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Abstract

In this note we give ZFC results that reduce the question of Maarten Maurice about the
existence obr-closed-discrete dense subsets of perfect generalized ordered spaces to the study
of very special Baire spaces, and we discuss the current status of the question for spaces with
small density. Work of Shelah, Todmvic, Qiao, and Tall shows that Maurice’s problem is
undecidable for generalized ordered spaces of local density
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1 Introduction

Recall that a spac¥ is perfectif each closed subset of is aGs-setinX. It is well-known

that, among generalized ordered spaces, any space withased-discrete dense subset must

be perfect [8]. Probably the most challenging and important open problem in the theory of
generalized ordered (GO)-spaces asks about the converse of that assertion, and was posed by
Maarten Maurice (see [17]) in the 1970s:

In ZFC, is there a perfect GO-space that does not hawecbosed-discrete dense subset?

Maurice’s question includes the phrase “in ZFC” for good reason: if a Souslin space exists, it
would provide a counterexample, and Souslin spaces do exist in some models of ZFC (e.qg.,
underV = L). Therefore, another way to phrase Maurice’s question would be “Is there a
model of ZFC in which each perfect GO-space has@osed-discrete dense subset?”

Although Maurice’s question was originally posed as an ordered space question, it turned
out to be a particularly sharp version of a broader open question (see “Open Problem 9" in [9])
that asks whether there is any ZFC example @f&pace that is perfect and does not have a
o-closed-discrete dense subset.

Recent decades have seen significant progress on Maurice’s question. An important paper
by Qiao and Tall [13] showed that Maurice’s question is equivalent to another question posed
by Peter Nyikos

a) (Nyikos)In ZFC, is there a non-metrizable, perfect, non-Archimedean space?



and examined related questions such as

b) (Heath)In ZFC, is there a non-metrizable perfect GO-space with a point-countable
base?

In Section 2 of this note we present ZFC decomposition theorems that link the questions
of Maurice, Heath, and Nyikos to the study of first-category subsets of certain special Baire
spaces. In Section 3, we will summarize consistency results of Shelah &vnrQiao, and
Tall that provide models which cannot contain any space of small size or small density that
would be a counterexample to Maurice’s question. We summarize the results as follows:

Theorem: It is undecidable in ZFC whether every perfect GO-space of local densitgust
have as-closed-discrete dense subset, and whether every perfect GO-space with local density
wy and a point-countable base must be metrizable.

The questions of Maurice, Nyikos, and Heath remain open for spaces with local density

Work of W-X Shi links Maurice’s question to a more technical open question that asks
whether each perfect generalized ordered space can be topologically embedded in some perfect
linearly ordered space. We discuss this issue in Section 3, below.

Recall that &50-spaces a triple( X, <, 7) where(X, <) is a linearly ordered set andis
a Hausdorff topology oiX that has a base of order-convex sets: i the usual open-interval
topology of<, then(X, <, 7) is alinearly ordered topological spag@OTS). Cech [6] proved
that GO-spaces are exactly those spaces that embed topologically in some LOTS. Also recall
that in any perfect space, every relatively-discrete set (i.e., a set that contains no limit point of
itself) is o-closed-discrete.

The authors would like to thank the referee for insightful comments on an earlier version
of this paper.

2 The ZFC structure of perfect GO-spaces

At several points in the rest of the paper, we will need to invoke the following fact, which was
probably known to Kurepa; a proof can be found in [5].

Lemma 2.1 Suppose that the GO-spa&ehas ac-closed-discrete dense subset. Then so does
every subspace of.

Whether or not they have-closed-discrete dense subsets, perfect GO-spaces have a deli-
cate special structure, as the next results show.

Lemma 2.2 Let S be a first category subset of a perfect GO-spate ThenS contains a
subset that is dense $iando-closed-discrete ik .

Proof: To say tha¥ is a first category subset &f means that there are closed, nowhere-dense
subsetds,, of X havingS C | J{K, : n < w}. If we could prove that eack,, contained

a dense subset that iscaclosed-discrete subset &f, then(J{K, : n < w} would also

have such a dense subset. But the existence of such a dense subset is a hereditary property in



GO-spaces (see Lemma 2.1) and thereforgould also have a dense subset of the required
type.

Therefore, it is enough to show that every closed, nowhere-dense dtibseX has a
dense subset that isclosed discrete itX. LetC be the collection of all convex components
of X — K. BecauseX is perfect,X — K is anF,-subset ofX, sayX — K = | J{F,, : n > 1},
so that the collectio® can be written is a countable union of collectiahs = {C' € C :
CNF, # 0} forn < w. EachC, has the property thatif € X then some open neighborhood
W of x meets at most two members@f.

For each” € C,, choosen(C) € CNF,. Thenthe seL,, = {p(C) : C € C,} is closed in
X, and is disjoint fromK. Let W, be the collection of convex componentsXf— L,,. Each
W, coversK. LetV, = {WnNK : W € W, }. We claim that for each € K, |({St(p, V») :
n < w}| < 3. If not, then we may choose pointsb € ({St(p, V,) : n < w} with either
a<b<porelsep <a<b.

The two cases are analogous, so we consider only the first. Fomgaome member of
W, € W, contains bottu andp. Then convexity forces € [a,p] C W,,. By hypothesis, the
setK is nowhere dense iX, so thatK cannot contain the non-void open $etp). Hence
0 # (a,p)— K C X — K sothereisam < wand aset € C,, with (a,p)NC # (). Because
a,p € K, neithera norp can belong ta”, so that convexity force§’ C (a,p). Therefore
p(C) € C C (a,p). Becauséa,p) C W,,, p(C) € C C (a,p) C Wy,. ButC € C,, implies
p(C) € Ly, so that we have(C) € W,,, N L,,, = () which is impossible.

Therefore| {St(p, V») : n < w}| < 3 as claimed. We now apply Theorem 2.1 of [2] to
conclude thaf< contains a dense subset thatislosed-discrete i and hence also iX. O

Corollary 2.3 If X is a perfect GO-space that is of the first category in itself, thehas a
o-closed-discrete dense set. Hence any Souslin space (if there is one) is of second category
in itself and any Souslin space that has no non-empty open, separable subspaces is a Baire
space.

Proposition 2.4 Let X be any perfect GO-space. L@tbe the union of all open subsetsXf
that contain a dense subset thavislosed-discrete idX. Then:

1) G is open inX and has a dense subset thatislosed-discrete itX;

2) the setH = X — @ is dense-in-itself and for any subsetC H, the following
are equivalent:

a) T has a dense subset thatiisclosed-discrete itf;
b) T"is nowhere-dense iH;
c) T is of the first Baire category iH.

3) whenH is topologized as a subspaceXf H is a Baire space.

Proof: Recall that in the perfect spa&e everyo-relatively-discrete set is-closed-discrete.

To prove assertion (1), |éf be a cover of7 by open sets that, in their relative topology,
each have a dense set thatiselatively discrete. Because any perfect GO-space is hereditarily
paracompact [7], there is a relatively closed cafeof G that refined/ and is as-discrete
collection in the subspace of X. Then each member & inherits a dense set thatisclosed-
discrete from the member dfthat contains it, by 2.1. Heneg = | J F has ar-closed-discrete
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dense set. Note that this dense set-dosed-discrete in the perfect spake and not just in
the subspac€’.

Next consider the subspaék= X — G. If pis a relatively isolated point off, then there
is a convex open set C X with J N H = {p}. ThenJ — {p} C G so thatJ — {p} has a
o-relatively-discrete dense subget ThenD U {p} is ac-relatively discrete dense subset of
J, sothat/ C G, contrary toJ N H # (). HenceH has no relatively isolated points, i.&1,is
dense-in-itself.

Because (b) implies (c) in any space, to prove assertion (2) it is enough to show that (a)
implies (b) and (c) implies (a).

a)=> b) Suppose€l’ has a dense subset thatisclosed discrete it (and hence also iX).
Then so doesly (T') so we may assume thdt is closed inH (and hence also iX). We
claim thatIntz(7") = (. If not, then there is an open subgétof X with() # UNH C T.
Becausd has a dense subset thati€losed-discrete itX, so does its subspa€éen H. Note
thatU — H C G, so thatU — H inherits (fromG) a dense subspace thatislosed-discrete in
X. ButthenU has a dense subspace of the same type, s&/thaty, showing thaly N H = (),
which is impossible. Thereford, is nowhere dense i as claimed.

(c) = (a). Suppose there are closed, nowhere dense suliseté H with " C | J{K,, : n <
w}. Then by Lemma 2.2, eadhi,, has a dense subset thaviglosed-discrete i/ (and hence
also inX) so that J{ K, : n < w} has the same property. Hence the subsgae¢so has a
dense subset thatisclosed-discrete itX.

To prove assertion 3), it is enough to show that no non-empty, relatively open stbset
of H is of the first category irf{. In the light of (2), any first category relatively open 3&t
would have a dense subsktthat iso-closed-discrete ik. Write V = H N W whereW is
openinX. ThenW = (W NH)U (W — H) =V U (W nNG) so thatiW is the union of
two subsets, each having a dense set thatdtosed-discrete ifX. HencelW C G so that
) = W N H =V, and that is impossible

Corollary 2.5 If there is a perfect GO-spac& having noo-closed-discrete dense subset
thenX contains a subspace that is a dense-in-itself, perfect, non-Archimedean GO-space, a
Baire space, is a LOTS, and has the property thas a first category subset af if and only

if L has ac-relatively-discrete dense subset.

Proof: Suppose there is a perfect GO-space having-olmsed-discrete dense subset. Apply
Proposition 2.4 and consider the resulting subsgac&heorem 7 of [13] asserts that any first-
countable LOTS has a dense non-Archimedean subspace. Essentially the same proof shows
that the same is true for first-countable GO-spaces, s¥ lbe a dense non-Archimedean
subspace off. According to a result of Purisch [11], the subspatés actually a LOTS,
perhaps under some order different from the one hahherits fromX. BecauseY is a

perfect GO-space, evepyrelatively discrete set il is alsoo-closed-discrete. Density of

in H allows us to use part (2) of Corollary 2.4 to show that a subsktisfof the first category

in Y if and only if it has a dense subset thatiselatively-discrete. The fact that no relatively

open subset of” can have such a dense subspace show<tlst Baire spacel

Proposition 2.4 and Corollary 2.5 show that in order to study whether a perfect GO-space
X has acr-closed-discrete subspace, we should look only at the special subspauesY’,
both of which are Baire spaces without isolated points.
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We close this section by mentioning a ZFC decomposition theorem that is a consequence
of one announced in [4] for first-countable paracompact GO-spaces. It may also be useful in
studying Maurice’s problem:

Proposition 2.6 Suppose thakX is a perfect GO-space. Theth = A U B where

a) Ais an open metrizable subspaceXof
b) B = X — A and is dense-in-itself;
c) B can be written a3 = C U D whereC N D = () and wherdecy, ¢2] N C (respectively

[d1,d2] N D) is not compact whenevei < co are points ofC' (respectively, whenever
dy < dy are points ofD).

If we apply Proposition 2.6 to a perfect GO-spakXewe see thafX has ac-closed-discrete
dense set if and only if both of the se&tsand D havecs-relatively-discrete dense subsets.

3 Some consistency results

The results in this section involve minor modifications of observations and theorems appearing
in [12]. The following theorem is due to Shelah and Tdghkwic [14].

Theorem 3.1 If ZFC is consistent, then so is ZFC plus the following two statements simulta-
neously:

a) MA 4240 = wy;
b) There is no non-atomic Baire space of size

To say that a space ison-atomicmeans that its regular-open algebra is non-atomic. A
nonempty Hausdorff space without isolated points is a non-atomic space. In what follows,
let M g7 be any model of the type described in Theorem 3.1.

Corollary 3.2 If ZFC is consistent, then there is a model of set theory in which every perfect
GO-space of local density; has ac-closed-discrete dense subset.

Proof: Suppose that som€in Mg is a perfect GO-space of density that has na-closed-
discrete dense subset. LBtbe a dense subset &f with cardinalityw;. ThenD is also a
perfect GO-space with ne-relatively-closed-discrete dense subset. Use Corollary 2.5 to find
a dense-in-itself subspageof D that is a Baire space and hasdaoelatively-closed-discrete
dense subset. But in the light of Theorem 3.1, suéh@annot exist.

Now suppose thaM g contains a perfect GO-spacé that has local density;. Com-
bining the first paragraph of the proof with paracompactnesX dfecall that any perfect
GO-space is paracompact [7]), we see thiabas as-discrete cover by closed subspaces that
each have a-closed-discrete dense set in their relative topology. But tXidras ar-closed-
discrete dense set, as required.

Corollary 3.3 It is undecidable in ZFC whether any perfect GO-space of local density
must have a-closed-discrete dense subset.
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Proof: Any model oftV = L contains a Souslin space of density so it cannot be proved

in ZFC that any perfect GO-space of density must have ar-closed-discrete dense subset.

On the other hand, in the modg&t s, every perfect GO-space of local density must have

a o-closed-discrete dense set, so that no ZFC proof can produce a perfect GO space of local
densityw; that has nors-closed-discrete dense subset. Hence Maurice’s question for GO-
spaces of local density; is undecidable in ZFQ3

Corollary 3.4 It is undecidable in ZFC whether a perfect GO-space of local densitgnd
having a point-countable base must be metrizable.

Proof: Proof: For half of the proof, recall that Bennett [1] and Ponomarev [10] showed that

if there is a Souslin space, then there is a Souslin space with a point-countable base. Souslin
spaces exist in many models of set theory, e.g., in V=L, always have densind are non-
metrizable. Thus it is consistent with ZFC that there is a counterexample to Heath’s question
with densityw .

For the other half of the proof, consider the modéls; and start with any perfect GO-
spaceX with a point-countable base and local densityv;. As in the proof of 3.2, X must
have as-closed-discrete dense subset. But in that cAsejust be metrizable (see [3]). Thus
it is consistent with ZFC that there is no counterexample to Heath’s question having density
wi. O

Does Corollary 3.3 settle Maurice’s question for all perfect GO-spaces? In other words,
is there a ZFC theorem saying that if there is a perfect GO-space withogtased-discrete
dense subset, then there is such a space of denghtyThe answer is “No” because Qiao
proved in [12] that if one starts with the modEland does the usual ccc forcing to obtain
MA + ¢ = we, One can obtain a model satisfyidd A + ¢ = w, that contains a perfectly
normal, non-metrizable GO-space of weight and sizeeven though the model contains no
such space of size; .

Theorem 3.1 also has consequences for a more specialized old question from ordered space
theory, namely, “Can every perfect GO-spdtde topologically embedded in a perfect LOTS
Y (X)?” (In that question, we make no assumptions about the relation between the orderings
of X and ofY'(X).) We have:

Corollary 3.5 In the modelMgr, any perfect GO-space with local density w; can be
embedded in a perfect LOTS.

Proof: We know that il g7, any perfect GO-spack with local density< w; has as-closed-
discrete dense set. Now apply a theorem of Shi [15] to concludeXilean be embedded in a
perfect LOTSO

Remark 3.6 W-X Shi’s proof that any GO-space with@&closed-discrete dense set can be
embedded into a perfect LOTS might suggest that, in studying the question “Can any perfect
GO-space be embedded in some perfect LOTS?”, it might be worthwhile to work in a model of
ZFC that contains a Souslin lirfe and then try to build a counterexample fréhioy introduc-

ing some isolated points and some one-sided Sorgenfrey points in the usual way. However, that
approach cannot work, because in [16] the authors show in ZFC that any GO-space constructed
in the usual way on a perfect LOTS will be embeddable in some other perfect LOTS.
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