
Measurements and Gδ-Subsets of Domains
by

Harold Bennett, Mathematics Department, Texas Tech University, Lubbock, TX 79409

and

David Lutzer, Mathematics Department, College of William and Mary, Williamsburg, VA 23187

Abstract: In this paper we study domains, Scott domains, and the existence of measurements. We use
a space created by D.K. Burke to show that there is a Scott domain P for which max(P ) is a Gδ-subset
of P and yet no measurement µ on P has ker(µ) = max(P ). We also correct a mistake in the literature
asserting that [0, ω1) is a space of this type. We show that if P is a Scott domain and X ⊆ max(P ) is a
Gδ-subset of P , then X has a Gδ-diagonal and is weakly developable. We show that if X ⊆ max(P ) is a
Gδ-subset of P , where P is a domain but perhaps not a Scott domain, then X is domain-representable,
first-countable, and is the union of dense, completely metrizable subspaces. We also show that there is
a domain P such that max(P ) is the usual space of countable ordinals and is a Gδ-subset of P in the
Scott topology. Finally we show that the kernel of a measurement on a Scott domain can consistently be
a normal, separable, non-metrizable Moore space.
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1 Introduction

Domains and Scott domains are special kinds of partially ordered sets (posets)1. Any domain (P,v) has a
set of maximal elements, denoted max(P ), and these maximal elements are often thought of as being ideal
elements that are approximated by lower elements of the poset P . Non-maximal elements of P can be
thought of as giving partial information about the maximal elements above them, with a v b meaning that
b provides information that is at least as precise as the information provided by a. A familiar example is
the “interval domain for the set of real numbers,” i.e., the poset I whose members are all closed, bounded
intervals of the set R of real numbers, including degenerate intervals of the form [a, a] = {a} where a ∈ R,
and whose partial order v is reverse inclusion. Clearly max(I) = {[a, a] : a ∈ R}. Thus, from the point of
view of set theory, it makes sense to identify max(I) with the set of real numbers.

But there is more. Any domain (P,v) has a natural topology called the Scott topology, and max(P ) is
a dense subspace of P in that topology. A topological space X is said to be (Scott) domain representable
if there is a (Scott) domain P such that X is homeomorphic to max(P ) with the relative Scott topology.
Determining which spaces are (Scott) domain-representable is known as “the representation question.” See
[18] and [4] for surveys.

Sometimes a domain (P,v) will carry an additional structure called a measurement, a concept intro-
duced by Keye Martin in [16] and [17]. A measurement is a special kind of function µ from P to the
non-negative real numbers where µ(p) is often thought of as providing a numerical measure of the amount

1See Section 2 for technical definitions.
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of uncertainty in the information provided by the element p ∈ P , with µ(p) = 0 meaning that p provides
perfectly precise information. For example, in the Interval Domain I for the real numbers, the diameter
function µ([a, b]) = b−a is a measurement and a given [a, b] locates each of the maximal elements {c} with
c ∈ (a, b) to within an error of at most ε = b − a. See Section 2 for the rather technical definition of a
measurement.

The technical properties of a measurement µ on a domain P make it easy to prove that ker(µ), the set
of all a ∈ P with µ(a) = 0, is a subset of max(P ), and is a Gδ-subset of P (see Lemma 2.4.1 of [16]). A
special version of the representation question asks:

(Measurement Question) [18]: For which topological spaces X can we find a domain (or Scott
domain) (P,v) and a measurement µ on P so that X is homeomorphic to ker(µ) ⊆ max(P )?
A more restrictive version of this question asks when we can find a domain (or Scott domain)
P and a measurement µ on P such that X = max(P ) = ker(µ).

Martin proved (Theorem 4.7 of [15]) that for domains, the two parts of the measurement problem are the
same: if X = ker(µ) ⊆ P for some measurement µ on a domain P , then for some domain Q and some
measurement ν on Q, we have X = ker(ν) = max(Q). However, it is not clear whether Q will be a Scott
domain provided P is a Scott domain. Partial solutions of the Measurement Question are announced in
[18] and [19] and these partial solutions involve topological properties that are well-known in set-theoretic
topology – Moore spaces, Gδ-diagonals, etc. The authors of [18] asked:

(MMR Question): Is there a Scott domain (P,v) so that max(P ) is a Gδ-subset of P and yet
there is no measurement µ on P with ker(µ) = max(P )?

A negative answer to the MMR Question was announced in [19], where it was claimed that there is a
Scott domain P having the usual space [0, ω1) of countable ordinals as max(P ) and having the additional
property that max(P ) is a Gδ-subset of P . This would have solved the MMR Question in the negative,
because results announced in [18] and in [19] show that [0, ω1) cannot be ker(µ) for any measurement on a
domain. Unfortunately, we now know that [0, ω1) cannot be max(P ) for any Scott domain having max(P )
a Gδ-subset of P , as the following theorem and corollary show.

Theorem 1.1 Suppose that (P,v) is a Scott domain and that X ⊆ max(P ) is a Gδ-subset of P with the
Scott topology. Then :

a) there is a sequence 〈G(n)〉 of open covers of X such that if x ∈ Gn ∈ G(n) for each n, then
⋂
{Gn :

n ≥ 1} = {x}, so that X has a Gδ-diagonal;

b) there is a sequence 〈G(n)〉 of open covers of X such that if x ∈ Gn ∈ G(n), then the collection
{
⋂
{Gi : 1 ≤ i ≤ n} : n ≥ 1} is a local base at x, i.e., the space X is weakly developable in the sense

of [2] and therefore has a base of countable order in the sense of [20];

c) there is a sequence 〈G(n)〉 of open covers of the space X such that if F is a centered collection2 of
non-empty closed subsets of X, and if for each n ≥ 1 some Gn ∈ G(n) and some Fn ∈ F have
Fn ⊆ Gn, then

⋂
F 6= ∅, i.e., the space X is AF-complete in the sense of [2];

d) if X is completely regular, then X is Čech-complete;
2i.e., a collection with the finite intersection property
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e) if X is T3 and θ-refinable 3, then X is a complete Moore space, and if X is paracompact then X is
completely metrizable.

Corollary 1.2 Suppose that P is a Scott domain and that X ⊆ max(P ) is a Gδ-subset of P . If the space
X is regular and countably compact, then X is a compact metrizable space.

Corollary 1.2 shows that [0, ω1) cannot have the properties claimed in [19]. Both Theorem 1.1 and Corollary
1.2 are proved in Section 3 of our paper.

The main result in Section 4 of our paper shows that a space constructed by Burke [6] gives a negative
answer to the MMR Question. Burke’s space is a locally compact Hausdorff space with a Gδ-diagonal that
is not a Moore space and is not θ-refinable. We describe a Scott domain P with Burke’s space as max(P )
and we show that max(P ) is a Gδ-subset of P . Then we invoke a theorem of Martin [16] about spaces
that are kernels of measurements to show that Burke’s space cannot be the kernel of a measurement on P .
Similar arguments show that the space Ψ of [10] is also max(P ) for some Scott domain P having max(P ) a
Gδ-subset of P , and therefore the conclusion in part (b) of Theorem 1.1 cannot be strengthened to assert
that the space X must have a sharp base in the sense of [2].

The proof of Theorem 1.1 uses the Scott domain hypothesis at several crucial points, and it is natural
to ask what can be said about the space X ⊆ max(P ) in case X is a Gδ-subset of P where P is a domain
but perhaps not a Scott-domain. Such spaces exist: in Section 5 we show that there is a domain P such
that [0, ω1) = max(P ) is a Gδ-subset of P and yet (from Corollary 1.2) there is no Scott domain Q such
that [0, ω1) ⊆ max(Q) is a Gδ-subset of Q. In Section 5 we investigate this situation and prove:

Theorem 1.3 Suppose that (P,v) is a domain and that in the Scott topology on P , the set X ⊆ max(P )
is a Gδ-subset of P . Then with the relative Scott topology, X is first-countable and domain representable,
and X is a union of dense Gδ-subspaces, each of which is completely metrizable.

Our final section lists a sequence of open questions that may interest topologists and domain theorists.

Relation to the literature: K. Martin (Theorem 4.1 of [15]) has shown that the following assertions about
a space X are equivalent:

a) there is a domain D with X ⊆ max(D) where X is a Gδ-subset of D

b) there is a domain E such that X = max(E) and max(E) is a Gδ-subset of E.

Nevertheless, to be consistent with other parts of the literature, we state many of our results with what
appears to be the more general hypothesis (a).

Chapter 5 of [16] contains many results that are related to our Theorems 1.1 and 1.3, but different in
subtle ways. For example, Martin’s Theorem 5.7.1 [16] shows that if P is a Scott domain and if X ⊆ max(P )
is paracompact and is a Gδ-subset of P , then X is metrizable. We obtain that result as a corollary of using
the theory of weak developments [2] to X. As another example, Martin’s Theorem 5.7.2 [16] asserts that
if D is a Scott domain and if X ⊆ max(D) is a Gδ-subset of D, then some subspace Y ⊆ X is dense in X,
is a Gδ-subset of X, and is completely metrizable. Our Theorem 1.3 is proved by very different methods
under weaker hypotheses (we do not assume that P is a Scott domain) and gives stronger conclusions.

Throughout this paper the symbols R, P, and Q denote the usual spaces of real, irrational, and rational
numbers.

3θ-refinable = submetacompact; see Section 2 for the definition.
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2 Basic definitions

Let (P,v) be a partially ordered set (poset). For any p ∈ P let ↑(y) := {z ∈ P : y v z} and ↓(y) := {x ∈
P : x v y}. The supremum of a nonempty bounded set S in P is the least of all the upper bounds of S, if
such exists. A subset E ⊆ P is directed if it is non-empty and has the property that if e1, e2 ∈ E then some
e3 ∈ E has e1, e2 v e3. The poset P is a directed complete partial order (dcpo) if sup(E) ∈ P whenever E
is a directed subset of P .

In any poset (P,v) one can define an auxiliary relation � as follows: a � b means that for any directed
set E with b v sup(E), there is some e ∈ E with a v e. We use the notation ⇑(a) := {b ∈ P : a � b}
and ⇓(b) := {a ∈ P : a � b}. The poset P is continuous if for each b ∈ P , the set ⇓(b) is directed and has
sup(⇓(b)) = b. A domain is a continuous dcpo. A Scott domain is a domain S with the added property
that any finite bounded subset F ⊆ S has sup(F ) ∈ S. Because F = ∅ is a finite bounded subset of S, it
follows that a Scott domain must have a minimum element (which is sup(∅)). The following lemma gives
an equivalent way to look at Scott domains.

Lemma 2.1 A domain (D,v) is a Scott domain if and only if D has a minimum element 0D and whenever
p, q ∈ P have p, q v r for some r ∈ P , then sup(p, q) exists in D.

The requirement in Lemma 2.1 that (D,v) have a minimum element is a minor restriction, provided
our goal is to study max(D). If D does not already have a minimum element, we let D+ := D ∪ {0D}
where 0D 6∈ D and we extend v by making the new element 0D lie below each element of D. Then
max(D+) = max(D), both as sets and as topological spaces.

However, as the referee pointed out to us, the ability to add a minimum element to a domain D without
changing max(D) has some important consequences, because the product of any family of (Scott) domains
will be a (Scott) domain provided each of the domains has a minimum element (see Exercise I-2.18 in [9]).
Therefore (Scott) domain representability is arbitrarily productive, and the property of being representable
as a Gδ-subset in a (Scott) domain is countably productive.

One of the most important technical results about domains is the Interpolation Lemma:

Lemma 2.2 [18] Suppose that a � c are points of a domain P . Then some b ∈ P has a � b � c.

The Interpolation Lemma shows that the collection {⇑(p) : p ∈ P} is a base for a topology on P that is
called the Scott topology. A topological space X is (Scott) domain representable if there is a (Scott) domain
(P,v) such that X is homeomorphic to max(P ) when max(P ) carries the relative Scott topology.

Let [0,∞)∗ be the set [0,∞) with the reverse order. Then [0,∞)∗ is a domain and has a Scott topology
(which is not the same as the usual topology). A measurement [18] on a domain (P,v) is a function
µ : P → [0,∞)∗ that satisfies:

i) µ is continuous when both P and [0,∞)∗ carry their Scott topologies.

ii) if µ(x) = 0 and if 〈pn〉 is a sequence of elements of ⇓(x) having limn→∞ µ(pn) = 0, then {pn : n ≥ 1}
is a directed set whose supremum is x.

Let ker(µ) := {x ∈ P : µ(x) = 0}. It is easy to see that if µ is a measurement on a domain P , then
ker(µ) ⊆ max(P ) and that ker(µ) will be a Gδ-subset of P [16].

There is a sequence of properties from classical set-theoretic topology that will be important in this
paper. See [2] for more details. The definitions of Gδ-diagonal, weakly developable, and AF-complete are
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given as part of Theorem 1.1. A space X is developable if there is a sequence 〈G(n)〉 of open covers of
X such that if x ∈ Gn ∈ G(n) then {Gn : n ≥ 1} is a neighborhood base at x. A base B for the space
X is said to be a base of countable order (BCO) if the collection {Bn : n ≥ 1} ⊆ B is a local base at
x ∈ X whenever x ∈ Bn ∈ B and Bn+1 is a proper subset of Bn for each n. Clearly any developable space
is weakly developable, and it is proved in [2] that any weakly developable space has a BCO and has a
Gδ-diagonal. A space X is θ-refinable (also known as submetacompact) if for each open cover U of X there
is a sequence of 〈V(n)〉 of open covers of X such that each V(n) refines U and such that for each x ∈ X,
some n = n(x) has the property that {V ∈ V(n) : x ∈ V } is finite [20].

3 Proof of Theorem 1.1

In this section we prove Theorem 1.1. We begin with a Scott domain (P,v) and a space X ⊆ max(P ) that
is a Gδ-subset of P in the Scott topology. Write X =

⋂
{Dn : n ≥ 1} where Dn+1 ⊆ Dn are Scott open

sets.

As shown in [2], assertion (a) of the theorem actually follows from assertion (b). In addition, Martin’s
Proposition 5.3.5 [16] proves (a) under weaker hypotheses.

To prove assertion (b), let G(n) := {⇑(p) ∩X : p ∈ Dn}. Each G(n) is an open cover of X ⊆ max(P ).
Suppose for each i ≥ 1 that x ∈ Gi = ⇑(pi) ∩ X ∈ G(i) where pi ∈ Di. Then each set {p1, · · · , pn} is
bounded by x so that, P being a Scott domain, some qn ∈ P has qn = sup{p1, · · · , pn}. Then {qn : n ≥ 1}
is a directed subset of P so that sup{qn : n ≥ 1} ∈ P . Furthermore, pk v qk v sup{qn : n ≥ 1} for
each k so that pk ∈ Dk gives sup{qn : n ≥ 1} ∈ Dk. Therefore sup{qn : n ≥ 1} ∈

⋂
{Dk : k ≥ 1} = X.

But we also know that sup{qn : n ≥ 1} v x ∈ X so that sup{qn : n ≥ 1} = x. Now consider any
relative Scott neighborhood ⇑(r) ∩ X of x. Because r � x = sup{qn : n ≥ 1} we know that r v qm

for some m. But then ⇑(qm) ⊆ ⇑(r) and we have
⋂
{⇑(pi) : 1 ≤ i ≤ m} ⊆ ⇑(qm) ⊆ ⇑(r) showing that⋂

{Gi : 1 ≤ i ≤ m} ⊆ ⇑(r) ∩X as required to prove assertion (b).

To prove assertion (c), notice that we can replace F with the collection F̂ of all finite intersections
of members of F . Therefore, with no loss of generality, we may assume that F is closed under finite
intersections.

Let E := {p ∈ P : for some F ∈ F , F ⊆ ⇑(p) ∩ X}. We claim that E is a directed set. For let
p1, p2 ∈ E. Choose Fi ∈ F with Fi ⊆ ⇑(pi)∩X for i = 1, 2. Because F is closed under finite intersections,
the set F3 = F1 ∩ F2 ∈ F . Let p ∈ F3. Then p ∈ ⇑(p1) ∩ ⇑(p2) so pi v p for i = 1, 2. Because P is a Scott
domain, some p3 ∈ P has p3 = sup{p1, p2}. Then F3 ⊆ ⇑(p1) ∩ ⇑(p2) ⊆ ⇑(p3) so that p3 ∈ E. Hence E is
directed. Therefore some r ∈ P has r = sup(E).

We claim that r ∈ X. By hypothesis on F , for each n ≥ 1 we may choose Fn ∈ F and rn ∈ Dn with
Fn ⊆ ⇑(rn)∩X. Then rn ∈ E so that rn v sup(E) = r. Because rn v r and rn ∈ Dn we know that r ∈ Dn

so that r ∈
⋂
{Dn : n ≥ 1} = X, as claimed.

We claim that r ∈
⋂
F . If not, then some F̂ ∈ F has r 6∈ F̂ . Because F̂ is closed in X, there is some

s ∈ P with r ∈ ⇑(s) ∩ X ⊆ X − F̂ . Then we have s � r = sup{rn : n ≥ 1} so that for some n we have
s v rn. Then Fn ⊆ ⇑(rn) ∩X ⊆ ⇑(s) ∩X ⊆ X − F̂ . But then Fn, F̂ are disjoint members of the centered
collection F and that is impossible. Therefore r ∈

⋂
F as required by (c).

Assertion (d) now follows directly, because the AF-completeness property characterizes Čech-completeness
for completely regular spaces.

The first part of assertion (e) follows from assertion (b) plus the fact that a θ-refinable space with a
BCO must be a Moore space [20], and that a Čech-complete Moore space is Moore-complete [1]. The
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second part of assertion (e) follows from the first part plus the fact that any paracompact Moore space
must be metrizable. Then apply assertion (c) to conclude that X is a Čech-complete metrizable space,
and hence is completely metrizable. 2

Corollary 3.1 Suppose (P,v) is a Scott domain and that X ⊆ max(P ) is a Gδ-subset of P with the Scott
topology. If X is a countably compact regular space then X is metrizable. In particular, the usual space
[0, ω1) is not homeomorphic to max(P ) for any Scott domain P in which max(P ) is a Gδ-set.

Proof: Chaber [7] has proved that a countably compact T3 space with a Gδ-diagonal must be metrizable.
Now apply part (a) of Theorem 1.1. 2

4 Examples

In this section we show that a space of D.K. Burke [6] can be used to give a negative answer to the MMR
Question from the Introduction. One part of this proof uses the easy part of a result announced in [18]
and [19]. To the best of our knowledge, no proof has ever appeared, so we provide it here.

Lemma 4.1 Suppose that µ : P → [0,∞)∗ is a measurement on a domain P . Then ker(µ) is a developable
T1-space.

Proof: Write X = ker(µ). As noted in the Introduction, a result of Martin of [15] shows ker(µ) ⊆ max(P ).
For any domain P , the subspace max(P ) is a T1-space, so that X is also T1.

Recall that [0,∞)∗ is the set [0,∞) with the order reversed, and carries the Scott topology in which basic
neighborhoods of 0 are sets of the form [0, 1

n). For each n ≥ 1 and each x ∈ X we know that µ(x) = 0 ∈ [0, 1
n)

so that there is some p(x, n) ∈ P with p(x, n) � x and µ[⇑(p(x, n))] ⊆ [0, 1
n). Defining the points p(x, n)

recursively, we may assume that p(x, n) � p(x, n+1) � x for each n. Let G(x, n) := ⇑(p(x, n))∩X. Then
G(n) := {G(x, n) : x ∈ X} is an open cover of X.

To show that the sequence 〈G(n)〉 is a development for X, fix a point x in a basic open set ⇑(q) ∩X,
and consider any choice of G(yn, n) ∈ G(n) with x ∈ G(yn, n). We will show that for some n ≥ 1, we
have G(yn, n) ⊆ ⇑(q) ∩X. We know that q � x. Because x ∈ G(yn, n) = ⇑(p(yn, n)) ∩X we know that
p(yn, n) � x. By choice of p(yn, n) we know that lim{µ(p(yn, n)) : n ≥ 1} = 0 and from x ∈ ker(µ) we
know that µ(x) = 0. Now the definition of a measurement (see Section 2) tells us that {p(yn, n) : n ≥ 1}
is a directed set and its supremum is x. Because q � x = sup{p(yn, n) : n ≥ 1} we have some n ≥ 1 with
q v p(yn, n). But then ⇑(p(yn, n)) ⊆ ⇑(q) showing that G(yn, n) ⊆ ⇑(q) ∩X, as required. 2

Example 4.2 There is a locally compact Hausdorff space X that has a Gδ-diagonal and is not developable,
and a Scott domain P such that X is homeomorphic to max(P) where max(P) is a Gδ-subset of P, but
there is no measurement µ : P → [0,∞)∗ with ker(µ) = max(P).

Proof: We want to thank the referee for suggestions that substantially improved the approach to this
example that we used in an earlier version of this paper. We use a space described by Burke in [6]. We
only need part of Burke’s construction and we change his notation somewhat. Let Z be the usual Cantor
set in the unit interval. Let A be a family of countably infinite subsets of Z that is maximal with respect
to the following two properties:

B1) if A1, A2 are distinct members of A, then A1 ∩A2 is finite;
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B2) each A ∈ A has a unique cluster point in R.

Burke actually had a third property is his list but noted that the third property was needed only for a
related example.

Let A = {Ai : i ∈ I} where I is an index set that is disjoint from Z. For each i ∈ I, let zi be the unique
cluster point of Ai in R.

Burke’s space is X = I ∪ Z, with each point of Z being isolated and where a point i ∈ I has basic
neighborhoods of the form N(i, F ) = {i} ∪ (Ai − F ) where F is a finite subset of Ai. As Burke proved,
this space is locally compact, Hausdorff, and has a Gδ-diagonal, but is not developable.

First we describe a new neighborhood base for the non-isolated points of X. For any open interval
(a, b) in R, let (a, b)∗ := (a, b)− {a+b

2 }. For each i ∈ I and ε > 0, let

M(i, ε) = {i} ∪ ((zi − ε, zi + ε)∗ ∩Ai) .

Because zi is the unique cluster point of Ai in R, and because Ai is a subset of the compact set Z, the set
Ai − (zi − ε, zi + ε) must be finite. Therefore, each set M(i, ε) is open in Burke’s space. Because only a
finite number of points of Ai are removed when making Burke’s set N(i, F ), it is easy to see that every set
N(i, F ) contains some M(i, 1

n). Therefore, in Burke’s space, the collection {M(i, 1
k ) : k ≥ 1} is an open

neighborhood base at i for each i ∈ I.

Let P be the collection of all nonempty compact subsets of the locally compact space X and let v
be reverse inclusion. Then max(P) = I ∪ Z where I = {{i} : i ∈ I} and Z = ∪{{z} : z ∈ Z}, and for
K1,K2 ∈ P we have K1 � K2 if and only if K2 ⊆ Int(K1). Because X is locally compact, general theory
shows that (P,v) is a Scott domain that represents X under the mapping that sends each i ∈ I to {i}
and each z ∈ Z to {z}. Thus we may identify X with max(P).

Next we show that max(P) is a Gδ-subset of P. Let D(n) := Z ∪
⋃
{⇑(M(i, 1

n)) : i ∈ I}. Because
{z} � {z} for each z ∈ Z, each {z} is isolated in P so that the set D(n) is a Scott-open subset of P.
Clearly max(P) ⊆

⋂
{D(n) : n ≥ 1}. To verify the reverse inclusion, suppose P0 ∈

⋂
{D(n) : n ≥ 1}

and P0 6∈ max(P). Then |P0| ≥ 2 and for each n ≥ 1 there is an in ∈ I with P0 ∈ ⇑(M(in, 1
n)). In case

P0 ∩ I 6= ∅, fix i0 ∈ P0 ∩ I. Then i0 ∈ P0 ⊆ M(in, 1
n) gives in = i0 for each n so that P0 ⊆

⋂
{M(i0, 1

n) :
n ≥ 1} = {i0} and that is impossible because |P0| ≥ 2. Therefore P0 ∩ I = ∅, which gives P0 ⊆ Z. But
then P0 ⊆ M(in, 1

n)−{in} so that P0 has diameter < 2
n for each n and that is impossible because |P0| ≥ 2.

Therefore,
⋂
{D(n) : n ≥ 1} = max(P) as required.

It remains only to show that there is no measurement µ : P → [0,∞)∗ with ker(µ) = max(P). If such a
measurement existed, then Lemma 4.1 would tell us that Burke’s space X = max(P) would be developable.
But that is exactly the property that Burke’s space does not have, so that the proof of Example 4.2 is
complete. 2

Remark 4.3 In many examples in the literature, if there is a way to define the diameter of a member of a
domain P in such a way that the elements of max(P ) are exactly the elements of P having diameter zero,
then max(P ) turns out to be the kernel of a measurement. (See, for example, the diameter measurement
on the interval domain I in the Introduction.) The referee pointed out that the usual distance function
in R gives a diameter measure for elements of the domain P in Example 4.2 above, and yet (as we show)
there is no measurement µ with max(P) = ker(µ). To explain this rather subtle point, fix any z ∈ Z
and then choose zk ∈ (z − 1

k , z + 1
k ) with zk 6∈ {z, z1, · · · , zk−1}. This is possible because the Cantor set

is dense-in-itself. Let Fk := {z, zk}. Then Fk ∈ P and diam(Fk) < 1
k so that diam(Fk) → 0. Because

z � z we know that Fk ∈ ⇓(z). If the diameter function gave rise to a measurement on P, then the set
{Fk : k ≥ 1} would need to be directed, and that is clearly not the case.
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Remark 4.4 In Example 2.17 of [11], Gruenhage described a locally compact, Hausdorff, sub-metrizable
space that is not a Moore space. Like Burke’s space, this space is homeomorphic to max(P ) for some Scott
domain P , where max(P ) is a Gδ-subset of P , but it is not the kernel of any measurement on a domain.

Remark 4.5 A property called a “sharp base” is studied in [2] and is stronger than “weakly developable”.
As proved in [2], the space Ψ of [10] does not have a sharp base. However, a proof similar to the one given
for Example 4.2 shows that Ψ is a Gδ-subset of a Scott domain. Consequently, one cannot strengthen
assertion (b) of Theorem 1.1 to assert that if P is a Scott domain and max(P ) is a Gδ-subset of P , then
max(P ) must have a sharp base in the sense of [2].

Generalized ordered spaces (GO-spaces) have been an important source of examples in set theoretic
topology (e.g., the Michael line or the Sorgenfrey line) and it is known from [8] that any GO-space con-
structed on R will be Scott-domain representable. This suggests that GO-spaces on R might be a valuable
source of pathological examples related to the measurement problem. However, our next corollary shows
that pathological GO-spaces will not have a major role to play in that problem.

Corollary 4.6 Suppose that X is a GO-space and that X ⊆ max(P ) for some Scott domain P where X
is a Gδ-set in P . Then X is completely metrizable.

Proof: Part (a) of Theorem 1.1 shows that X has a Gδ-diagonal and is therefore paracompact [13], so that
part (e) of the theorem forces X to be completely metrizable. 2

Question (x) of [16] asked whether there is a measurement on a (Scott) domain whose kernel is normal
and not metrizable. Our next result shows that the answer is “Consistently, yes.” Probably this is known,
but we have not been able to find it in the literature.

Example 4.7 If there is a Q-set (an uncountable subspace of R in which every subset is a relative Gδ)
then there is a separable, normal, non-metrizable Moore space X, a Scott domain D, and a measurement
µ on D such that X = ker(µ) = max(D).

Sketch of Proof: Let Y be a Q-set in R and let

X := (Y × {0}) ∪
(

R× { 1
n

: n ≥ 1}
)

,

topologized so that each point (x, 1
n) has its usual Euclidean neighborhoods and so that neighborhoods of

each point (y, 0) are sets of the form T (y, n)∩X where T (y, n) ⊆ R× [0,∞) is a vertical isosceles triangle
with:

i) (y, 0) is a vertex if T (y, n)

ii) the vertex angle at (y, 0) goes from π
2 −

1
2n to π

2 + 1
2n and the height of the triangle is 1

n ;

iii) the intersection of T (y, n) with each horizontal line Hn := R× { 1
n} is an open interval on Hn.

The space X is a separable, normal, non-metrizable Moore space. To define D, let C(y, n) be the closure
of T (y, n) in X (which is the same as the closure of T (y, n) in the Euclidean topology). Let D be the
collection of all C(y, n) together with all sets that are finite unions of sets of the form [a, b] × { 1

n} where
a ≤ b, and all sets of the form {(y, 0)} for y ∈ Y . Let v be reverse inclusion. Then in (D,v) we have
D1 � D2 if and only if D2 ⊆ IntX(D1), and (D,v) is a Scott domain with max(D) homeomorphic to X
under the mapping {x} → x. Let diam(D) denote the usual Euclidean diameter of a set D ∈ D and define
µ(D) = diam(D). Then µ is a measurement on D and ker(µ) = max(D), as required. 2
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5 What to do without Scott

Theorem 1.1 studied properties of a space X ⊆ max(P ) in case P is a Scott domain and X is a Gδ-subset of
P . The proof of Theorem 1.1 used the Scott-domain property in several simple, but apparently unavoidable,
ways. This section proves Theorem 1.3, which explores what can be said about a space X ⊆ max(P ) that
is a Gδ-subset of a domain P where P is not necessarily a Scott domain. Then we present an example
showing that there is a domain (but not a Scott domain) P in which the space [0, ω1) = max(P ) is a
Gδ-subset of P . Finally, we characterize spaces that are the kernels of a measurement on a domain.

To prove Theorem 1.3, we begin with a domain (P,v) where X ⊆ max(P ) is a Gδ-subset of P , and we
write X =

⋂
{Dn : n ≥ 1} where Dn+1 ⊆ Dn and each Dn is open in the Scott topology of P .

K. Martin’s Proposition 5.7.1 [16] shows that the space X will be first countable. Martin also shows
that if X = max(P ), then X is a Baire space. We can prove more: the subspace maxP of P is certainly
domain-representable and then Theorem 3.2 from [3] shows that X is also domain representable (but using
some other domain).

To complete the proof of Theorem 1.3, fix any x0 ∈ X. We will show that the point x0 belongs to a
dense Gδ-subset T of X that is completely metrizable. Let E1 ⊆ D1 have the property that {⇑(p) ∩ X :
p ∈ E1} is a maximal pairwise disjoint collection of non-empty subsets of X and x0 ∈ E1. Suppose
n ≥ 1 and En is given with x0 ∈ En . For each p ∈ En let En+1(p) be a subset of Dn+1 ∩ ⇑(p) such
that {⇑(q) ∩X : q ∈ En+1(p)} is a maximal pairwise disjoint collection of nonempty subsets of ⇑(p) ∩X.
Make sure that the point x0 ∈ En+1(x0) and let En+1 =

⋃
{En+1(p) : p ∈ En}. Then for each n ≥ 1 the

set On :=
⋃
{⇑(p) ∩ X : p ∈ En} is a dense open set in X so that, X being a Baire space [14], the set

T =
⋂
{On : n ≥ 1} is dense in X. Also, note that x0 ∈ T .

For each n ≥ 1 let G(n) := {⇑(p) ∩ T : p ∈ En}. Each Gn is a pairwise-disjoint relatively open cover
of T . Hence each G(n) is a discrete collection in the subspace T . We show that G :=

⋃
{G(n) : n ≥ 1} is

a base for T . Let x ∈ T and suppose U is a relatively open subset of max(P ) with x ∈ U . Choose q̂ ∈ P
with x ∈ ⇑(q̂)∩X ⊆ U . Then q̂ � x so that the Interpolation Lemma yields some q ∈ P with q̂ � q � x.
Then ⇑(q) ∩ T ⊆ ↑(q) ∩ T ⊆ ⇑(q̂) ∩ T ⊆ U .

Because x ∈ T , there is a unique sequence pn ∈ E(n) with x ∈ ⇑(pn). Because of the way that E(n+1)
was constructed from E(n), and because x ∈ ⇑(pn+1) ∩ ⇑(pn), we know that pn � pn+1. Hence the set
S := {pn : n ≥ 1} is directed so that some point r ∈ P has r = sup(S). Because x is an upper bound for
F , we know that r v x. Because pn ∈ Dn and pn v sup(S) = r, we know that r ∈ Dn for each n and
therefore r ∈

⋂
{Dn : n ≥ 1} = X ⊆ max(P ). Then r v x gives r = x.

At this point we have q � x = sup(S) so that some pn ∈ S has q v pn. Then x ∈ ⇑(pn) ∩ T ⊆
↑(q) ∩ T ⊆ U . Because ⇑(pn) ∩ T ∈ G we see that G is a base for T .

Because each collection G(n) is a pairwise-disjoint relatively open cover of T , each member of each G(n)
is both closed and open in T . Therefore, the subspace T of X is regular so that the Bing-Nagata-Smirnov
metrization theorem now guarantees that the subspace T is metrizable.

Because, as noted in the second paragraph of this proof, X is domain representable and T is a Gδ-
subspace of X, it follows from Theorem 3.2 of [3] that T is also domain representable. But any domain-
representable metrizable space is completely metrizable, and this completes the proof of Theorem 1.3.
2

Our next example shows that there are spaces of the type studied in Theorem 1.3 that are not of the
type studied in Theorem 1.1.
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Example 5.1 There is a domain P such that max(P ) is the usual space [0, ω1) of countable ordinals and
max(P ) is a Gδ-subset of P , and there is another domain Q such that max(Q) is [0, ω1) and max(Q) is
not a Gδ-subset of Q.

Proof: Let Lim be the set of limit ordinals in [0, ω1). For each λ ∈ Lim choose a strictly increasing
sequence α(n, λ) of non-limit ordinals whose supremum is λ. For each n < ω, level n of the poset P is the
set

P (n) := {([α(n, λ), λ], n) : λ ∈ Lim} ∪ {({β}, n) : β ∈ [0, ω1)− Lim},

and level ω of P is the set
P (ω) := {({γ}, ω) : γ < ω1}.

Let P :=
⋃
{P (n) : n ≤ ω}. For any ordered pair (u, v), let π1(u, v) = u and π2(u, v) = v. Partially order

P by the rule that p v q if and only if one of the following happens:

a) p = q, or

b) p 6= q and π1(q) ⊆ π1(p) and π2(p) < π2(q).

In other words, for distinct p, q ∈ P, v is reverse inclusion in the first coordinate and strict increase in the
second coordinate. It is straightforward to prove that (P,v) is a domain with max(P ) = P (ω) and that in
the relative Scott topology, max(P ) is a copy of [0, ω1). One must check that p � p for each p ∈ P −P (ω)
while q � q is false for every q ∈ P (ω). To see that max(P ) is a Gδ-subset of P , let

D(n) :=
⋃
{⇑(p) : p ∈ P (n)}.

Then D(n) is a Scott open set and max(P ) ⊆
⋂
{D(n) : n ≥ 1}. To show that max(P ) =

⋂
{D(n) : n ≥ 1},

let q ∈
⋂
{D(n) : n ≥ 1}. Then π2(q) ≥ n for each n so that π2(q) = ω, as required. We now have a

domain P with max(P ) = [0, ω1) where max(P ) is a Gδ-subset of P .

Next we note that the space X = [0, ω1) is locally compact and Hausdorff, and therefore is homeomor-
phic to max(Q) where Q is the collection of all non-empty compact subsets of [0, ω1) ordered by reverse
inclusion. Because Q is a Scott domain, Corollary 1.2 shows that max(Q) cannot be a Gδ-subset of Q. 2

Finally, we extend a theorem from [5] to characterize regular spaces that are the kernel of a measurement
on a domain. The equivalence of (a) and (e) in the theorem was probably what the authors of [18] had in
mind when they announced that there is “a completeness condition C such that a T1 space is developable
with completeness condition C iff it is the kernel of a measurement on a continuous dcpo” but they did not
identify what condition C is.

Theorem 5.2 For a T3-space X, the following are equivalent:

a) X has a development 〈G(n)〉 such that G(n + 1) ⊆ G(n) and such that if Gn ∈ G(n) has clX(Gn+1) ⊆
Gn for each n, then

⋂
{Gn : n ≥ 1} 6= ∅, i.e. X is a Rudin-complete developable space;

b) X is developable and subcompact, i.e. X has a base B such that if C ⊆ B has the property that for
each C1, C2 ∈ C some C3 ∈ C has cl(C3) ⊆ C1 ∩ C2, then

⋂
C 6= ∅;

c) X is developable and the non-empty player has a winning strategy in the strong Choquet game on X
(see [5] for definitions);

d) X is developable and domain-representable;
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e) there is a domain P and a measurement µ on P such that X is homeomorphic to ker(µ) = max(P ).

Sketch of proof: Statements (a), (b), (c), and (d) are equivalent in the light of [5]. Lemma 4.1 shows that
any space satisfying (e) must be developable so that assertion (e) clearly implies (d). To complete the proof,
suppose X satisfies (b). Then there is a development 〈G(n)〉 for X with G(n) ⊆ B and G(n + 1) ⊆ G(n).
Define P (ω) := {({x}, ω) : x ∈ X} and for n < ω let P (n) := {(G, n) : G ∈ G(n)}. Let P =

⋃
{P (n) : 1 ≤

n ≤ ω}. Partially order P by the rule that (G1, n1) v (G2, n2) if an only if either G1 = G2 and n1 = n2

or else cl(G2) ⊆ G1 and n1 < n2. Because X is developable, for any directed subset E ⊆ P , either E
contains a maximal element or else sup(E) =

⋂
{π1(e) : e ∈ E} is a singleton set, where π1(e) denotes the

first coordinate of the ordered pair e ∈ E. Whenever (G, n) ∈ P with n < ω we have (G, n) � (G, n),
and it never happens that e � e where e ∈ P (ω). Consequently, (P,v) is a domain with max(P ) = P (ω),
and the function x → ({x}, ω) is a homeomorphism from X onto max(P ). We define a function µ on P
by the rule that µ(G, n) = 1

n whenever n < ω, and µ(({x}, ω) = 0. Once again using the fact that X is
developable, we show that µ is a measurement on P , as required. 2

6 Open Questions

The following questions remain open and are likely to be of interest to both topologists and domain
theorists.

Question 6.1 (For metric spaces) Suppose X is completely metrizable. In a comment just after Example
4.3 of [15], Martin noted that for any complete metric space X, there is a domain DX and a measurement
µX on DX with X = ker(µX) = max(DX). We ask whether there is a Scott domain P such that X is
homeomorphic to max(P ) and max(P ) is a Gδ-subset of P (with the Scott topology). We emphasize that,
in this question, P must be a Scott domain. In [16], Martin asked whether every complete metric space
can be embedded as a dense Gδ-subset of a Scott domain, an apparently easier question that also remains
open. Martin’s Proposition 5.7.2 in [16] provides an affirmative answer to his apparently easier question
in case X is a complete separable metric space.

Question 6.2 (For Moore spaces) Is it true that for each Scott-domain representable Moore space Y there
must be a Scott domain P such that max(P ) is homeomorphic to Y and is a Gδ-subset of P? Is it true
that a Scott-domain representable Moore space must be the kernel of some measurement on some Scott
domain? Theorem 5.2 above shows that a Scott-domain representable Moore space must be the kernel of
a measurement on some domain P , but the domain that we construct is not likely to be a Scott domain.
A related result is Theorem 4.12 of [18] announcing that every Čech-complete Moore space Y is ker(µ)
for some measurement µY on some domain DY , and it is known that any Scott-domain-representable,
completely regular Moore space is Čech complete [14]. But we do not know whether the domain DY in
which Y = ker(µY ) is a Scott domain.

Question 6.3 Which spaces are max(P ) for some Scott domain P , where max(P ) is a Gδ-subset of P?
Our Theorems 1.1 and 1.3 give necessary conditions, and results in [12] give necessary conditions for the
Scott-domain question.

Finally, recall a classical result: if a completely regular space X is a Gδ-subset of some compact
Hausdorff space, then X is a Gδ subset of every compact Hausdorff space in which X densely embeds. In an
earlier version of this paper, we asked whether there is a domain-theoretic analog of that classical assertion.
We asked which spaces Y must be Gδ-subsets of every domain or Scott domain P with Y = max(P ). This
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question might sound natural, but it does not have a reasonable answer. Consider a one-point space. The
linearly ordered sets P = [0, ω] and Q = [0, ω1] are both Scott domains (in their usual order) and max(P )
and max(Q) are each the one-point space. However, max(P ) is a Gδ-subset of P while max(Q) is not a
Gδ-subset of Q. Also, note that in the Scott domain Q = [0, ω1], max(Q) is completely metrizable and
not a Gδ-subset of Q. This answers question (viii) of Chapter 5 of [16].
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