) There is some subset@X such that both ) N Q and L(X) N Q areo-closed discrete, and in the subspace
X —Q there are disjoint relative{=sets A and B with ) —Q C A and L(X) —Q C B.

Obviously (c) implies (d). The remainder of this section presents a sequence of lemmas that, together, prove
the rest of Theorem 3.1.

Lemma 3.2 Suppose @, x) is a quarter-stratification function for the GO-space X. Then
i) for each xe R(X) there is an integer k) > 1 such that if xc g(k,y) and k> N(x), then x<y. In addition,
if R(n) = {x € R(X) : N(x) < n} then Rn) C R(n+ 1) and RX) = J{R(n) : n>1};
ii) for each xe L(X) there is an integer Kk) > 1 such that if xc g(k,y) and k> N(x), then y< x. In addition,
if L(n) = {xe L(X):N(x) <n}thenL(n) CL(n+1)and L=UJ{L(n):n>1};
iii) clx (R(n)) Nclx (L(n)) € E(X) UR(N)'s°'UL(n)'se;

iv) for each xe E(X) there is a convex open set(Nx) with the property that if a2 R(n) " M(n,x) and
b e L(n)nM(n,x), then a< b.



Therefore, in Theorem 3.1, (& (b).

Proof of (3.2): Consider the first assertion. For contradiction, suppo$¢(xjoexists. Then there is a strictly
increasing sequencgand pointdy, < xwith x € g(n;,ty ). Foreacm > Lwithn ¢ {n; :i > 1}, lett, be any point

of X with x € g(n,ty). Then(t,) must converge ta becausey is a quarter-stratification, and that is impossible
because no termy, is in the open sefix, —). HenceN(x) exists and assertion (i) holds. Assertion (ji) is proved
analogously.

To prove assertion (iii), suppose thatis a limit point of bothR(n) andL(n) and thatp ¢ E(X). Because
no point of | (X) can be a limit point of any set, we know thpte R(X) or p € L(X). Consider the first case,
the other being analogous. Choose amyX with p € g(n,t). Becauseg(n,t) N[p,—) is a neighborhood op
there is some& € R(n) N [p,—) Ng(n,t) with p < x. Becausg(n,t) N[p,X) is a neighborhood op there is some
yeg(n,t)N[p,x)NL(n). Theny < x. Howevery € L(n) andy € g(n,t) imply t <y while x € R(n)ng(n,t) forces
x <t so that we have <y < x <t and that is impossible. Hence (iii) holds.

To verify assertion (iv), supposec E(X) and choose ang(n,t) with x € g(n,t). As in the proof of assertion
(iii), if ae R(n)Nng(n,t) andb € L(n)Ng(n,t) thena < b. We defineM(n,x) to be the convex component of
g(n,t) that containx. O

Lemma 3.3 Suppose X is a perfect GO-space with gdiagonal. Then in Theorem 3.0h) = (c)

Proof: In this proof, all closures are taken in the spdc&iven setd}(n) andL(n) as in part (b) of the statement
of Theorem 3.1, defin® = J{cl(R(n)) ncl(L(n)) : n> 1}.

Claim 1: The set Q is-closed-discreteBecaus& is perfect, it is enough to show that each s&R@h)) Ncl(L(n))
is the union of finitely many subsets, each being discrete-in-itself. To that endafid let

D1 ={peR(n)Ncl(L(n)) : pis relatively isolated irR(n)};
D2 = {pe L(n)ncl(R(n)) : pis relatively isolated ir-(n)} ;
D3 = {p: pis alimit point of bothR(n) andL(n)}.

Clearly c(R(n)) ncl(L(n)) = D1UD>UDs3. The set of relatively isolated points Bfn) (respectivelyL(n)) is
relatively discrete. Hence so abg andD». For contradiction, suppose thag contains a limit pointp of itself.
Choose distinct pointg; € Dz with p = lim(q;). Without loss of generality, we may assume thak g < ---.
From (b-2) of Theorem 3.1, we know thptc E. LetM = M(p,n) be the open neighborhood pfdescribed in
(b-3) of (3.1). Thera < b wheneverae MNR(n) andb € MNL(n). Choose < j with g;,q; € M. Because
0i,0; € D3, there are open, convex, disjoint neighborhodds, of g andq; respectively with), € M and with
the property thak < y wheneveix € J; andy € J,. Becausey; € D3, g; is a limit point of L(n) so that there is
some poin € L(n)NJ;. Similarly, there is some pointe > NR(n). But thenx € MNL(n) andy € MNR(n)
even though < y, which is impossible. Therefor®z contains no limit point of itself.

Claim 2: the sets X) — Q and L(X) — Q are contained in disjoint, relativelysFsubsets of X- Q. Let A=
(U{cl(R(n)) :n>1})N (X —Q) andB = (U{cl(L(n)) : n>1}) N (X — Q). ThenA, B are relativeF;-subsets of
X —QandR(X) —Q C Awhile L(X) —Q C B. It remains to show thaaNB = 0. Fixanym,n> 1. If m< n, then
cl(R(n))Ncl(L(m)) C cl(R(n))Ncl(L(n)) C Q, and ifn < mthen c[R(m))Ncl(L(n)) C cl(R(m))Ncl(L(m)) C Q.
HenceANB=10. O

Lemma 3.4 Suppose that X is a perfect GO-space withgadiagonal and that X satisfies assertion d) of Theorem
3.1. Then X also satisfies assertion b) of (3.1).

Proof: In this proof, dS) denotes the closure of a sBin the spaceX. We have a se@ C X such thatQn
(R(X)UL(X)) is o-closed-discrete iXX and two disjoint relativé;-subset#\, B C X — Q with R(X) —Q C Aand
L(X)—QCB. Write A=J{A(n) : n> 1} andB=J{B(n) : n > 1} whereA(n) C A(n+1),B(n) C B(n+1) and
where each of the seffn),B(n) is relatively closed in the subspaxe- Q. Then for anym,n > 1, cl(A(m))N
cl(B(n)) C Q.



BecauseX is perfect, the set @B(n)) is aGs-subset oiX. Hence the set ¢A(n)) — cl(B(n)) is anFs-subset

of X. Write
cl(A) — cl(B(M) = [ J{H(n.j) :n>1}

whereH(n,1) C H(n,2) C --- are closed subsets ¥f. Similarly we write c[B(n)) — cl(A(n)) as the increasing
unionJ{K(n,j): j > 1} of closed subsets &f(n, j) C X.

Claim 1: For every choice of j,mn> 1 H(i, j)nK(m,n) = 0. Consider the case where< m, the other case
being analogous. We hav#(i, j) C cl(A(i)) C cl(A(m)) while K(m,n) C cl(B(m)) — cl(A(m)), as required.

We may writeR(X) N Q as the increasing union of closed-discrete suligtsof X. Similarly, writeL(X) NQ
as the increasing union of closed-discrete sutBéts of X. For eacm > 1, we define

R(N)=RX)N(C(N)UH(L,n)UH(2,n)U---UH(n,n))

and
L(n) =L(X)N(D(n) UK(1,n)UK(2,n)U---UK(n,n)).

ClearlyR(n) CR(n+1) andL(n) C L(n+1).

Claim 2: RX) = U{R(n) : n> 1} and LX) = U{L(n) : n > 1}. We consider any € R(X), the argument for
points ofL(X) being analogous. Ip € R(X)NQ, then for soma, p € C(n) C R(n), so assume € R(X) — Q. Then
forsomen> 1, pe A(n) Ccl(A(n)). We claimp ¢ cl(B(n)). For if p € cl(B(n)), thenp € cl(A(n))Ncl(B(n)) CQ
even though we havp € R(X) — Q. Hencep € cl(A(n)) —cl(B(n)) so thatp € H(n, j1) for someji. If n < jq,
then

peH(N, j1) CH(L ji) UH(2, j))U---UH(N, j1) U---H(j1, 1)

so thatp € R(j1). If j1 <n,thenpe H(n,j1) C H(n,n) so thatp € R(n). In either casep € | J{R(n) : n> 1}, as
claimed.

Claim 3: No point of X is a limit point of both(R) and L(n). Otherwise there is a poimt € X and sequences
U € R(n) — {p},v; € L(n) — {p} of distinct points withp = lim (u;) = lim(v;). Consider the points; € R(n) C
C(n)UH(1,n)U---UH(n,n). Because the s&(n) is closed and discrete, there is somsuch thau; ¢ C(n) for
eachi > i1. Then there is an integgi < n such that infinitely many of the points belong toH (j1,n). Because
H(j1,n) is closed inX, we havep € H(j1,n). Similarly, by considering the pointg € L(n), we conclude that
p € K(jz,n) for somej, < n. But by Claim 1,H(j1,n) NK(j2,n) = 0 and that is impossible. Hence Claim 3
holds.

In the light of Claim 3, no point of ¢R(n)) Ncl(L(n)) is a limit point of bothR(n) andL(n) so that in
the notation of 3.1, ¢R(n)) Ncl(L(n)) € R(n)’s°' U L(n)'s°" C R(n)’s®' U L(n)"®' UE. Hence assertion (b-2) of
Theorem 3.1 holds.

Let p € E. In the light of Claim 3,p cannot be a limit point of botR(n) andL(n). Consider the case whepe
is not a limit point ofL(n). Because € E andENL(X) = 0 we know thatp & cl(L(n)) so that some neighborhood
M(p,n) hasM(p,n) NL(n) = 0. But then assertion (b-3) of Theorem 3.1 holds vacuously.

Lemma 3.5 Suppose X is a perfect GO-space with gdiagonal and that there are setgm and L(n) with the
properties described in part (b) of Theorem 3.1. Then X is quarter-stratifiable.

Proof of 3.5: Becaus¥ has aGs-diagonal, there is a sequence of open cow@(s) of X by convex sets such
that for eactx € X, N{St(x, U(n)) : n> 1} = {x}. We may assume th&t(n+ 1) refines?(n) for eachn > 1.
BecauseX is perfect, the set(X) is anFg-subset ofX, so that we can writé(X) = [J{I(n) : n > 1} where each
I(n) is a closed (and discrete) subsetoéndl (n) C 1(n+1).

We begin by defining the set§n,x). If x € I(X), let g(n,x) = {x} for eachn. If x € R(X)UL(X) define
a(n,x) =sup{y € L(n) : y < x} andB(x,n) = inf{y € R(n) : x < y}. The infima and suprema in the definition
of a(n,x) andB(n,x) are taken in the Dedekind completion of the ordered¥ek), so thata(n,x) andf(n,x)
might or might not be points of. Note that(n,x) < x < (n,x) and we define

g(n,x) = (Intx ([a(n,x),B(n,x)] N X) N St(x, U(n))) —1(n).
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Finally, if x € E(X) we defineg(n,x) = 0 if x € U{g(n,y) : y € RIX) UL(X)} and otherwise we leg(n,x) =
(M(n,x) N St(x, U(n))) —1(n).

Fix n > 1. We show thafg(n,x) : x e X} coversX. Letx € X. If xe I(X), thenx € g(n,X). Suppose € R(X).
Thena(n,x) < x < 3(n,x) in the Dedekind compactification . If x < B(n,x) thenx € g(n,x) so assume that
x = B(n,x). Thenx e clx(R(n)). We claim thatx is not a limit point ofL(n). If x were a limit point ofL(n)
then property (b) of Theorem 3.1 would forge E(X) UR(n)’s' UL (n)s°". But we know thak € R(X) so that
x ¢ E(X) and becausg is a limit point of bothR(n) andL(n), x is not in R(n)’s°' UL (n)s°". Hencex is not a
limit point of L(n), as asserted. Therefore, there is samex such thafx,v) NL(n) = 0. We may assume that
v € St(x, U(n)). Usingx = B(n,x) we choose some poite R(n) N (x,v), and we compute(n,z) = sup(y €
L(n) :y < x}. Because no point df(n) lies betweerx andz, we see thatt(n,z) < xand tha < z< B(n,z) in the
Dedekind completion oX. Thereforex € Intx ([a(n,z),B(n,z)]NX). Because € [x,V] C St(x, U(n)), convexity
of the members ofi(n) forcesx € St(z, U(n)). Because € R(X), x ¢ I (n) and therefore € g(n, z), as required.
The case wherg € L(X) is analogous, so consider the case wheeeE. If x € J{g(n,y) : y € RIX) UL(X)}
there is nothing to prove, andX¢ U{g(n,y) : y € R(X) UL(X)} thenx € g(n,x). Therefore{g(n,x) : x € X}
coversX.

Finally we show that i € g(n,t,) for eachn > 1, then the sequencgé,) converges tx. The argument has
several cases. K< E(X) thenx € g(n,ty) C St(t,, U(n)) forcest, € St(x, U(n)) and because € E(X) that is
enough to guarantee thét) converges tox. Next consider the case whexes | (X). Thenx € I (k) for some
k> 1. Considen > k. If t, € 1 (X) thenx € g(n,t,) € X —1(n) C X —1(k) and that is impossible. Hentec | (X)
for eachn > k so thatx € g(n,t,) = {tn} which forces, = x for eachn > k.

Consider the third case, whexes R(X). There is som& with x € R(k). Note thatx € g(n,t,) C St(tn, U(n))
so thatt, € St(x, U(n)) for all n> 1. Because € R(X) it will be enough to show that < t, for eachn > k.
Suppose there is some< x where j > k. We consider several sub-cases, depending upon the nature of the
pointt;. The pointt; cannot be inl(X) because then we would hawec g(j,tj) = {t;} contrary totj < x.
Consider the case whetiec R(X) UL(X) and comput@(j,t;) =inf{y € R(j) :tj <y}. Because& < R(k) C R(j),
we see thaf}(j,tj) < x. Becausex € R(X) it follows thatx ¢ Intx ([a(j,t),B(j,t)]NX) so thatx & g(j,t;)
contrary tox € g(n,t,) for all n > 1. The only remaining possibility is thte E(X), in which casey(j,tj) # 0
forcesg(j,tj) = M(j,tj) NSt(t;, U(j)) —1(j). Recall that no point of(j) N M(j,tj) can precede any point
of R(j) "M(j,t;) so that because € R(j) N g(j,tj) € R(j) "M(j,tj) we conclude that there is no point of
L(j) that lies inM(j,tj) N («<,x]. BecauseM(j,tj) is a convex open set containing bajhandx, the fact that
t; € E(X) yields somew < t; with (w,x] C M(j,tj). Hence no point oL(j) lies in (w,x]. Now we compute
a(j,x) =sup{lyeL(j):y<x} and we see that(j,x) <w < tj. Thereford; € Intx ([a(j,x),B(j,X)]). In addition,
x€g(j,t)) C St(tj, U(j)) yieldst; € St(x, U(j)) and becausg ¢ | () we havetj € g(j,x) whenceg(j,tj) =0,
contrary tox € g(j, ;).

The fourth case, wheree L(X) andx € g(n,t,) is analogous. Therefore we have proved tfigtconverges
to x wheneveix € g(n,t,) for eachn > 1 and the proof of Proposition 3.5 is compléte

4 Applications and examples

We begin this section by applying results from Sections 2 and 3 to contrast the behavior of quarter-stratifiability

in GO-spaces with the behavior of the property in general spaces. Banakh [2] proved that quarter-stratifiability is
not hereditary to closed sets by proving that any Hausdorff space wiir@iagonal embeds as a closed subset

of some quarter-stratifiable space. The behavior of quarter-stratifiability in GO-spaces is very different, as can be
seen from our next result.

Theorem 4.1 Let X be a quarter-stratifiable GO-space. Then any subspace of X is also quarter-stratifiable.

The proof of (4.1) needs a technical lemma that uses some special notation. Start with a GX @apaeesubset
Y C X. Then(Y, 1]y, < |yxy) is also a GO-space so thattheR&Y) = {pc Y —I(Y) : [p,—)NY € 1]y } is defined
wherel (Y) is the set of relatively isolated points ¥f It is easy to see th&(Y) = ((Y NR(X)) UPR(Y, X)) —



1(Y) wherePR(Y,X) is the set of “pseudo-R-points 8" and is defined byPR(Y,X) ={y €Y :[y,—)NY €
Tly and[y,—) € t}. With PL(Y, X) defined analogously, we hat€Y) = ((L(X)NY)UPL(Y, X)) — (Y).

Lemma 4.2 Suppos€X,T1,<) is any perfect GO-space andd X. Then the sets RR,X) and PLY,X) are
o-closed-discrete in X.

Proof: ConsidePR(Y, X). For eacly € PR(Y, X) there is a poink, < y such tha{xy,y) is infinite and[xy,y) Y =

0. Observe that if/; < y» are inPR(Y) theny; < xy, so that the collectiory = {(xy,y) :y € PR(Y)} is pairwise
disjoint. The set =(JJ is open and therefore is di-subset of the perfect spage sayU = J{F,: n> 1}

where eaclf, is closed inX andF; CF, C ---. DefineJ(n) = {J € J:JNF, # 0}. Then eacty(n) is locally finite
in X (indeed, each point of has a neighborhood meeting at most two membeggof). Because € clx ((xy,Y))

for each(xy,y) € 7 it follows that each seT, = {y € PR(Y, X) : (xy,y) € 7(n)} is closed and discrete X. Hence
PR(Y,X) is o-closed-discrete iiX, as claimed. By a similar argument, sdPk(Y, X). O

Proof of Theorem 4.1: Becaus€is a quarter-stratifiable GO-space,is perfect and has &s-diagonal (see
Proposition 2.2) and hence the same is true for the sub&patbeorem 3.1 gives us@closed-discrete subset
Q of X such thaR(X) — Q andL(X) — Q are contained in disjoint, relativg-subsets\, B of the subspack — Q.
Let Q1 = YN (QUPR(Y,X)UPL(Y,X)). In the light of Lemma 4.2Q; is ao-closed-discrete subset ¥fand
hence also of. Then

R(Y) —Q1 € (RX)UPR(Y, X)) —Q1 CR(X) - Q1 CR(X) -QCA

becaus®R(Y,X) C Q;. ButthenR(Y) — Q1 C (YNA) — Q1 andA— Qs is a relative=;-subset o — Q1. Similarly,
L(Y) — Q1 € B— Qs which is also a relativ€s-subset off — Q. In the light of (3.1),Y is quarter-stratifiablel

Lemma 4.3 Suppose that X is a perfect GO-space and that XUM where, in their relative topologies, Y has
a Gs-diagonal and M is metrizable. Then X has g-@agonal.

Proof: Replacindg/l by M —Y if necessary, we may assume thahY = 0. Becausé is a metrizable GO-space,
Faber’'s metrization theorem [4] assures us that there is a dense Bulifddtthat iso-discrete inM and contains
the set) = {x € M : either(—,xNM or [x,—)NM is open inM}. BecauseX is perfect,D can be written as

D =U{Dn:n> 1} whereD, C D11 and eaclD,, is a closed discrete subsetXf BecauseX is first-countable
and collectionwise normal, there are collectigh$d, n) : d € D, } of pairwise disjoint open sets with the property
thatL(d,n) "Dy = {d} and such that ifl € D, andk > n, the collection{L(d,k) : k> n} is a local base a. Let
L(n) be the family of all set&(d,n) for d € D, together with the collection of convex components of the open
setX —Dy. Then£(n) is an open cover ok and it is straightforward to verify:

Claim 1 if x € D, thenN\{St(x, L(n)) : n> 1} = {x} and ifx € X — D, thenN{St(x, £L(n)) :n> 1} C X —D.

We know thaty has aGs-diagonal, so there is a sequen@(n)) of relatively open covers of such that
if yeY, thenN{Sty, U(n)) : n> 1} = {y}. Then there is a collectiofi’(n) of open subsets of that covers
U U(n) and has the property th@¢/ NY :V € 7(n)} refines?(n). BecauseX is perfect, we may write the open
setlJ (n) = U{F (n,k) : k> 1} whereF (n,k) C F(n,k+ 1) are closed sets. L& (n,k) be the set of all convex
components of sets in the collectif(n) U {X — F(n,k)}. Then## (n,k) is an open cover oX and ify € Y, then
Y NN{Sty. # (n.K) :nk > 1} = {y}.

Analogously, starting with the metrizable spadefind open coverdty (n,k) of X such that ifx € M, then
MNNO{Stx, Hu(n,k) : n,k > 1} = {x}.

Now define# (n, k) to be the collection of all convex components of members of the collection
{HiNH2NL:Hy € #(n,k), H2 € Hu(n,k), L€ L(n)}.

Then each#{(n,k) is a convex open cover of that refines’& (n,k), #Hu(n,k) and£(n).

Claim 2 if ye Y, thenN{St(y, #(n,k)) : n,k > 1} = {y}. LetC = N{St(y, #(n,k)) : n,k > 1}. BecauseH (n,k)
refine 4 (n, k) we already know thaENY = {y}. We will show thatCNM = 0. For contradiction, suppose there
is a pointx e CNM. Becaus€ is convex, iffCNM| > 3 then Inty (CNM) # 0 so thatCNM must meet the dense
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subsetD of M. But from Claim 1 we know that becaugec Y C X — M C X — D, the se(C is disjoint fromD,
and that is impossible. In cased|CN M| < 2 then convexity o€ forces each point d€NM to belong toJ and
hence tdD, so that once again we contrad@tC X —D. HenceCNM = 0, as required to establish Claim 2.

Claim 3 If xe M thenN{St(x, H(n,k)) : n,k > 1} = {x}. Because (n,k) refinesL(n), Claim 1 shows that
the assertion in Claim 3 is certain to hold whenexer D, so consider the case whete M — D. Once again,
write C = N{St(x, # (n,k)) : n,k > 1}. We already know tha€ "M = {x} so it is enough to show th&nNY = 0.
For contradiction, suppose we can choose a i€ — {x}. Without loss of generality, suppoge< z. Then
[x,Z CC, so that(<—,x]NM = (+,2z) N M, showing that«,x]NM is open inM. Hencex € J C D, sox s a point
of CND. But becaus& € M — D, Claim 1 yieldsC C X — D and that is impossible. Hence Claim 3 holds.

Claims 2 and 3 show that the open cov&fén, k) for n,k > 1 areGs-diagonal covers oK, as required in the
lemma.O

Remark 4.4 Note that the Alexandroff double arrow space, i.e., the lexicographic product $pad@, 1] x
{0,1}, is the union of two subspaces, each havir@saliagonal, and ye# does not have &s-diagonal. There-
fore, the metrizability hypothesis in Lemma 4.3 is necessatry.

In Question 1.8 of [2], Banakh asks whetheffaspace is quarter-stratifiable provided it is the union of
two closed subspaces, each being quarter-stratifiable in its relative topology. In the category of GO-spaces, that
question has an affirmative answer, as we show in part (a) of Proposition 4.5. In addition, Lemma 4.3 yields a
quarter-stratifiable sum theorem for perfect GO-spaces that have a large metrizable part.

Proposition 4.5 Let X be a GO-space. If X satisfies any of the following conditions, then X is quarter-stratifiable.

a) X =¥ where ¥ is a o-locally finite collection of closed subspaces of X, each of which is
quarter-stratifiable;

b) X is paracompact and has a cover by open, quarter-stratifiable subspaces;

c) X is a perfect GO-space and=XY UM where M is metrizable and Y is quarter-stratifiable.

Proof: In this proof, for a se8C X, cl(S) will always denote the closure &fin X. To prove (a), apply Proposition

2.2 (e) to conclude that each memberjof being a quarter-stratifiable GO-space, is perfect. But then, so is the
spaceX and therefore each member $fis a Gs-subset ofiX. Now part (3) of Banakh's Theorem 1.6 applies to
complete the proof of (a).

To prove (b), letG be any cover oX by quarter-stratifiable open subspaces. Because paracompact,
there is a locally-finite closed covef of X that refinesg. In the light of Theorem 4.1 each member $fis
quarter-stratifiable. Now apply assertion (a) of this proposition.

To prove (c), we first apply Lemma 4.3 to conclude thahas aGs-diagonal. Then, because the spXcis
perfect and has @s-diagonal, we may use assertions (c) and (d) of Theorem 3.1. Be¥asigearter-stratifiable,
there is a seQy C Y that iso-closed-discrete ilY and has the property th&Y) —Qy C AandL(Y)-Qy CB
whereA andB are disjoint relativeFs-subsets off = X — M. BecauseX is perfect, bothQy andl(Y) areo-
closed-discrete iiX. Consider the subseR(M) andl(M) of M. BecauseM is metrizable, Faber's metrization
theorem for GO-spaces [4] guarantees that both sets-digcrete-in-themselves and hence@ardosed-discrete
in the perfect spack. LetQ = Qy UM UI(Y). Becausdr(X) C R(Y)UI(Y) UR(M)UI(M) we have

RX)NQC (RY)NQ)UI(Y)URM)UI(M) = (RY)NQy)UI(Y)URM)UI(M)

so thatR(X) N Q is a subset of @-closed-discrete subset ¥f HenceR(X) N Q is itself o-closed-discrete iiX.
Similarly, L(X) N Q is o-closed-discrete iiX. Consider the sef®(X) — Q andL(X) — Q. We have
)—

R(X S (RY)=QUI(Y)-QURM)-QU(IM)-Q) CR(Y)-QCR(Y)-Qv CA

ThereforeR(Y) — Q C A— Q. Note thatX — Q C Y — Qy so that becausA is a relativeF;-subset ofY — Qy,

we know thatA — Q is a relativeF-subset of the subspade— Q. Similarly, L(X) —QCB—-QandB—-Qis a
relative F5-subset oX — Q. Becausé\ — Q andB — Q are disjoint, we may apply assertion (d) of Theorem 3.1 to
conclude thaX is quarter-stratifiablex



Remark 4.6 The result in Part c) of (4.5) was pointed out by the referee. It contrasts with the best known result
for quarter-stratifiable spaces in general, namely ¥h& quarter-stratifiable iX is the union of two quarter-
stratifiable subspaces, one of which is a cloSgeset. (See Theorem 1.6 in [2].)

Proposition 4.5 has a surprising corollary. Recall that for any GO-spae<), there is a canonical LOTS
(X*, 1%, <*) that containsX as a closed subspace, whireis obtained by adding a certain collection of isolated
points toX and where<* is a natural lexicographic extensionaf(see [6]). It is often of interest to know which
topological properties oX are passed on §*.

Corollary 4.7 For any GO-space X, the following are equivalent:

a) X*is quarter-stratifiable;

b) X is quarter-stratifiable and Xis perfect;
c) X*is metrizable;

d) Xis metrizable.

Proof: That(a) = (b) is in (2.2) and (4.1), above. Clearlg) = (d), and it is known (see [6]) that X is
metrizable, then so X*. Hence(d) = (a). To complete the proof, we must show tiét=- c), SO supposX* is
perfect andX is quarter-stratifiable. Becau¥é = X UM, whereM is a certain set of isolated points, assertion (c)
of (4.5) yields thalX* is quarter-stratifiable and hence (see Lemma 2.2) l@gsa@iagonal. But any LOTS with a
G;s-diagonal is metrizable. Henc€" satisfiesc). O

Proposition 4.8 Suppose X is a perfect GO-space with gdiagonal. If X satisfies any one of the following
conditions, then X is quarter-stratifiable:

a) either RX) or L(X) is o-closed-discrete;

b) there is ac-locally-finite closed cover of X with the property that for each € C, either RC) of L(C) is
o-discrete.

Proof: To prove (a), consider the case whe(¥) is o-closed-discrete iX. Let Q = L(X) and apply Theorem
3.1 withA= X —QandB = 0. To prove (b) note that each member®fs quarter-stratifiable in the light of (a),
and then apply Proposition 4.6

Remark 4.9 In an earlier version of this paper, we asked whether property (b) in Proposition 4.5 characterized
quarter-stratifiable GO-spaces. The referee answered that question by using the space of Example 4.10 (c), below.

Example 4.10 Three examples concerning quarter-stratifiability of perfect GO-spaces haviggdaGonal.

a) LetA be a Bernstein subset of the usual space of irrationalsAl€.]P and neitherA nor P — A contains
an uncountable compact set. Rét= R and defineR(X) = Q, L(X) = AandE(X) =P — A. The resulting
GO-space satisfies the hypotheses of Proposition 4.8 and hence is quarter-stratifiable.

b) LetC C R be a Bernstein set iR, i.e., an uncountable sub<etC R with the property that neithe® nor
D = R —C contains an uncountable compact subseRofLetY =R, R(Y) =C andL(Y) = D and let
E(Y) =1(Y) = 0. ThenY is a separable (and hence perfect) GO-space wiHy-diagonal, buty is not
quarter-stratifiable in the light of Theorem 3.1, becaud®(¥) = J{R(n) : n > 1} andL(Y) = J{L(n) :
n> 1}, then by the Baire Category Theorem, for sameither c (R(ng)) or cly (L(ng)) would contain an
interval[a,b]. If [a,b] C cly(R(ng)) then for somen; > ng the set at(R(n1)) NL(n1) must be uncountable.
Therefore, in the light of part (b) of Theorem 3.1, theBet ) UR(n1)'S°' UL (ny)'s% is also uncountable. But
that is impossible becau&gY) = 0 andS° is countable for eacBC Y. The case wher@, b] C cly (L(np))
is analogous. (Note that this space has all of the properties listed in Proposition 2.2.)

c) There is a quarter-stratifiable GO-spat¢hat doesnot have ac-locally-finite closed covelC with the
property that for eacl € C, eitherR(C) or L(C) is o-closed-discrete. To construzt let R L be disjoint
o-compact subsets of the usual sp@cef real numbers with the property that for any open intedvai
R, bothJnRandJNL are uncountable. Modify the usual topologyl®by making all pointg € R have
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neighborhoods of the forrp, b) for p < b, and by making all pointg € L have neighborhoods of the form
(a,g]. Apply Theorem 3.1 witfQ = 0,A =R, andB = L to see thaZ is quarter-stratifiable. It is easy to
see tha¥ is a Baire space. Suppose tltat |J{C(n) : n > 1} is anyo-locally-finite cover ofZ by closed
subsets oF. Then eachC(n) is countable (becauskis separable) and so some memBgeE C must have
interior in Z. HenceCyoN R andCyNL are uncountable. Becau€g is separablel (Cp) is countable and
therefore(RNCp) — 1(Cp) C R(Cp), showing thaR(Cp)) must be uncountable. BecauSgis separable, it
follows thatR(Cp) cannot bes-closed-discrete i€. Similarly, L(Co) cannot bes-closed-discrete i€g. O

As a final example of the use of Theorem 3.1 we show that any GO-space constructed on a Q-set of real
numbers is quarter-stratifiable. Recall thaDasetis an uncountable subsktC R with the property that each
subset oiX is a relativel;-subset ofX whenX carries the relative topology froiR. Q-sets exist in some models
of ZFC, but not in others. We begin with a Q-s€tC R. We arbitrarily partitionX = RUEUI UL and create
a GO-topologyt on the seiX so thatR(X) = R, E(X) = E, I(X) =1, andL(X) = L. We say thatX,1,<) is a
GO-space constructed on X

Corollary 4.11 If X C R is a Q-set and X,1,<) is any GO-space constructed on X, thef 1) is quarter-
stratifiable.

Proof: Every subset of is a relative~;-set in the topology thatX inherits fromR and hence also in the topology
1. Thus(X, 1) is perfect. Because the usual sp@ckas aGs-diagonal, so doegX, 1). LetQ = 0. ThenR(X) —Q
andL(X) — Q are disjoint, relativé-subsets ofX,p) and hence also diX,1). By assertion (d) of Theorem 3.1,
X is quarter-stratifiablel

Remark 4.12 Even though assertion (a) of 4.8 does not characterize quarter-stratifiable GO-spaces, it does allow
us to put quarter-stratifiable GO-spaces into a more familiar context. Recall Faber’'s metrization theorem for
GO-spaces [4]: A perfect GO-space witlisg-diagonal is metrizable provided bo{X) andL(X) areo-closed
discrete inX. If one, but not both, oR(X) andL(X) is o-closed-discrete, theX is quarter-stratifiable, but not
metrizable.
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