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Abstract

In this note we give ZFC results that reduce the question of Maarten Maurice about the
existence ofσ-closed-discrete dense subsets of perfect generalized ordered spaces to the study
of very special Baire spaces, and we discuss the current status of the question for spaces with
small density. Work of Shelah, Todorčevic, Qiao, and Tall shows that Maurice’s problem is
undecidable for generalized ordered spaces of local densityω1.
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1 Introduction

Recall that a spaceX is perfectif each closed subset ofX is aGδ-set inX. It is well-known
that, among generalized ordered spaces, any space with aσ-closed-discrete dense subset must
be perfect [8]. Probably the most challenging and important open problem in the theory of
generalized ordered (GO)-spaces asks about the converse of that assertion, and was posed by
Maarten Maurice (see [17]) in the 1970s:

In ZFC, is there a perfect GO-space that does not have aσ-closed-discrete dense subset?

Maurice’s question includes the phrase “in ZFC” for good reason: if a Souslin space exists, it
would provide a counterexample, and Souslin spaces do exist in some models of ZFC (e.g.,
underV = L). Therefore, another way to phrase Maurice’s question would be “Is there a
model of ZFC in which each perfect GO-space has aσ-closed-discrete dense subset?”

Although Maurice’s question was originally posed as an ordered space question, it turned
out to be a particularly sharp version of a broader open question (see “Open Problem 9” in [9])
that asks whether there is any ZFC example of aT3-space that is perfect and does not have a
σ-closed-discrete dense subset.

Recent decades have seen significant progress on Maurice’s question. An important paper
by Qiao and Tall [13] showed that Maurice’s question is equivalent to another question posed
by Peter Nyikos

a) (Nyikos)In ZFC, is there a non-metrizable, perfect, non-Archimedean space?
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and examined related questions such as

b) (Heath)In ZFC, is there a non-metrizable perfect GO-space with a point-countable
base?

In Section 2 of this note we present ZFC decomposition theorems that link the questions
of Maurice, Heath, and Nyikos to the study of first-category subsets of certain special Baire
spaces. In Section 3, we will summarize consistency results of Shelah, Todorčevic, Qiao, and
Tall that provide models which cannot contain any space of small size or small density that
would be a counterexample to Maurice’s question. We summarize the results as follows:

Theorem: It is undecidable in ZFC whether every perfect GO-space of local densityω1 must
have aσ-closed-discrete dense subset, and whether every perfect GO-space with local density
ω1 and a point-countable base must be metrizable.

The questions of Maurice, Nyikos, and Heath remain open for spaces with local density> ω1.

Work of W-X Shi links Maurice’s question to a more technical open question that asks
whether each perfect generalized ordered space can be topologically embedded in some perfect
linearly ordered space. We discuss this issue in Section 3, below.

Recall that aGO-spaceis a triple(X, <, τ) where(X, <) is a linearly ordered set andτ is
a Hausdorff topology onX that has a base of order-convex sets. Ifτ is the usual open-interval
topology of<, then(X, <, τ) is alinearly ordered topological space(LOTS).Čech [6] proved
that GO-spaces are exactly those spaces that embed topologically in some LOTS. Also recall
that in any perfect space, every relatively-discrete set (i.e., a set that contains no limit point of
itself) isσ-closed-discrete.

The authors would like to thank the referee for insightful comments on an earlier version
of this paper.

2 The ZFC structure of perfect GO-spaces

At several points in the rest of the paper, we will need to invoke the following fact, which was
probably known to Kurepa; a proof can be found in [5].

Lemma 2.1 Suppose that the GO-spaceX has aσ-closed-discrete dense subset. Then so does
every subspace ofX.

Whether or not they haveσ-closed-discrete dense subsets, perfect GO-spaces have a deli-
cate special structure, as the next results show.

Lemma 2.2 Let S be a first category subset of a perfect GO-spaceX. ThenS contains a
subset that is dense inS andσ-closed-discrete inX.

Proof: To say thatS is a first category subset ofX means that there are closed, nowhere-dense
subsetsKn of X havingS ⊆

⋃
{Kn : n < ω}. If we could prove that eachKn contained

a dense subset that is aσ-closed-discrete subset ofX, then
⋃
{Kn : n < ω} would also

have such a dense subset. But the existence of such a dense subset is a hereditary property in
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GO-spaces (see Lemma 2.1) and thereforeS would also have a dense subset of the required
type.

Therefore, it is enough to show that every closed, nowhere-dense subsetK of X has a
dense subset that isσ-closed discrete inX. Let C be the collection of all convex components
of X−K. BecauseX is perfect,X−K is anFσ-subset ofX, sayX−K =

⋃
{Fn : n ≥ 1},

so that the collectionC can be written is a countable union of collectionsCn = {C ∈ C :
C∩Fn 6= ∅} for n < ω. EachCn has the property that ifx ∈ X then some open neighborhood
W of x meets at most two members ofCn.

For eachC ∈ Cn, choosep(C) ∈ C∩Fn. Then the setLn = {p(C) : C ∈ Cn} is closed in
X, and is disjoint fromK. LetWn be the collection of convex components ofX − Ln. Each
Wn coversK. LetVn = {W ∩K : W ∈ Wn}. We claim that for eachp ∈ K, |

⋂
{St(p,Vn) :

n < ω}| ≤ 3. If not, then we may choose pointsa, b ∈
⋂
{St(p,Vn) : n < ω} with either

a < b < p or elsep < a < b.

The two cases are analogous, so we consider only the first. For eachn, some member of
Wn ∈ Wn contains botha andp. Then convexity forcesb ∈ [a, p] ⊆ Wn. By hypothesis, the
setK is nowhere dense inX, so thatK cannot contain the non-void open set(a, p). Hence
∅ 6= (a, p)−K ⊆ X−K so there is anm < ω and a setC ∈ Cm with (a, p)∩C 6= ∅. Because
a, p ∈ K, neithera nor p can belong toC, so that convexity forcesC ⊆ (a, p). Therefore
p(C) ∈ C ⊆ (a, p). Because(a, p) ⊆ Wm, p(C) ∈ C ⊆ (a, p) ⊆ Wm. But C ∈ Cm implies
p(C) ∈ Lm so that we havep(C) ∈ Wm ∩ Lm = ∅ which is impossible.

Therefore,|
⋂
{St(p,Vn) : n < ω}| ≤ 3 as claimed. We now apply Theorem 2.1 of [2] to

conclude thatK contains a dense subset that isσ-closed-discrete inK and hence also inX. 2

Corollary 2.3 If X is a perfect GO-space that is of the first category in itself, thenX has a
σ-closed-discrete dense set. Hence any Souslin space (if there is one) is of second category
in itself and any Souslin space that has no non-empty open, separable subspaces is a Baire
space.

Proposition 2.4 LetX be any perfect GO-space. LetG be the union of all open subsets ofX
that contain a dense subset that isσ-closed-discrete inX. Then:

1) G is open inX and has a dense subset that isσ-closed-discrete inX;

2) the setH = X −G is dense-in-itself and for any subsetT ⊆ H, the following
are equivalent:

a) T has a dense subset that isσ-closed-discrete inH;
b) T is nowhere-dense inH;
c) T is of the first Baire category inH.

3) whenH is topologized as a subspace ofX, H is a Baire space.

Proof: Recall that in the perfect spaceX, everyσ-relatively-discrete set isσ-closed-discrete.

To prove assertion (1), letU be a cover ofG by open sets that, in their relative topology,
each have a dense set that isσ-relatively discrete. Because any perfect GO-space is hereditarily
paracompact [7], there is a relatively closed coverF of G that refinesU and is aσ-discrete
collection in the subspaceG of X. Then each member ofF inherits a dense set that isσ-closed-
discrete from the member ofU that contains it, by 2.1. HenceG =

⋃
F has aσ-closed-discrete
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dense set. Note that this dense set isσ-closed-discrete in the perfect spaceX, and not just in
the subspaceG.

Next consider the subspaceH = X −G. If p is a relatively isolated point ofH, then there
is a convex open setJ ⊆ X with J ∩ H = {p}. ThenJ − {p} ⊆ G so thatJ − {p} has a
σ-relatively-discrete dense subsetD. ThenD ∪ {p} is aσ-relatively discrete dense subset of
J , so thatJ ⊆ G, contrary toJ ∩H 6= ∅. HenceH has no relatively isolated points, i.e.,H is
dense-in-itself.

Because (b) implies (c) in any space, to prove assertion (2) it is enough to show that (a)
implies (b) and (c) implies (a).

a)⇒ b) SupposeT has a dense subset that isσ-closed discrete inH (and hence also inX).
Then so doesclH(T ) so we may assume thatT is closed inH (and hence also inX). We
claim thatIntH(T ) = ∅. If not, then there is an open subsetU of X with ∅ 6= U ∩ H ⊆ T .
BecauseT has a dense subset that isσ-closed-discrete inX, so does its subspaceU ∩H. Note
thatU −H ⊆ G, so thatU −H inherits (fromG) a dense subspace that isσ-closed-discrete in
X. But thenU has a dense subspace of the same type, so thatU ⊆ G, showing thatU∩H = ∅,
which is impossible. Therefore,T is nowhere dense inH as claimed.

(c)⇒ (a): Suppose there are closed, nowhere dense subsetsKn of H with T ⊆
⋃
{Kn : n <

ω}. Then by Lemma 2.2, eachKn has a dense subset that isσ-closed-discrete inH (and hence
also inX) so that

⋃
{Kn : n < ω} has the same property. Hence the subspaceT also has a

dense subset that isσ-closed-discrete inX.

To prove assertion 3), it is enough to show that no non-empty, relatively open subsetV
of H is of the first category inH. In the light of (2), any first category relatively open setV
would have a dense subsetD that isσ-closed-discrete inX. Write V = H ∩W whereW is
open inX. ThenW = (W ∩ H) ∪ (W − H) = V ∪ (W ∩ G) so thatW is the union of
two subsets, each having a dense set that isσ-closed-discrete inX. HenceW ⊆ G so that
∅ = W ∩H = V , and that is impossible.2

Corollary 2.5 If there is a perfect GO-spaceX having noσ-closed-discrete dense subset
thenX contains a subspaceY that is a dense-in-itself, perfect, non-Archimedean GO-space, a
Baire space, is a LOTS, and has the property thatL is a first category subset ofY if and only
if L has aσ-relatively-discrete dense subset.

Proof: Suppose there is a perfect GO-space having noσ-closed-discrete dense subset. Apply
Proposition 2.4 and consider the resulting subspaceH. Theorem 7 of [13] asserts that any first-
countable LOTS has a dense non-Archimedean subspace. Essentially the same proof shows
that the same is true for first-countable GO-spaces, so letY be a dense non-Archimedean
subspace ofH. According to a result of Purisch [11], the subspaceY is actually a LOTS,
perhaps under some order different from the one thatY inherits fromX. BecauseY is a
perfect GO-space, everyσ-relatively discrete set inY is alsoσ-closed-discrete. Density ofY
in H allows us to use part (2) of Corollary 2.4 to show that a subset ofY is of the first category
in Y if and only if it has a dense subset that isσ-relatively-discrete. The fact that no relatively
open subset ofY can have such a dense subspace shows thatY is a Baire space.2

Proposition 2.4 and Corollary 2.5 show that in order to study whether a perfect GO-space
X has aσ-closed-discrete subspace, we should look only at the special subspacesH andY ,
both of which are Baire spaces without isolated points.
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We close this section by mentioning a ZFC decomposition theorem that is a consequence
of one announced in [4] for first-countable paracompact GO-spaces. It may also be useful in
studying Maurice’s problem:

Proposition 2.6 Suppose thatX is a perfect GO-space. ThenX = A ∪B where

a) A is an open metrizable subspace ofX;

b) B = X −A and is dense-in-itself;

c) B can be written asB = C ∪D whereC ∩D = ∅ and where[c1, c2] ∩ C (respectively
[d1, d2] ∩ D) is not compact wheneverc1 < c2 are points ofC (respectively, whenever
d1 < d2 are points ofD).

If we apply Proposition 2.6 to a perfect GO-spaceX, we see thatX has aσ-closed-discrete
dense set if and only if both of the setsC andD haveσ-relatively-discrete dense subsets.

3 Some consistency results

The results in this section involve minor modifications of observations and theorems appearing
in [12]. The following theorem is due to Shelah and Todorčevic [14].

Theorem 3.1 If ZFC is consistent, then so is ZFC plus the following two statements simulta-
neously:

a) MA+2ω0 = ω2;

b) There is no non-atomic Baire space of sizeω1.

To say that a space isnon-atomicmeans that its regular-open algebra is non-atomic. A
nonempty Hausdorff space without isolated points is a non-atomic space. In what follows,
letMST be any model of the type described in Theorem 3.1.

Corollary 3.2 If ZFC is consistent, then there is a model of set theory in which every perfect
GO-space of local densityω1 has aσ-closed-discrete dense subset.

Proof: Suppose that someX inMST is a perfect GO-space of densityω1 that has noσ-closed-
discrete dense subset. LetD be a dense subset ofX with cardinalityω1. ThenD is also a
perfect GO-space with noσ-relatively-closed-discrete dense subset. Use Corollary 2.5 to find
a dense-in-itself subspaceY of D that is a Baire space and has noσ-relatively-closed-discrete
dense subset. But in the light of Theorem 3.1, such aY cannot exist.

Now suppose thatMST contains a perfect GO-spaceX that has local densityω1. Com-
bining the first paragraph of the proof with paracompactness ofX (recall that any perfect
GO-space is paracompact [7]), we see thatX has aσ-discrete cover by closed subspaces that
each have aσ-closed-discrete dense set in their relative topology. But thenX has aσ-closed-
discrete dense set, as required.2

Corollary 3.3 It is undecidable in ZFC whether any perfect GO-space of local densityω1

must have aσ-closed-discrete dense subset.
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Proof: Any model ofV = L contains a Souslin space of densityω1 so it cannot be proved
in ZFC that any perfect GO-space of densityω1 must have aσ-closed-discrete dense subset.
On the other hand, in the modelMST , every perfect GO-space of local densityω1 must have
a σ-closed-discrete dense set, so that no ZFC proof can produce a perfect GO space of local
densityω1 that has noσ-closed-discrete dense subset. Hence Maurice’s question for GO-
spaces of local densityω1 is undecidable in ZFC.2

Corollary 3.4 It is undecidable in ZFC whether a perfect GO-space of local densityω1 and
having a point-countable base must be metrizable.

Proof: Proof: For half of the proof, recall that Bennett [1] and Ponomarev [10] showed that
if there is a Souslin space, then there is a Souslin space with a point-countable base. Souslin
spaces exist in many models of set theory, e.g., in V=L, always have densityω1, and are non-
metrizable. Thus it is consistent with ZFC that there is a counterexample to Heath’s question
with densityω1.

For the other half of the proof, consider the modelMST and start with any perfect GO-
spaceX with a point-countable base and local density≤ ω1. As in the proof of 3.2,X must
have aσ-closed-discrete dense subset. But in that case,X must be metrizable (see [3]). Thus
it is consistent with ZFC that there is no counterexample to Heath’s question having density
ω1. 2

Does Corollary 3.3 settle Maurice’s question for all perfect GO-spaces? In other words,
is there a ZFC theorem saying that if there is a perfect GO-space without aσ-closed-discrete
dense subset, then there is such a space of densityω1? The answer is “No” because Qiao
proved in [12] that if one starts with the modelL and does the usual ccc forcing to obtain
MA + c = ω2, one can obtain a model satisfyingMA + c = ω2 that contains a perfectly
normal, non-metrizable GO-space of weight and sizeω2, even though the model contains no
such space of sizeω1.

Theorem 3.1 also has consequences for a more specialized old question from ordered space
theory, namely, “Can every perfect GO-spaceX be topologically embedded in a perfect LOTS
Y (X)?” (In that question, we make no assumptions about the relation between the orderings
of X and ofY (X).) We have:

Corollary 3.5 In the modelMST , any perfect GO-space with local density≤ ω1 can be
embedded in a perfect LOTS.

Proof: We know that inMST , any perfect GO-spaceX with local density≤ ω1 has aσ-closed-
discrete dense set. Now apply a theorem of Shi [15] to conclude thatX can be embedded in a
perfect LOTS.2

Remark 3.6 W-X Shi’s proof that any GO-space with aσ-closed-discrete dense set can be
embedded into a perfect LOTS might suggest that, in studying the question “Can any perfect
GO-space be embedded in some perfect LOTS?”, it might be worthwhile to work in a model of
ZFC that contains a Souslin lineS, and then try to build a counterexample fromS by introduc-
ing some isolated points and some one-sided Sorgenfrey points in the usual way. However, that
approach cannot work, because in [16] the authors show in ZFC that any GO-space constructed
in the usual way on a perfect LOTS will be embeddable in some other perfect LOTS.
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