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Abstract: In this paper we use Mary Ellen Rudin’s solution of Nikiel’s problem to investigate
metrizability of certain subsets of compact monotonically normal spaces. We prove that if H is
a semi-stratifiable space that can be covered by a σ-locally-finite collection of closed metrizable
subspaces and if H embeds in a monotonically normal compact space, then H is metrizable. It
follows that if H is a semi-stratifiable space with a monotonically normal compactification, then
H is metrizable if it satisfies any one of the following: H has a σ-locally finite cover by compact
subsets; H is a σ-discrete space; H is a scattered; H is σ-compact. In addition, a countable space
X has a monotonically normal compactification if and only if X is metrizable. We also prove that
any semi-stratifiable space with a monotonically normal compactification is first-countable and is
the union of a family of dense metrizable subspaces. Having a monotonically normal compact-
ification is a crucial hypothesis in these results because R.W. Heath has given an example of a
countable non-metrizable stratifiable (and hence monotonically normal) group. We ask whether
a first-countable semi-stratifiable space must be metrizable if it has a monotonically normal com-
pactification. This is equivalent to “If X is a first-countable stratifiable space with a monotonically
normal compactification, must H be metrizable?”
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1 Introduction

Research since the 1970s shows that there are close parallels between generalized ordered (GO-)
spaces and monotonically normal spaces, particularly in the theories of cardinal functions and of
paracompactness (see [1]). In this paper we investigate the extent to which metrization theory for
subsets of compact monotonically normal spaces resembles metrization theory for GO-spaces, i.e.,
for subspaces of compact linearly ordered spaces.

One of the most celebrated results in recent set-theoretic topology is Mary Ellen Rudin’s solution
of Nikiel’s problem [17] and it is our primary tool in this study. Rudin proved:

Theorem 1.1 Any compact monotonically normal space is the continuous image of a compact
linearly ordered topological space.

In Section 4 of this paper we combine ordered space techniques with Theorem 1.1 to prove:
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Proposition 1.2 Suppose H is a subspace of a compact monotonically normal space (equivalently,
suppose H has a monotonically normal compactification). Then:

a) there is a GO-space (Z, τ,�) and a perfect irreducible mapping g from Z onto H with
the property that no fiber of g contains a jump of (Z,�) (see(4.2));

b) if each point of H is a Gδ-set, then each fiber of the mapping g is metrizable (see(4.3));

c) if H has a Gδ-diagonal, then so does Z (see 4.4)).

We use Proposition 1.2 to study which metrization theorems for GO-spaces can be extended to the
larger category of spaces with monotonically normal compactifications.

The basic metrization theorem for GO-spaces that might generalize to monotonically normal
spaces (because it does not mention the order of the GO-space) appears in [15]:

Theorem 1.3 A GO-space X is metrizable if and only if X is semi-stratifiable.

Easy examples show that Theorem 1.3 does not generalize to arbitrary monotonically normal spaces
because there are many non-metrizable spaces that are stratifiable [2], [3], [10], and stratifiable
spaces are exactly the semi-stratifiable monotonically normal spaces. However, because every GO-
space has a GO-compactification (which, of course, is monotonically normal), it is natural to ask
the following more interesting question:

Question 1: Suppose a space H is semi-stratifiable and has a monotonically normal compactifica-
tion. Must H be metrizable?

As a preliminary step toward that question, in this paper we prove the following result.

Theorem 1.4 Suppose H is a semi-stratifiable space with a monotonically normal compactification.
Then:

a) the space H is the union of a family of dense metrizable subspaces (see (3.4));

b) the space H is first-countable (see (3.4));

In addition, H is metrizable if any one of the following holds:

c) if there is a σ-locally finite cover of H by closed metrizable subsets (see (3.1));

d) if there is a σ-locally-finite cover of H by compact subsets (see 3.2(a));

e) if H =
⋃
{Hn : n ≥ 1} where each Hn is a closed discrete subset1 of H (see 3.2(b));

f) if H is scattered (see 3.2(c));

g) if H is σ-compact (see 3.2(d));

h) if H is countable (see 3.2(e)).

1In the literature, spaces that are countable unions of closed discrete subspaces are called “σ-discrete spaces.” If
a σ-discrete space H has a monotonically normal compactification, then it must be stratifiable, so that a theorem of
Gruenhage [8] shows that H must be at least M1. Our result shows that if a σ-discrete space H has a monotonically
normal compactification, then H is even more than M1.
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Theorem 1.4 can be used to show that certain spaces do not have monotonically normal compact-
ifications. For example, because a countable, first-countable space is metrizable, (1.4) shows that
(as pointed out by Collins [4]) the non-metrizable countable stratifiable group constructed by R.W.
Heath in [10] cannot have a monotonically normal compactification. In addition, our results can
also be seen as part of the study of spaces that embed in compact monotonically normal spaces, a
research program suggested by Collins in [4].

Because any semi-stratifiable space having a monotonically normal compactification must be
monotonically normal and hence stratifiable (see [13]), Theorem 1.4 (b) shows that Question 1 is
equivalent to:

Question 2: Suppose H is a first-countable stratifiable space with a monotonically normal com-
pactification. Must H be metrizable?

Remark 1.5 Our paper considers spaces that have a monotonically normal compactification and
shows that, under certain additional hypotheses, the spaces are metrizable. An interesting contrast
is provided by the paper [14] in which the authors show that some, but not all, metrizable spaces
have monotonically normal compactifications.

Our paper is organized as follows. Section 2 gives relevant definitions, and Section 3 gives the
proof of Theorem 1.4 by using a sequence of ordered space lemmas that appear in Section 4 where
Proposition 1.2 is proved. The key idea in Section 4 is a process that could be called a “compressing
jumps construction.”

Undefined terms are as in [6]. Intervals in a linearly ordered set (X,≤) are denoted by [a, b], (a, b),
etc., and all spaces are at least Hausdorff.

The authors would like to thank Peter Collins, Paul Gartside, Gary Gruenhage, and Peter
Nyikos for e-mails that helped us develop our ideas.

2 Definitions

Recall that a space is semi-stratifiable [5] if for each open set U there is a sequence S(n, U) of closed
sets with the property that U =

⋃
{S(n, U) : n ≥ 1} and with the property that if U ⊆ V are open,

then S(n, U) ⊆ S(n, V ) for each n ≥ 1.

For a space (X, T ), let P = {(A,U) : A is closed and U is open and A ⊆ U}. Recall that a
Hausdorff space (X, T ) is monotonically normal if there is a function G : P → T with the properties
that

a) A ⊆ G(A,U) ⊆ cl(G(A,U)) ⊆ U and

b) if (Ai, Ui) ∈ P with A1 ⊆ A2 and U1 ⊆ U2, then G(A1, U1) ⊆ G(A2, U2).

A space (X, T ) is stratifiable [2] if there is a function G : ω × T → T such that for each open
U,U =

⋃
{G(n, U) : n ∈ ω} =

⋃
{cl(G(n, U)) : n ∈ ω} and with the property that if U, V are open

with U ⊆ V , then G(n, U) ⊆ G(n, V ) for each n.
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It is easy to see that a space is stratifiable if and only if it is monotonically normal and semi-
stratifiable. The following relations are well-known:

X is metrizable⇒ X is stratifiable ⇒ X has a σ − discrete network⇒ X is semi− stratifiable

and none of those implications can be reversed.

A generalized ordered space (GO-space) is a triple (X, σ,≤) where ≤ is a linear ordering of X
and σ is a Hausdorff topology on X that has a base of order-convex sets. If the topology σ coincides
with the open-interval topology of the ordering ≤, then X is a linearly ordered topological space
(LOTS).

Monotone normality is a very strong property: it is hereditary and implies collectionwise normal-
ity (see [13]). The most familiar types of monotonically normal spaces are the stratifiable spaces
of Borges [2] and GO-spaces. However, there are monotonically normal spaces that are neither
stratifiable nor GO.

3 Proof of Theorem 1.4

In this section we prove a sequence of propositions that will establish Theorem 1.4. The proofs
make extensive use of some ordered space constructions that are given in Section 4. Part (c) of 1.4
(about σ-locally-finite covers by closed metrizable subsets) is the pivotal part of Theorem 1.4 and
we prove it first.

Proposition 3.1 Suppose H is a semi-stratifiable space with a monotonically normal compactifica-
tion K. If there is a σ-locally-finite covering of H by closed metrizable subsets, then H is metrizable.

Proof: According to Theorem 1.1, there is a compact LOTS L and a continuous mapping F from
L onto K. The restriction of F to the subspace X = F−1[H] is a perfect mapping and there is a
relatively closed subset Y of X = F−1[H] such that the restriction of F to Y is a perfect irreducible
mapping from Y onto H. Denote the restriction of F to the subspace Y by f .

Let σ be the topology that Y inherits from L and let ≤ be the linear ordering of Y obtained by
restricting the given ordering of the LOTS L. Then (Y, σ,≤) is a GO-space.

The fibers of f might contain jumps of (Y,≤) (i.e., intervals [a, b] of (Y,≤) with (a, b) = ∅) and
that complicates their topological structure. Lemma 4.1 allows us to collapse each jump of (Y,≤)
that is contained in some fiber of f , thereby obtaining a new GO-space (Z, τ,�) and a natural
projection π : Y → Z that is continuous, perfect, and irreducible. Lemma 4.2 gives a well-defined
function g(z) = f [π−1[z]] from Z onto H that is continuous, perfect, and irreducible and whose
fibers do not contain any jumps of (Z,�). According to Lemma 4.4, because H has a Gδ-diagonal,
so does Z.

Now suppose that H =
⋃
{Hn : n ≥ 1} is a cover of H by closed metrizable subspaces, where

each Hn is locally finite in H. If T ∈ Hn, then g−1[T ] is closed in Z and is a perfect preimage of
a metric space, so that g−1[T ] is a paracompact p-space in the sense of Arhangelskii (see [9]). But
then g−1[T ], being a paracompact p-space with a Gδ-diagonal, is metrizable ([2], [9]), and therefore
has a network NT that is σ-locally-finite in g−1[T ].
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Because Hn is locally-finite in H, we see that {g−1[T ] : T ∈ Hn} is a locally finite collection of
closed subsets in Z. Therefore, M =

⋃
{
⋃
{NT : T ∈ Hn} : n ≥ 1} is a σ-locally-finite collection of

subsets of Z, andM is a network for Z. But then Z is semi-stratifiable, so that Theorem 1.3 shows
that Z is metrizable. Because g : Z → H is a perfect mapping, it follows that H is metrizable. 2

Corollary 3.2 Suppose H is a semi-stratifiable space with a monotonically normal compactifica-
tion. Then H is metrizable if any one of the following holds:

a) H =
⋃
{Hn : n ≥ 1} where Hn is a locally finite collection of compact subsets of H;

b) H =
⋃
{Hn : n ≥ 1} where each Hn is a closed, discrete subspace of H;

c) H is a scattered;

d) H is σ-compact;

e) H is countable.

Proof: Recall that any compact subset of a semi-stratifiable space is metrizable [5]. Therefore a)
follows immediately from Proposition 3.1. For b), note that the collection of all singletons in Hn

is a locally finite collection. For d), note that if H =
⋃
{Hn : n ≥ 1} where each Hn is compact,

then Hn = {Hn} is the kind of σ-locally-finite cover described in a). For e), the set of all singleton
subsets of H is a σ-locally finite cover of H so that a) applies. Finally, to prove c), recall that
in [16], Nyikos proved that any scattered semi-stratifiable space is σ-closed-discrete and therefore
assertion a) gives assertion c). 2

Remark 3.3 : (1) In an e-mail, Paul Gartside pointed out another proof of assertion e): If H is
countable and has a monotonically normal compactification K, then K is separable and therefore
hereditarily Lindelöf by [7], so that K must be first-countable. Therefore H is first-countable and
countable, showing that H is second-countable.

(2) Because any countable metric space embeds in the usual space of rational numbers and therefore
has a linearly ordered compactification, part e) of Corollary 3.2 can be restated as “A countable
regular space H has a monotonically normal compactification if and only if H is metrizable.”

Proposition 3.4 Suppose H is a semi-stratifiable space that has a monotonically normal compact-
ification. Then H is a union of a family of dense metrizable subspaces, and H is first-countable.

Proof: The semi-stratifiable space H inherits monotone normality from its monotonically normal
compactification and therefore H is stratifiable. A theorem of R. W. Heath [11] [12] shows that H
has a network N that is σ-closed-discrete in H. Fix any point p ∈ H. Choose one point out of each
member of N , making sure that if p ∈ N ∈ N , then the point chosen from N is the point p. The
set of chosen points is a dense subspace Hp ⊆ H that contains p, and that is σ-closed-discrete in
H. Because Hp is a σ-closed-discrete space that has a monotonically normal compactification, part
a) of Corollary 3.2 shows that Hp is metrizable. Therefore H =

⋃
{Hp : p ∈ H} is a union of dense

metrizable subspaces.

To complete the proof, consider any fixed p ∈ H and consider the dense metrizable subset Hp of
H constructed above. Because H is regular and Hp is a first-countable dense subspace that contains
p, we see that H is also first-countable at p. 2
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4 Ordered space constructions and the proof of 1.2

In this section, we present propositions and some corollaries that prove Proposition 1.2 in Section
1 and that are used in Section 3 to give the proof of Theorem 1.4 from Section 1.

Recall that a jump in a linearly ordered set (Y,≤) is a closed interval [a, b] with (a, b) = ∅. We
describe a construction that collapses certain jumps of a GO-space (Y, σ,≤).

Collapsing Jumps Construction: Let (Y, σ,≤) be a GO-space. Suppose J is a pairwise disjoint
collection of jumps of (Y,≤).

1) Define Z = J ∪ {{y} : y ∈ Y −
⋃
J }. We will use the Greek letters α, β, γ and δ to denote

points of Z. These points of Z are also subsets of Y . For any α ∈ Z,min(α) is the smallest point
of the set α, and max(α) is the largest point of α. Because α is a finite subset of Y , both min(α)
and max(α) exist.

2) For α, β ∈ Z, define α � β if either α = β or if α 6= β and there exist a ∈ α and b ∈ β with
a < b in Y . Then � is a linear ordering of Z.

3) Define the natural projection π : Y → Z by π(y) = J is y ∈ J ∈ J and π(y) = {y} otherwise.
Then π is weakly increasing, i.e., if y1 < y2 in Y , then π(y1) � π(y2) in Z.

4) Let τ be the topology on Z having all sets of the following three forms as a subbase:

(i) (α, β) where α ≺ β;

(ii) [α,→) provided [min(α),→) ∈ σ;

(iii) (←, β] provided (←,max(β)] ∈ σ.

Lemma 4.1 With notation as in the Collapsing Jumps Construction, (Z, τ,�) is a GO-space and
the function π : (Y, σ) → (Z, τ) is a continuous, closed mapping whose fibers have at most two
points. 2

The proof of Lemma 4.1 is straightforward. Continuity of π is most easily proved by considering
the π-inverse image of subbasic open sets of τ .

Recall the hypothesis of Proposition 1.2. We have a space H that is contained in a compact
monotonically normal space K. Rudin’s Theorem 1.1 gives a compact LOTS L and a continuous
F : L→ K. We let X = F−1[H]. Then the restriction F |X is a perfect mapping from X onto H so
there is a closed subspace Y ⊆ X with the property that the restriction of F to Y gives a perfect
irreducible mapping of the GO-space Y onto H. We write f = F |Y and now we have the situation
described in Lemma 4.2.

Lemma 4.2 Suppose H is a topological space, (Y, σ,≤) is a GO-space, and f : Y → H is an
irreducible perfect mapping of Y onto H. Let J be the collection of all jumps [a, b] of Y having
f(a) = f(b). Then

a) J is a pairwise disjoint collection;

b) if (Z, τ,�) is the GO-space constructed by collapsing all members of J , then there is
an irreducible perfect mapping g from (Z, τ) onto H that satisfies f(y) = g(π(y)) for all
y ∈ Y ;

6



c) if α ≺ β in Z with (α, β) = ∅, then g(α) 6= g(β) so that no fiber of g contains a jump
of (Z,≺).

Proof: To prove (a), note that if there were adjacent jumps [a, b] and [b, c] in J , then f(a) = f(b) =
f(c) so that the points a, b, c would belong to a single fiber f−1[h] where h = f(a) ∈ H. But then
{b} = (a,→)∩ (←, c), showing that the non-degenerate fiber f−1[h] contains an isolated point of Y ,
contrary to hypothesis that f is irreducible. Therefore J is a pairwise disjoint collection, so that
the Collapsing Jumps construction can be applied to J .

To prove (b), for each α ∈ Z, choose any a ∈ α and define g(α) = f(a). Because f is constant
on each set α ∈ Z, we see that g is well-defined. To show that g is continuous, suppose D is
a closed subset of H. Then f−1[D] is closed in Y and because π is a closed mapping, π[f−1[D]]
is closed in (Z, τ). But π[f−1[D]] = g−1[D], so that g is continuous. To show that g is a closed
mapping, suppose C is a closed set in Z. Then π−1[C] is closed in Y so that f [π−1[C]] is closed in
H. But f [π−1[C]] = g[C], as required. Next, to show that g has compact fibers, note that for each
h ∈ H, g−1[h] = π[f−1[h]] is compact because f−1[h] is compact and π is continuous.

To show that g is irreducible, suppose U ⊆ Z is a nonempty open set. Then π−1[U ] is a nonempty
open set in Y so there is some h1 ∈ H with f−1[h1] ⊆ π−1[U ] because f is irreducible. But then
g−1[h1] = π[f−1[h1]] ⊆ U , showing that g is irreducible.

To prove (c), suppose α ≺ β in Z and that (α, β) = ∅ with g(α) = g(β). There are several
cases to consider. First, suppose |α| = |β| = 1, say α = {a}, β = {b}. Then in Y , (a, b) = ∅ and
f(a) = g(α) = g(β) = g(b) showing that [a, b] ∈ J . But then α = π(a) = π(b) = β contrary to
α ≺ β. Therefore, it cannot happen that both α and β are singletons. Without loss of generality,
suppose α = {a1, a2}. Let b = min(β). Then a1 < a2 < b and (a1, a2) = ∅ = (a2, b), showing that
a2 is an isolated point of Y . Note that f(b) = g(β) = g(α) = f(a1) = f(a2) so that a2 is an isolated
point of Y that is contained in a single non-degenerate fiber of f , contradicting irreducibility of f .
Therefore we cannot have (α, β) = ∅ and g(α) = g(β), as claimed. 2

Lemma 4.3 Suppose each point of the space H is a Gδ-subset of H and suppose g : (Z, τ,�)→ H
is the perfect irreducible onto mapping in Lemma 4.2. Then each fiber of g is metrizable.

Proof: Fix h ∈ H and open sets Un ⊆ H having {h} =
⋂
{Un : n ≥ 1}. Write M = g−1[h]. Each

g−1[Un] is open in Z and g−1[h] =
⋂
{g−1[Un] : n ≥ 1}. Let Vn be the collection of all convex

components of the set g−1[Un]. Suppose α 6= β are points of M . We may suppose α ≺ β. Because
α, β ∈M , from part (c) of Lemma 4.2 we know that (α, β) 6= ∅. Because g is irreducible, we know
that the open set (α, β) 6⊆ M . Choose γ ∈ (α, β) −M . Then there is some n with γ 6∈ g−1[Un]
so that γ 6∈ St(α,Vn). Because members of Vn are convex, it follows that β 6∈ St(α,Vn). Now we
know that the only point of M that belongs to

⋂
{St(α,Vn) : n ≥ 1} is the point α. Therefore

the collections Wn = {V ∩M : V ∈ Vn} are relatively open covers of M and show that M has a
Gδ-diagonal. Because M is compact, Sneider’s theorem (see [6]) shows that M is metrizable. 2

Lemma 4.4 Suppose the space H has a Gδ-diagonal and suppose g : (Z, τ,�) → H is a perfect
irreducible onto mapping as in Lemma 4.2. Then each fiber of g is metrizable and the space Z has
a Gδ-diagonal.
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Proof: Let {Un : n ≥ 1} be a Gδ-diagonal sequence of open covers of H. Let Wn be the collection
of all convex components of all sets of the form g−1[U ] for U ∈ Un. Each Wn is an open cover
of Z. Suppose α 6= β are points Z; we may suppose α ≺ β. If g(α) 6= g(β) then for some
n, g(β) 6∈ St(g(α),Un) so that β 6∈ St(α,Wn). The remaining case is where g(α) = g(β). Then
there is a single fiber M of g with α, β ∈ M and a minor modification of the proof of Lemma 4.3
shows that for some n ≥ 1, β 6∈ St(α,Wn). Therefore, Z has a Gδ-diagonal. 2

Remark: In Lemma 4.4, if we knew that (Z, τ,�) were a LOTS, or locally a LOTS, then we
could conclude that Z is metrizable, and that would give a positive answer to Questions 1 and 2.
Unfortunately, all we know is that Z is a GO-space, making Lemma 4.4 somewhat less useful for
our purposes because the existence of a Gδ-diagonal in a GO-space does not give metrizability as
the Sorgenfrey and Michael lines show. However, we use Lemma 4.4 in the proof of Proposition 3.1.
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