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Abstract: In this paper we study some topological properties of n;-spaces, i.e., topological spaces
that use the open-interval topology of the 7;-sets that were introduced by Hausdorff more than
a century ago. We focus on paracompactness, normality of products, topological completeness of
various kinds, and certain generalized metric properties such as the existence of a small diagonal.
In many cases, we find an intimate relation to the Continuum Hypothesis(CH), e.g., that (CH)
is equivalent to the statement that if X is an 7n;-space of cardinality 2, then X™ is hereditarily
paracompact and monotonically normal for every finite n, and we show that CH is equivalent to the
statement that every n;-space of cardinality 2 is realcompact. In addition, we investigate the role
of Husek’s small diagonal property, showing that an 7;-space X has a small diagonal if and only if
each subset S C X with |S| < w; is closed. Consequently, under CH, no n;-space with cardinality
2¢ can have a small diagonal, and we show that that if CH fails, then is is undecidable whether
each free ultrapower R /U{ must have a small diagonal.
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1 Introduction

The goal of this paper is to study linearly ordered topological spaces (X, <, 7) that use the open
interval topology 7 = 7(<) of an m-set (X, <), and we call such spaces n;-spaces. Recall that
Hausdorff [17] defined an n;-set to be a linearly ordered set (X, <) with the property that if A and
B are countable subsets of X having a < b for every a € A and every b € B, then some z € X
has a < © < b for each @ € A and b € B. As noted in [13], every n;-set has cardinality > 2¢,
and we will say that an 7;-set (or an n;-space) is small if its cardinality is exactly 2. In Section
2, we give examples of small 7;-sets, two of which are obviously linearly ordered topological fields.
The Continuum Hypothesis (CH) has a crucial role to play in the study of small 7;-sets and small
ni-spaces. See [13] for a proof of the following:



Theorem 1.1 [f 2 = w; and if (X, <) and (Y, =) are small n;-sets, then (X, <) and (Y, <) are
order isomorphic and consequently the associated n;-spaces (X, 7(<)) and (Y, 7(=<)) are homeomor-
phic. In addition, if 2¥ = wy then any small ny-space is homeomorphic to a topological field.

Without CH, the situation is much more complicated.

Theorem 1.2 For any free ultrafilter U on w, the ultrapower R¥ /U (see 2.3 for definitions)is a
small ny-set and

a) in any model of ZFC, either there is exactly one order-isomorphism class of ultra-
powers RY /U or else there are 22° many non-isomorphic ultrapowers [11];

b) there is a model of set theory that satisfies wy < 2* in which there are different free
ultrafilters Uy and Us on w such that the ultrapowers R /Uy and RY /Uy are not order
isomorphic and not homeomorphic [33], [7];

c) there is a model of set theory with the property that wy < 2 and there is a set W
containing 2*“-many free ultrafilters on w with the property that if U,V are different
members of W, then the ultrapowers RY /U and R¥/V have different cofinalities and are
therefore not order isomorphic and not homeomorphic [1]. See also [5].

In later sections we will show that CH is equivalent to various topological statements about
small 7;-spaces, e.g.,

Theorem 1.3 The Continuum Hypothesis is equivalent to each of the following statements:

a) for any small ny-space X and any n < w, X" is hereditarily paracompact (see 3.2);
b) for any small n1-space X and any n < w, X™ is monotonically normal (see 4.8);
¢) any small ny-space is realcompact(see 5.5);

d) any small ny-space is Dieudonné-complete(see 5.5);

e) for any small ny-space X, the space X? is normal (see 4.9);

f) for any small ny-spaces X and Y, the space X XY is normal (see 4.9).

In Section 5, we examine properties related to completeness in n;-spaces, e.g., the Baire cat-
egory property, de Groot’s subcompactness, Oxtoby’s pseudocompleteness, and Choquet’s weak
a-favorably, and we show that any product of n;-spaces is a Baire space. In Section 6 we examine
Husek’s small diagonal property in n;-spaces. We show that an n;-space has a small diagonal if
and only if each subset S with |S| < w; is closed, and that in ZFC there are n;-spaces that have
a small diagonal (see 6.3) and other n;-spaces that do not, but these examples are not small. In
addition, the Continuum Hypothesis guarantees that no small 7;-space can have a small diagonal
(see 6.4). In models where CH fails, the situation can be more complicated. We show in Example
6.7 that if CH fails, then there must be a small n;-space (which is not an ultrapower) that does not
have a small diagonal, and that if CH fails and we restrict attention to ultrapowers R“ /U then it
is undecidable whether each ultrapower R* /U must have a small diagonal.



2 Examples and basic properties of 7,-sets and spaces

To paraphrase Gillman and Jerison (p.177 of [13]), it is not at all obvious that n;-sets exist. We
begin with a few well-known examples that will be important in later sections.

Example 2.1 Ezample via lexicographic orderings

Consider the product set X = {0,1}** and its subset Y = {f € X : for some o < wy, f(a) =
0 and for all 8 € (a,wy), f(B) = 1}. Use the lexicographic ordering < on the set Y. Then (Y, <) is
an 7;-set with cardinality 2¥. See pp. 185-189 of [13]. O

Example 2.2 Ezxample via quotient rings

Let R denote the usual space of real numbers and C(R) be the ring of continuous functions from
R to itself. Let Z be the collection of all zero-sets of functions in C'(R). There is an ultrafilter
F contained in Z that contains the collection {[n,—) : n < w}. Then the collection M = {f €
C(R) : f7!0] € F} is a maximal ideal in C(R) so that the quotient ring C(R)/M is a linearly
ordered field. (Note that two cosets f + M and g + M are equal if and only if f — g € M, i.e.,
f(z) = g(x) for all z in some member of F, and f+ M < g+ M if and only if f(z) < g(z) for
all x in some member of F.) This field contains a copy of the usual field of real numbers, namely
{f+ M :r € R} where 7 : R — R is the constant function with value r. This field also contains
the coset i + M where i(z) = z for all € R so that for each r € R we have 7 + M < i+ M and
therefore {7 + M : r € R} is a proper subset of C'(R)/M and C(R)/M is non-Archimedian. This
shows that, in the terminology of [13], M is a hyper-real ideal and C'(R)/M is a hyper-real field
with cardinality 2. See [13] for a proof that the field C(R)/M is an n;-set. O

Example 2.3 FEzample via ultrapowers

Let U be any free ultrafilter of subsets of w. Define that two functions f,g € R¥ have f = ¢
provided f(z) = g(z) for every x in some member of Y and that two of the resulting equivalence
classes have cls(f) < cls(g) provided f(z) < g(z) for all x in some member of . The resulting set
of equivalence classes {cls(f) : f € R¥} is the ultrapower R /U and it follows from Los’ theorem
(or can easily be proved directly) that with point-wise operations, {cls(f) : f € R¥} is a linearly
ordered field with cardinality 2* and is an 7;-set. O

While small 7;-sets (i.e., n;-sets with cardinality 2¢) are particularly interesting, there is no limit
on the cardinality of n;-sets.

Example 2.4 There are n,-sets with arbitrarily large cardinality.

Proof: We give three examples. Fix a regular initial ordinal x > 2% and an n;-space X, and let
Y] be the lexicographic product £ x X. A more interesting example starts with £ > 2“ and has
Yo = {f € {0,1}" : some o < k has f(a) = 0 and for each 8 € (a, k), f(5) = 1}. Then Y| > k.
Use the lexicographic ordering < of Y5. If A, B C Y5 have cardinality less than x and have a < b
for each a € A and b € B, then some xz € X lies strictly between the sets A and B. Taking A
and B to have cardinality w we see that (Y3, <) is an 7;-set. See problem 13Q) in [13]. As a third



alternative, let U be a regular! ultrafilter on a non-measurable cardinal x. Then the cardinality of
the ultrapower Y3 = R*/U is |R”*| (see [12]) and as in Example 2.3, this space is an n;-set (or see
Theorem 5.6 in [22]). O

The next lemma lists basic properties of n;-sets and n;-spaces. Proofs of a), b), and ¢) in the
following lemma can be found in [13] . Assertion d) follows from the definition of an 7;-set because
if (a,,by,) is a decreasing sequence of open intervals in an n;-space, then ({(an,b,) : n < w} # 0.
Assertion e) follows from the fact that any 7;-space is a linearly ordered topological space (= LOTS);
for details, see [25]. The proof of assertion f) is a modification of the proof of assertion c¢) found
n [13]. Assertion g) holds because no strictly increasing countable sequence in an 7;-space X can
have a limit in X.

Lemma 2.5 Suppose (X, <) is an n1-set and 7 is the open interval topology of <. Then:

a) (X, <) has no endpoints and no jumps (i.e., is dense ordered);
b) each countable linearly ordered set order-embeds in (X, <);

¢) the cardinality of X has | X| > 2¥;

d) every Gs-subset of the space (X, T) is open;

e) The space (X, T) is hereditarily collectionwise normal, monotonically normal [18],
and hereditarily countably paracompact;

f) there is a partition J of X where J C 7 and |J| = 2 and therefore any topological
space Y with |Y| < 2% is a continuous image of (X, 1);

g) No mi-space can be Lindeldf, first-countable, or metrizable, and every (countably)
compact subset of an ni-space is finite. Because no connected subset of an n,-space can
have more than one point, no n,-space can be connected or locally connected.

3 Paracompactness in 7);-spaces

As noted in Lemma 2.5, no n;-space can be Lindel6f, but there are other important covering
properties that an 7;-space might have. In this section, we consider the property of paracompact-
ness. (Because any n;-space X is a LOTS, paracompactness in X is equivalent to a family of other
covering properties such as “every open cover has a point-countable open refinement”.) We begin
with an example showing that an 7n;-space can fail to be paracompact.

Example 3.1 In ZFC there is a non-paracompact n,-space whose cardinality is max (2, wy).

Proof: Let (X, <,7) be the n-field of Example 2.3 and let 0 denote the zero element of X. We
know that | X| = 2¥. Let S be any stationary set in wy with the property that each a € S has
cofinality w;. (For example, the set S = {& € wy : ¢f(a) = wy} is such a set.) Then |S| = wy. Let

Y(S) ={(a,z) € [0,ws) x X : cf(a) <wi}U(S x {0}).

L An ultrafilter U on k is regular if there is a subcollection & C U that has || = k and is point-countable. For any
Kk there is a regular ultrafilter on x and provided U is a regular ultrafilter, the ultraproduct R” /U has cardinality ¢*
[12].



Let < be the lexicographic ordering of Y (.S). Then (Y'(S), <) is an n;-set and the set Z = {(«a,0) €
Y(S): a € S} is a closed subspace of (Y (.5), <, 7) that is homeomorphic to the stationary subspace
S of wy. Therefore (Y(S), <,7T) cannot be paracompact [10]. Note that |Y'(S)| = max(wsq,2¥) and
that this example makes no assumption about the relative sizes of w, and 2¥. O

Recall that a small 7;-space is an 7;-space with the smallest possible cardinality, i.e., with
cardinality 2¢.

Proposition 3.2 The following are equivalent:
a) the Continuum Hypothesis(CH);
b) every small ny-space is hereditarily paracompact;
c) every small ny-space is paracompact;

d) for every small ny-space X, X™ is hereditarily paracompact for each n < w.

Proof: To prove a) = b), note that if the LOTS (X, <,7) is not hereditarily paracompact, then
there is a stationary subspace of some regular uncountable cardinal s that embeds as a subspace
of X [10]. Because X is small, (CH) gives | X| = 2¥ = w; so that k = w;. Therefore the stationary
subspace S must contain non-trivial convergent sequences. But X is an n;-space so that X does
not contain any nontrivial convergent sequences. This contradiction shows that b) holds.

That b) implies ¢) is trivial. To prove that ¢) implies a), consider the contrapositive and suppose
a) fails, i.e., suppose w; < 2“. Then wy < 2¥ so that max(ws,2¥) = 2¢. Therefore the space of
Example 3.1 is a non-paracompact 7;-space of cardinality 2¥; contradicting c). Hence c) implies a).

Obviously assertion d) implies assertion b), and therefore implies assertion a). To see that
a) implies d), we use Corollary 4.8 below which shows that every ultrapower of R has (R*/U)"
hereditarily paracompact for every n < w and then use the fact that, under CH, every small 7;-
space X is homeomorphic to the ultrapower R /U (see Theorem 1.1), so that X" is hereditarily
paracompact. O

Proposition 3.2 shows that the small n;-spaces of Examples 2.1, 2.2, and 2.3 are paracompact
provided we assume CH. But even more is true: the spaces of Examples 2.2 and 2.3 are paracompact
in ZFC, and so are their finite powers, as will be shown in the next section (see Corollary 4.8).

Remark 3.3 There is an alternate proof of a) implies ¢) in our Proposition 3.2 based on Bankston’s
Theorem 6.1 in [2]. The ultraproduct of a collection of topological spaces {(X;,T;) : i € w} with
respect to an ultrafilter & on w is formed as follows. Let Y be the usual product Y = II{X; : i < w}
of the sets X; and let ¢ be the quotient function from Y to the ultraproduct set II{X; : i € w}/U.
Next, endow Y with the box-product topology and use the quotient topology defined by ¢ for the
set TI{X; : i € w}/U. This gives the ultraproduct of the spaces (X;, 7;). One can check that if each
X, is the usual linearly ordered space R of real numbers, then Bankston’s ultraproduct topology
coincides with the LOTS topology on R* /U described in Example 2.3. Bankston proved that the
Continuum Hypothesis is equivalent to the statement “Provided each space (Xj,7;) is regular and
has weight < 2¢/ then for any ultrafilter & on w, the topological ultraproduct II{(X;, 7T;) : i € w}/U
is paracompact.” Thus the Continuum Hypothesis (which is statement (a) of 3.2) implies that the
ultrapower Y = R¥/U of Example 2.3 is paracompact, and then Theorem 1.1 shows that, under
CH, every n;-space of cardinality 2* = w; is homeomorphic to Y and consequently is paracompact.



4 Products of ultrapowers, n;-spaces, and A-metric spaces

In this section we study finite powers of 7;-spaces, forcusing on the properties of normality,
paracompactness, and monotone normality. We use these results in Proposition 3.2 in the previous
section, and to prove parts b), e), and f) of Theorem 1.3.

Because any n;-space X is a LOTS, any n;-space X is normal, collectionwise normal, and
monotonically normal (see Definition 4.6 below). We begin with an example showing that squares
of ni-spaces can fail to be normal.

Example 4.1 In ZFC, there is an n;-space with cardinality max(ws, 2*) whose square is not normal.

Proof: Any stationary subset of wy can be split into two disjoint stationary subsets?. Let S and T'
be two disjoint stationary subsets of w, with the property that each o« € S UT has cofinality w;.
As in Example 3.1, make n;-sets X (S) and X (7') that contain, respectively, copies of S and T as

closed subsets. Let Y = <{0} X X(S)) U ({1} X X(T)) be the lexicographically ordered r;-set

where each element of X (S) precedes each element of X (7'). Then |Y| = max(wq,2*) and S x T is
a closed subset of Y2, Because S and T are disjoint stationary subsets of wy we know that S x T'
is not normal [24]. Therefore, neither is V2. O

However, the situation is completely different if the 7;-space X is a linearly ordered topological
field such as C'(R)/M in Example 2.2 or an ultrapower R¥/U as in Example 2.3. Our arguments
involve a metric-like structure that we call an A-metric where (A, +, <) is a linearly ordered Abelian
group. This idea has been studied under many names: see Remark 4.10, below.

Definition 4.2 Let (A, +,<) be a linearly ordered Abelian group. By an A-metric on a set X,
we mean a function d : X x X — A that satisfies the usual metric-like properties, i.e., for each
x,y,z2 € X,

a) d(z,y) >0 and d(z,y) = 0 if and only if v = y;
b) d(z,y) = d(y,z);
¢) d(z,z) < d(z,y) +d(y, z).
An A-metric space is a topological space X with an A-metric d : X x X — A having the property

that if B(x,e) ={y € X : d(x,y) < €} (where e € A and € > 0), then {B(z,€) : e € A,e > 0} is an
open neighborhood base at x.

Lemma 4.3 Suppose X is a A-metric space. Then so is every subspace of X and every product
space X™ for finite n > 1.

2In fact, there is a collection of wy-many pairwise disjoint stationary subsets of a given stationary set such as
{a < wsq : cf(a) =wr}. See Theorem 12.5 of [15] for Solovay’s theorem [35], or use a slight modification of the Ulam
matrix technique described in [31] [36].



Proof: For a subspace Y C X, simply restrict the given A-metric function to the subset Y2 of X2,
For the product space X" for a finite n, define a function D : X™ x X™ — A by the rule

D((z1, -+, 2n), (Y1, -+ yn)) = d(1,91) + -+ + d(Tn, Yn)

where d : X x X — A is the given A-metric for X. O

Lemma 4.4 For each n < w, each of the following is an A-metic space:

a) the space (R /U)" where U is any free ultrafilter on w;
b) the space <C’(]R)/M> with C(R) and M as in Example 2.2;

c) the space X™ where X is any linearly ordered topological Abelian group X .

Proof: To prove (a), write X = R“/U. Note that (X, +, <) is a linearly ordered Abelian group and
define d : X x X — X by the rule that d(a,b) = b —a if a < b and d(a,b) = a — b otherwise. It
is easy to verify that d is an A-metric compatible with the open-interval topology of X so that by
Lemma 4.3 the space X" is also an A-metric space for each finite n. The proofs of (b) and (c) are
analogous. O

Many of the proofs in the study of A-metric spaces closely resemble the proofs of analogous
statements about metric spaces, provided one takes a little extra care, e.g., when trying to compute
the distance from a point of X to a subset of X. We give an example in the next Lemma and
Proposition. Suppose X is an A-metric space with d : X x X — A, where (A, +,<) is a linearly
ordered Abelian group. Let A' be the Dedekind completion of the linearly ordered set (A, <).
Because the ordering of A1 extends the ordering < of A, we use the same symbol < to denote the
orderings of both A and A". For any nonempty C' C X and any xz € X, let

dist(xz,C) = inf{d(x,a) : a € C}

where the infimum is taken in the set A*. Then dist(xz,C) € AT and can be compared to various
elements of A or of AT, as in statements like € < dist(x,C) and dist(z,C) < dist(x, D). However
dist(x,C) is probably not an element of the group A so that operations such as a + dist(b, C') or
2% dist(b, C) are probably not defined. Nevertheless, with a little care we can avoid such problems.

Lemma 4.5 Let X be an A-metric space over the linearly ordered Abelian group (A, +, <) and let
d: X x X — A be an A-metric as defined above. Let C C X and e >0 in A. Then:

a) the set V = {x € X : dist(x,C) > €} is open so that {x € X : dist(z,C) < €} is closed;
b) the set W = {x € X : dist(x,C) < €} is open so that {x € X : dist(x,C) > €} is closed.

Proof: If the set P = {a € A : a > 0} has a first element €, then for each x € X, the set B(x,¢p) =
{z} so that X is discrete and therefor assertions a) and b) are trivial. So assume that P has no
first element. Let 2o € V, so that dist(zg,C') > €. Because (A, <) has no jumps, there are points
a, B € A having dist(zg,C) > a > [ > €. Then for all z € C, d(zg,z) > dist(xg,C) > a > [ > €.
Let 6 = a— 3. Then § > 0. Consider any y € B(xg,d). Then d(zg,y) < 0. Suppose there is some



2o € C having d(y, z9) < 8. Because zg € C, d(xg,zy) > dist(xg,C) > a > [ > e. The triangle
inequality gives

d(zo, 20) < d(xo,y) +d(y, 20) < d(z0,y) + B <6+ =(a— )+ =a < dist(xg,C) < d(zo, 20)

so that d(xo, z0) < d(xg, z0) and that is impossible. Therefore, for each z € C we have d(y, z) > 5 > €
showing that B(zg,d) C V. Therefore V' is open and its complement is closed.

Next consider any € W. Then dist(z,C') < € so there are points g, h € A with dist(z,C) < h <
g < e. Let 6 = g— h and suppose y € B(x,d). There is some ¢ € C with dist(z,C) < d(z,c) < h.
Then
d(y,a) <d(y,z)+d(z,c) <d+h=(g—h)+h=g<e

showing that B(z,d) C W. Therefore W is open, and its complement is closed. O

There is a strengthening of normality called monotone normality that was introduced by Borges
and studied in [18]. Monotone normality is a property shared by many classes of generalized metric
spaces, and also by ordered spaces.

Definition 4.6 A space X is monotonically normal if for each pair (C, D) of disjoint closed sets
in X, there is an open set G(C, D) with the property that C' C G(C, D) C cl(G(C’, D)) CX-D
and with the monotonicity property that if (Cy, Dy) and (Cy, Dy) are pairs of disjoint closed sets
with CI Q CQ and D1 2 DQ, then G(Cl, Dl) Q G(CQ, Dg)

The next result is already known (see p. 283 of [28]). Our proof is particularly transparent.

Proposition 4.7 FEvery A-metric space is monotonically normal .

Proof: Suppose (C, D) is a pair of disjoint closed sets in the A-metric space X. Define

G(C,D)={z € X : dist(z,C) < dist(z, D)}.

Then G(C, D) is open because if o € G(C, D) we may choose ¢ € A with dist(xy,C) < € <
dist(xq, D). Apply both parts of Lemma 4.5 to find a § with the property that

B(z9,0) C{z € X : dist(z,C) < e} N{r € X : e < dist(x, D)}.

Then B(zg,€) C G(C, D), as required. Next C' C G(C, D) because if x € C then z is not in the
closed set D so we have dist(z,C) = 0 < dist(z, D). Further, G(C,D) N G(D,C) = () so that
clx(G(C,D)) € X — D. Finally, suppose (C}, D;) and (Cs, Ds) are pairs of disjoint closed sets with
Cy C Cy and Dy € D;. We must show that G(Cy, D) € G(Cy, D). For contradiction, suppose
that is not true, and choose x € G(Cy, D1) — G(Cs, D3). Then we have

(1) dist(z,Cy) < dist(z, Dy) and
(2) dist(x, Dy) < dist(x,Cs)
Because C; C Cy and Dy € D; we know that
(3) dist(x,Cy) < dist(z,Cy) and dist(x, Dy) < dist(z, Ds).

8



To verify the first statement of (3) note that {d(z,a) : a € C1} C {d(z,a) : a € Cs} so that
inf({d(z,a) : a € Cy}) < inf({d(z,a) : a € C1}), ie., dist(x,Cy) < dist(z,Cy). The second
statement in (3) is proved analogously. But then we have

dist(x, Dy) < dist(x,Cs) < dist(x,Cy) < dist(x, Dy) < dist(x, Do)

which gives dist(z, Dy) < dist(x, Dy) and that is impossible. O

We can now summarize the main results in this section as follows.

Corollary 4.8 If X is the ultrapower R /U where U is a free ultrafilter on w or if X is a linearly
ordered topological field such as C(R)/M of Example 2.2, then:

a) in ZFC, for each n < w, X™ is hereditarily paracompact and monotonically normal;

b) under the Continuum Hypothesis (CH), if X is any small n;-space (i.e., | X| < 2¢),
then every finite power of X is hereditarily paracompact and monotonically normal.

Proof: To prove assertion (a), fix n > 1. From Proposition 4.3 we know that each X" is an A-metric
space where A is the linearly ordered Abelian group A = R*/U. Therefore X™ is monotonically
normal by Proposition 4.7. Next note that X™ is a topological vector space over the field F' = R¥ /U
(and therefore an additive group), and recall the theorem of Buziakova and Vural [6] which states
that any monotonically normal topological group is hereditarily paracompact. Therefore X" is
hereditarily paracompact. A second proof of assertion (a) is based on the theorem of Balogh and
Rudin [3] which states that a monotonically normal space is hereditarily paracompact if and only if
it contains no subspace that is homeomorphic to a stationary set in an uncountable regular initial
ordinal. Given the Balogh-Rudin theorem, combined with the easy proof that no stationary subset
of an uncountable regular initial ordinal can be an A-metric space, Proposition 4.7 completes the
proof of the first part of assertion a). The proof of the second part, where X = C(R)/M, is
analogous.

To prove assertion b), recall that under CH, Theorem 1.1 shows that every small 7;-space is
homeomorphic to the ultrapower R¥ /U where U is any free ultrafilter on w, so that b) follows from
a). O

Corollary 4.9 The following statements are equivalent:

a) the Continuum Hypothesis.
b) If X and Y are small n;-spaces, then X x 'Y is normal.

c) If X is a small ny-space, then X? is normal.

Proof: Suppose (a) holds and that X and Y are small 1;-spaces. Then there is a single free ultrafilter
U on w with the property that both X and Y are homeomorphic to the ultrapower R“ /Y. But then
X x Y is homeomorphic to (R¥/U)* and that space is normal by Corollary 4.8. Hence (a) implies
(b). Trivially (b) implies (c). To show that (c) implies (a), we verify the contrapositive. Suppose
that (c) holds and (a) does not. Then ws < 2¥ so that Example 4.1 gives an n;-space X whose
square is not normal and whose cardinality is max(ws,2¥) = 2 and that contradicts(c). O



Remark 4.10 Historical links. What we called an A-metric space has been studied under many
names. They are what Sikorski [34] called “w,-metrizable spaces,” and what Juhasz [21] called “x-
metric spaces,” both meaning that the space has a well-ordered uniformity {U, : o < w, } satisfying
Us C U, whenever o < f < k = w),. It is known ([34], [28], [29]) that this uniformity property is
equivalent to having the space’s topology defined by a metric-like function with values in an ordered
Abelian group, as in the above definition of A-metric spaces. In case X has a countable uniformity,
then the linearly ordered group A is the usual group of real numbers. In case k > w, then one can
use the group A = Z" with the lexicographic order. Note that if X is an A-metric space and k is
the co-initiality of the interval (0, —) in A, then X is a k-metric space in the sense of [21]. Juhasz
proved in [21] that any A-metric space (which he called a k-metric space) is paracompact. Because
any subspace Y of an A-metric space X is also an A-metric space, as is any finite power X" of X,
Juhasz actually proved that if X is a A-metric space, then each finite power X" of X is hereditarily
paracompact. Later, Vaughan introduced the class of k-stratifiable spaces in [37] and [38]. Any
A-metric space is k-stratifiable where « is the co-initiality of the set of positive members of (A, <).
Vaughan [37], [38] and Harris [16] proved that any s-stratifiable space is hereditarily paracompact,
and that for each finite n > 1, if X is k-stratifiable, then so is X™. This gives another proof of that
statement that any finite power of any A-metric space is hereditarily paracompact, a result that is
more general than our Proposition 4.8.

We have proved that if X is an n;-field, then X" is paracompact for each finite n > 1. By
contrast, the space given in Example 4.1 has a non-normal square and fails to be paracompact.
This leads to the following questions.

Question 4.11 Suppose X is a paracompact n;-space that is not necessarily an n,-field. Without
CH, is X? normal, paracompact, or monotonically normal? What about X™ for each finite n?

Question 4.12 Suppose X is an ni-space and X? is normal. Is X paracompact? (Note that by
Proposition 4.183, if X? is hereditarily normal then X is paracompact.)

The following general result is related to Question 4.12.

Proposition 4.13 Suppose X is a LOTS, a GO-space or, more generally, any monotonically nor-
mal space. If X? is hereditarily normal, then X is hereditarily paracompact.

Proof: We prove the contrapositive. Suppose X is not hereditarily paracompact. By the Balogh-
Rudin theorem in [3] there is an uncountable regular initial ordinal A and a stationary subset S C A
that is homeomorphic to a subspace of X (for GO-spaces, see the easier reference [10]). By Solovay’s
theorem [35] (see Theorem 12.5 of [15]) there are disjoint stationary subsets S; and Sy of A with
S1USy; € S. Then S; and Sy are homeomorphic to subspaces of X so that S; x Sy is a subspace
of X2, Because S; NSy = 0, the space S; x S5 is not normal, so X? is not hereditarily normal. O

Question 4.14 Suppose X is an A-metric space. Is X* an A-metric space? paracompact? normal?
In particular, if U is a free ultrafilter on w and X = R¥/U as in Example 2.3, is X“ paracompact?

Question 4.15 Suppose (X, 7, <) is a small n;-space. Modify the topology T by making using all
sets of the form [a, B) as a base for a new topology o (i.e., o is the Sorgenfrey modification of T).
Is the space (X, 0)? normal?
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5 Completeness properties in 7;-spaces

A space X is (countably) subcompact provided there is a base B of nonempty open subsets of
X such that if 7 C B is a (countable) regular filter base®, then (| JF # (). This property is a
considerable strengthening of the Baire-space property (which asserts that if G,, is a sequence of
dense open sets in X, then (J{G,, : n > 1} is dense in X).

Proposition 5.1 Any n;-space is countably subcompact and is pseudo-complete in the sense of [32].

Proof: Let B be the base whose members are all nonempty bounded open intervals of X and suppose
F C B is a countable regular filterbase. Index F as F = {I(n) : n > 1} where I(n) = (ay,, by).
Let A = {a, :n > 1} and B = {b, : n > 1}. We claim that for each m,n, a, < b,. If not,
then for some m,n we have b, < a,,. Choose a member [(k) € F with I(k) C I(m) N I(n) and
a point x € I(k). Then a, < z < b, and a, < = < b, which, combined with b, < a,, gives
xr < b, <a, <z and that is impossible. If we apply the definition of an 7,-set to the countable
subsets A and B, we find some y € X with the property that a,, <y < b, for every m,n > 1. Then
y € (| F as required.

To show that X is pseudo-complete in the sense of [32] we need a sequence of m-bases P(n) with
the property that if P(n) € P(n) has cl(P(n+ 1)) C P(n) then ({P(n) : n < w} # 0. With B as
above, let P(n) = B for each n. O

Corollary 5.2 The product of any number of ni-spaces is a Baire space.
Proof: This statement is true for countably subcompact spaces [14]. O

Proposition 5.3 Under the Continuum Hypothesis(CH), no small n;-space (i.e., with cardinality
2¢) can be subcompact.

Proof: Assume CH. Let X be an n;-space of cardinality 2 = wy, and suppose X is subcompact
with respect to a base B. Index X = {z, : @ < w;}. Choose B(0) € B with zy ¢ B(0). Now
suppose o < w; and we have chosen B(f) € B for each § < « in such a way that if 5 < v < «
then cl(B(v)) C B(B) and x5 € B(f). Then the collection {B(f) : f < a} is a regular filter base of
members of B, so that ({B(S) : < a} # 0. Because @ < wy, the set ({B(B) : 8 < a} is a Gs-set
and therefore is open by Lemma 2.5. Therefore some B(a) € B has cl(B(«)) C ({B(B) : 8 < a}
and z, ¢ B(a). This induction gives the regular filterbase F = {B(a) : a < w1} C B, and
NF C B(a) € X —{x,} for each a < wy, so (| F = (). This contradiction shows that X cannot be
subcompact. O

In fact, there are n;-spaces of arbitrarily large cardinality that are not subcompact. The key
result concerning r-saturated models is Theorem 6.6 in [23].

Proposition 5.4 For each reqular cardinal k, there is a k-saturated model of the of the theory
of dense linear orders without endpoints that has cardinality 2. This model gives and n,-space
(X, < 7) that is A-subcompact for each N\ < k but not subcompact.

3F is a regular filter base if for each By, By € F there is some B3 € F with cl(B3) C By N Bs.
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Proof: The first statement follows from Theorem 6.6 of [23]. Given the existence of the k-saturated
linear order (X, <) that has cardinality 2, then for each cardinal A < k every Gy-set in (X, <, 7)
is open so that a slight modification the proof used in Proposition 5.3 shows that X cannot be
subcompact. Furthermore, if B is the collection of all nonempty open intervals of X, then (| F # ()
for each regular filterbase F whose cardinality is A < k, so X is A-subcompact. O

A different kind of completeness property is realcompactness. A space X is realcompact if it can
be embedded as a closed subspace of some product of real lines. A weaker completeness property is
called Dieudonné completeness which is characterized as follows: a space X is Dieudonné-complete
if it can be embedded as a closed subset of a product of completely metrizable spaces [9]. The next
result establishes parts ¢) and d) of Theorem 1.3.

Proposition 5.5 The following are equivalent:
a) The Continuum Hypothesis (CH)
b) every small n;-space (i.e., having cardinality 2*) is realcompact

c) every small n;-space is Dieudonné complete.

Proof: First, suppose that (CH) holds. Let X be an n;-space of cardinality 2¢ = w;. Then X is
paracompact by Proposition 3.2, and Katétov showed that a paracompact space X is realcompact if
and only if each closed discrete subspace D C X is realcompact ([9], Problem 5.5.10). Mackey and
Hewitt showed that a discrete space is realcompact if and only if its cardinality is non-measurable
([9] Problem 3.11D), and Ulam [36] (see also [31]) proved that w; (which is |X]|) cannot be a
measurable cardinal. Therefore, assuming 2 = w; we see that any closed discrete subspace D of
X is realcompact, as required. Therefore a) implies b).

Any realcompact space is Dieudonné complete, so b) implies ¢)

To show that c) implies a), suppose every 1;-space of cardinality 2¢ is Dieudonné-complete. Be-
cause any Dieudonné-complete LOTS is paracompact (][20], [10], Problem 8.5.13-(j) in [9]), Propo-
sition 3.2 shows that the Continuum Hypothesis holds. O

Whether or not a given n;-space X has any of the completeness properties listed above, the space
Cp(X) of all continuous real-valued functions on X with the pointwise topology always has many
very strong completeness properties. Because every compact subset of the n;-space X is finite, our
next results also apply to Ci(X), the space of real-valued functions on X with the compact-open
topology. Our next result shows that for any n;-space X, C,(X) has properties much stronger than
being a Baire space (= any intersection of countably many dense open sets is dense) and can be used
to distinguish between certain strengthenings of the Baire-space property. See [26] for definitions
of the terms used in our next result.

Proposition 5.6 For any n,-space X, C,(X) is a Baire space. In fact, C,(X) has each of the
following stronger properties:

a) Cp(X) is pseudo-complete in the sense of Oxtoby;

b) Cp(X) is weakly a-favorable in the sense of Choquet;

¢) C,(X) has non-void intersection with every non-void Gs-subset of the product space R.

However, C,(X) is neither Cech-complete nor subcompact in the sense of de Groot.
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Proof: Because every countable subset of X is closed, assertions (a), (b), and (c) follow directly
from Theorem 8.4 in [26]. Because X is not a discrete space, it follows from Theorem 8.6 of [26]
that C,(X) is not Cech-complete and from [27] that X is not subcompact. O

6 Diagonal conditions in 7;-spaces

The hypothesis that the diagonal set Ay = {(z,z) : # € X} is a Gs-subset of X? is a component of
most metrization theorems?. But because any Gs-subset of any 7;-space is open (Proposition 2.5),
it is clear that no n;-space can have a Gs-diagonal. A weaker diagonal condition was introduced by
Husek in [19].

Definition 6.1 A space X has a small diagonal if for each uncountable subset T C X? — Ax there
is an open subset U of X? with the property that Ax C U and |T — U] > w.

For a study of the role of small diagonals in ordered spaces, see [4].

Proposition 6.2 An n,-space X has a small diagonal if and only if every subset S C X having
|S| < wy is closed in X.

Proof: First suppose that there is a non-closed subset S C X with |S| < w;. Because X cannot
contain a non-trivial convergent countable sequence, every countable subset of X is closed. Therefore
|S| = wy and there is a limit point p of S and a transfinite strictly monotone sequence {z(«) : o <
wi} of points of S that converges to p. Let T = {(z(a),z(a + 1)) € X? : @ < w;}. Then
T C X?— Ax and |T| = wy. If U is any open set in X? with Ay C U, then there is an open set
V in X with (p,p) € V? C U and therefore there is some 8 < w; with z(a) € V for all a > f.
But then T'— U C {(z(a),z(a+ 1)) : @ < 8} is a countable set, so that X does not have a small
diagonal. Contraposition shows that if X has a small diagonal, then every subset S C X with
|S| < w; must be closed in X.

Conversely, suppose every subset S C X having |S| < w; is closed in X, and let T C X? — Ax
be any uncountable set. Replacing 7" with a suitable subset, we may assume that |T'| = w;. For
i = 1,2, let m; be projection from X? onto the i* coordinate. Then the subsets S; = m;[T] of X
each have cardinality < w; and therefore the subspace S = S; U .S, of X is closed in X, as is each
of its subsets. Therefore, S is closed and discrete. Therefore the product space S x S is a closed
discrete subspace of X2. Let W = X2 —T. Then W is an open subspace of X? that contains the
diagonal Ay and because TNW = (), we see that T'— W is uncountable, as required to show that
X has a small diagonal. O

Corollary 6.3 In ZFC, there are ni-spaces that have a small diagonal.
Proof: As in the second part of Example 2.4, if we take a regular cardinal x > 2* we can construct

a linearly ordered set (Y3, <) with the property that given two sets A, B C Y5 each with cardinality
< k and having a < b for each a € A and b € B, some point of Y; lies between A and B. Then

4For example Okuyama [30] proved that a space is metrizable if and only if it has a Gs-diagonal, is paracompact,
and is a p-space in the sense of Arhangelskii.
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(Y2, <) is an m-space, and no set of cardinality w; has a limit point in Y5. Now Proposition 6.2
shows that Y, has a small diagonal. O

The situation for small n;-spaces, i.e., n;-spaces of cardinality 2¢, is more interesting and involves
the Continuum Hypothesis. We begin with:

Corollary 6.4 If the Continuum Hypothesis holds, then no ni-space of cardinality 2¥ can have
a small diagonal. (In particular, the spaces of Examples 2.1, 2.2, and 2.3 cannot have a small
diagonal.) Consequently, if some small n,-space has a small diagonal, then wy < 2¢.

Proof: Under CH, any small 7;-space has cardinality w; so that it has many non-closed subsets of
cardinality w;. Now apply 6.2. The final sentence in the corollary is the contrapositive of the first.
O

Without CH, the situation is more complicated, as our next results show. Recall the definition
of the special cardinal d. We begin with a partial ordering <* on the set w“ defined by the rule
that for some n € w, f(k) < g(k) for all kK > n. The cardinal d (called the dominating number) is
the smallest cardinal of a cofinal subset of the poset (w*, <*). See [8].

Corollary 6.5 If some ultrapower R” /U has a small diagonal, then the cofinality of R¥ /U is greater
than wy and the dominating number d > w;.

Proof: For contradiction, suppose d = wy, where d is the least cardinality of a cofinal subset of the
poset (w*, <*). There is an order-preserving mapping from (w*, <*) onto a cofinal subset of R* /U
so that R /U has cofinality w;. But then the function z — z~! shows that the set (0, 00) in R¥/U
has co-initiality wy so that (0, 00) contains a non-closed subset of R /U having cardinality w;. Now
apply Proposition 6.2. O

Corollary 6.6 Assume CH fails. Whether some ultrapower R¥ /U has a small diagonal is unde-
cidable because:

a) there is a model My of (ZFC + notCH) in which no ultrapower R* /U can have a
small diagonal; and

b) there is a model My of (ZFC + notCH) in which some ultrapower R /U has a small
diagonal.

Proof: To prove a), recall that there is a model M; of ZFC with w; = d < 2¥ (see Theorem 5.1
in [8]). In that model, for any free ultrafilter & on w, there is an order-preserving mapping from
the poset (w¥,<*) onto a cofinal subset of the ultrapower R“ /U, so that the ultrapower also has
cofinality w; as does its subset (+—,0) where 0 is the zero element of R¥/U. By Proposition 6.2,

R¥ /U cannot have a small diagonal. (This argument was suggested in a private communication by
Ilias Farah.)

To prove b) recall Roitman’s proof [33] that there is a model My of ZFC in which CH fails and
there are many ultrafilters on w that give an ultrapower of R having cofinality > w;. (See also [7].)
For any such ultrapower R* /U no subset with cardinality w; can have a limit point so that every
subset of cardinality w; is closed. Now apply Proposition 6.2. O

However, if we look at small 7;-spaces in general (rather than restricting ourselves to ultrapowers)
examples are easier to find and we have:

14



Example 6.7 If CH fails, then there is an ni-space of cardinality 2“ that does not have a small
diagonal.

Proof: Suppose CH fails. Then w; < wy < 2%, Let X = R¥/U for a free ultrafilter U, as in Example
2.3 and let
Y = ([0,w1) X X) U{(w1,0)} U ((,z) : w1 < @ < wy and z € X).

With the lexicographic order, Y is an n;-space of cardinality max(ws,2¥) = 2¢ and the set S =
{(a,z) : @ < w} is a set of cardinality w; that is not closed. By Proposition 6.2, Y cannot have a
small diagonal. O

Remark 6.8 Diagonal conditions are familiar components of metrization theorems, e.g., Okuyama’s
theorem [30] that a space is metrizable if and only if it has a Gs-diagonal, is paracompact, and is a
p-space in the sense of Arhangelskii. We have studied paracompactness in 7;-spaces in Section 3,
and this section discusses diagonal conditions in 7;-spaces. In passing we note that no n;-space can
be a p-space.

References

[1] Antonovskij, M., Chudnovsky, D., Chudnovsky, G., and Hewitt, E., Rings of real-
valued continuous functions II, Mathematische Zeitschrift 176(1981), 151-186.

[2] Bankston, P., Topological reduced products via good ultrafilters, General Topology and
its Applications 10(1979), 121-137.

[3] Balogh, Z. and Rudin, M., Monotonic normality, Topology and its Applications
47(1992), 115-127.

[4] Bennett, H. and Lutzer, D., Diagonal conditions in ordered spaces, Fundamenta Math-
ematicae 153(1997), 99-123.

[5] Blass, A. and Mildenberger, H., On the cofinality of ultrapowers, Journal of Symbolic
Logic 64(1999), 727-736.

[6] Buzyakova, R. and Vural, C., Stationary sets in topological and paratopological groups,
Houston Journal of Mathematics 40(2014), 267-273.

[7] Canjar, R.M., Countable ultraproducts without CH, Annals of Pure and Applied Logic,
37(1988), 1-79.

[8] van Douwen, E.K., The integers and topology, pp. 111-168 in Handbook of Set- Theoretic
Topology ed. by K. Kunen and J Vaughan, North Holland, Amsterdam, 1984.

9] Engelking, R., General Topology, Helderman-Verlag, Berlin, 1989.

[10] Engelking, R. and Lutzer, D., Paracompactness in ordered spaces, Fundamenta Math-
ematicae 94(1976), 49-58.

15



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Farah, I. and Shelah, S., A dichotomy for the number of ultrapowers, Journal of Math-
ematical Logic 10(2010) 45-81.

Frayne, T., Morel, A., and Scott, D., Reduced direct products, Fundamenta Mathe-
maticae 51(1962), 195-228.

Gillman, L. and Jerison, M., Rings of Continuous Functions , Van Nostrand, New
York, 1960.

de Groot, J., Subcompactness and the Baire category theorem, Indagationes Math.
25(1963), 761-767.

Hajnal, A. and Hamburger, P., Set Theory London Mathematical Society Student Texts
48, Cambridge University Press, Cambridge, UK 1999.

Harris, M. J., On stratifiable and elastic spaces, Proceedings of the American Mathe-
matical Society 122 (1994), 925-929.

Hausdorff, F., Untersuchungen uber Ordnungstypen V, Ber. uber die Verhandlungen
der Konigl. Sachs. Ges. der Wiss. zu Leipzig Math-phys Klasse, 59(1907), 105 - 159.

Heath, R., Lutzer, D., and Zenor, P., Monotonically normal spaces, Transactions of
the American Mathematical Society 178(1973), 481-493.

Husek, M., Topological spaces without w;-accessible diagonals, Commentationes Math-
ematicae Universitatis Carolinae 18(1977), T77-788.

Ishii, T., A new characterization of paracompactness, Proceedings of the Japan
Academy 35(1959), 435-6.

Juhasz, I., Untersuchungen uber w,-metrisierbare Raume, Annales Univ. Sci. Bu-
dapewst. FEotds Sect. Math. 8(1965), 129-145.

Keisler, H. J., The ultraproduct construction, pp 163-179 in Ultrafilters across Math-
ematics ed. by V. Bergleson et al., Contemporary Mathematics 530(2010), American
Mathematical Society, Providence, RI.

Keisler, H. J., Fundamentals of Model Theory, pp. 48-104 in Handbook of Mathematical
Logic ed. by J. Barwise, North Holland, Amsterdam, 1977.

Kemoto,N., Ohta, H., and Tamano, K., Products of spaces of ordinal numbers, Topology
and its Applications 45(1992)119-130.

Lutzer, D., On generalized ordered spaces, Dissertationes Mathematicae 89(1971),
41pp.

Lutzer, D. and McCoy R., Category in function spaces, I, Pacific Journal of Mathe-
matics 90(1980), 145-168.

16



[27]

28]

[29]

[30]

[31]
32]

[33]

[34]

[35]

[36]

[37]

[38]

Lutzer, D., van Mill, J., and Tkachuk, V., Amsterdam properties of Cp(X) imply
discreteness of X Canadian Mathematical Bulletin, 51(2008), 570-578.

Nyikos, P., Generalized metric spaces III: Linearly stratifiable spaces and analogous
classes of spaces, pp. 281-285 in Encyclopedia of General Topology ed. by. K. Hart, J.
Nagata, and J. Vaughan, Elsevier North Holland, Amsterdam, 2004.

Nyikos, P. and Reichel, H., Topological characterization of w,-metrizable spaces, Topol-
ogy and it Applications 44(1992), 293-308.

Okuyama, A., On metrizability of M-spaces, Proceedings of the Japan Academy
40(1964), 176-179.

Oxtoby, J., Measure and Category, Springer-Verlag, New York, 1971.

Oxtoby, J. Cartesian products of Baire spaces, Fundamenta Mathematicae 49(1961),
157-166.

Roitman, J., Nonisomorphic hyper-real fields from nonisomorphic ultrapowers, Math-
ematische Zeitschrift181(1982)93-96.

Sikorski, R., Remarks on some topological spaces of high power, Fundamenta Mathe-
maticae 37(1950), 125-136.

Solovay, R., Real-valued measurable cardinals, AMS Symposium of Pure Mathematics,
13(1971), 397-428.

Ulam, S., Zur Masstheorie in der allgemeinen Mengenlehre, Fundamenta Mathematicae
16 (1930), 141-150.

Vaughan, J., Linearly stratifiable spaces, Pacific Journal of Mathematics 43(1972),
253-265.

Vaughan, J., Zero-dimensional spaces from linear structures, Indagationes Mathemat-
icae 12(2001) 585-596.

17



