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1 Introduction

In this paper we characterize trees whose lexicographic orderings give (up to order isomorphism) sets of
real numbers and sets of ordinals. We then characterize trees whose lexicographic orderings are order
complete (or equivalently, that are compact in the usual open interval topology of the lexicographic order-
ing). For a broad class of trees, we also characterize those trees that are of the first Baire category when
equipped with the open interval topology of their lexicographic orderings. Finally, we collect together
some known results about Aronszajn trees and lines. We prove the harder half of the folklore characteri-
zation of Aronszajn lines as being the lexicographic orderings of Aronszajn trees and then we use earlier
results in the paper to establish certain topological facts about Aronszajn lines.

We generally follow [4] in our terminology and notation for trees. By atree we mean a partially
ordered set(T,≤T ) with the property that for eacht ∈ T , the setTt = {s ∈ T : s ≤T t and s 6= t} is well
ordered by≤T . The order type ofTt is denoted bylv(t) and for each ordinalα, Tα = {t ∈ T : lv(t) = α}
is theαth level of T . For someα, Tα = ∅ and the height ofT (denotedht(T )) is the first ordinalα
with Tα = ∅. For anyt ∈ T and anyα < lv(t) let t(α) be the unique point ofTt ∩ Tα, i.e. the unique
predecessor oft that lies at levelα of the tree, and forα = lv(t), let t(α) = t.

For eacht ∈ T , thenode ofT containingt is defined to beNodeT (t) = {s ∈ T : Ts = Tt}. LetNT be
the set of all nodes ofT . Given a nodeN of T , there is someα with N ⊆ Tα and we writeα = lvT (N).
Let ρ(N) = Tt wheret is any element ofN . This setρ(N) is called thepath of predecessorsof the node
N . It is clear that any two members of a given node ofT are incomparable with respect to the partial
ordering≤T . For each nodeN of T , let <N be a linear ordering ofN . There is no necessary relation

1This paper is part of the undergraduate honors thesis of the first author, written with financial support from the William and
Mary Charles Center, and under the supervision of David Lutzer.
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between the orderings of different nodes ofT . Given a set{(N,<N) : N ∈ NT} of node orderings forT ,
we define a new ordering, called thelexicographic ordering, on the setT by the rule thatt1 � t2 if and
only if either

(i) t1 ≤T t2; or

(ii) t1 andt2 are incomparable in the partial ordering≤T and ifδ = ∆(t1, t2) is the first ordinal
such thatt1(δ) 6= t2(δ), then in the nodeN to which botht1(δ) andt2(δ) belong, we have
t1(δ) <N t2(δ).

It is easy to verify that� is a linear ordering of the setT .

From time to time we will contrast the theory of lexicographic orderings of trees with the related, but
quite different, theory of branch spaces of trees. (See [1].) By abranchof a tree(T,≤T ) we mean a
maximal (with respect to containment) totally ordered subsetb ⊆ T . Each branchb of T is well ordered
and its order type is denoted byht(b). Forα < ht(b) let b(α) be the unique member of the setb ∩ Tα.
Given a set of node orderings{(N,<N) : N ∈ NT} as above, the set of all branches ofT (denoted
byBT ) is linearly ordered by a rule that is reminiscent of lexicographic ordering, namely that two branches
b1, b2 ∈ BT haveb1 ≤BT

b2 if and only if eitherb1 = b2 or b1(δ) <N b2(δ) whereδ = ∆(b1, b2) is the first
ordinal such thatb1(δ) 6= b2(δ) andN is the node ofT that contains bothb1(δ) andb2(δ).

In this paper we reserve the symbolsQ, P andR for the usual sets of rational, irrational, and real
numbers, respectively, The set of all integers is denoted byZ. If S is a subset of a linearly ordered setL,
then a setC is aconvex componentof S if C ⊆ S andC is order-convex inL and no strictly larger convex
subset ofL is contained inS. Throughout the paper, we will use the termline to mean any linearly ordered
set. No topology is assumed unless specifically mentioned.

We thank the referee whose comments improved an earlier draft of our paper.

2 Representing lines by lexicographically ordered trees

In this section, we will focus on representing some classical linearly ordered sets (namely, subsets ofR and
ordinal lines) as lexicographic orderings of trees. We begin by recalling an observation due to Todorčevic
[4] showing that we must place restrictions on the trees used if we are to obtain non-trivial representations
of lines via lexicographic orderings of trees.

Example 2.1 : Any linearly ordered set is order isomorphic to a lexicographically ordered tree.

Proof: Consider any linearly ordered set(X,<). Let T = T0 = X and let≤T be equality. ThenT0 is the
unique node ofT and we linearly order it to make it a copy of(X,<). Using the treeT and the chosen
node ordering, it is clear that(X,<) is exactly the lexicographic ordering ofT . 2

The problem with the tree in Example 2.1 is that the the original linearly ordered set(X,<) appears
as a node of the tree, and the lexicographic ordering gets all of its structure from that node. Because the
tree in Example 2.1 is just as complicated as the original line(X,<), it is not surprising that such a tree-
representation gives no additional insight into the structure of(X,<). The literature contains many kinds
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of restrictions that one might impose on a tree, e.g., restrictions on the height ofT , or restrictions on the
cardinality of the nodes ofT , or of the levels ofT , or of the anti-chains ofT . (Recall that ananti-chainis
a subsetA ⊆ T such that no pair of distinct elements ofA are comparable in the partial order ofT .) We
introduce a new kind of restriction calledL-non-degeneracy that seems particularly natural if one wants to
have a representation theory for a linearly ordered set(X,<) using trees that are more simple than(X,<)
itself. For a linearly ordered set(L,<L) we say that the node orderings of a treeT areL-non-degenerate
provided for eachN ∈ NT , the set(L,<L) is not order isomorphic to any subset of(N,<N).

Example 2.2 : The setQ of rational numbers is order isomorphic to a lexicographically ordered tree with
Q-non-degenerate node orderings.

Proof: LetT =
⋃
{nZ : n ≥ 1}, i.e.,T is the set of all non-empty finite sequences of integers. Partially

orderT by end-extension. Each node ofT is countably infinite and in its natural order is a copy ofZ.
Hence the node orderings areQ-non-degenerate. With the resulting lexicographic order�, T is a countable
densely ordered set without end points (becauseT has no root) and so(T,�) is order isomorphic toQ. 2

Remark 2.3 : By way of contrast with Example 2.2, we show in [1] that ifQ is order isomorphic to the
branch space of some treeT , then some node ofT must contain an order isomorphic copy ofQ.

Having obtainedQ as a non-trivial lexicographically ordered tree, it is natural to wonder whether
interesting uncountable sets of real numbers could be obtained in a similar way. The answer is “Yes,” as
can be seen from the next example.

Example 2.4 : For any setX with Q ⊆ X ⊆ R, there is a treeVX with countable height and countable
nodes whose lexicographic ordering is order isomorphic toX.

Proof: We begin by considering the case whereX = R. Let T be the heightω tree used above to give a
lexicographic representation ofQ. LetBT be the set of all branches ofT and letU = T ∪ BT . As in [4]
we extend the partial order ofT to a partial ordering ofU as follows. Fort ∈ T andb ∈ BT we define
t ≤U b if and only if t ∈ b. Distinct members ofBT are not comparable in the partial ordering ofU . It is
straightforward to check that if�U is the resulting lexicographic ordering ofU , then(U,�U) is densely
ordered, has no endpoints, has a countable order-dense set, and satisfies the least upper bound property for
non-empty subsets that have upper bounds. But that list of properties characterizes the ordered setR. Fix
an order isomorphismF from (U,�U) ontoR.

Now consider the case whereQ ⊆ X ⊆ R. With U andF as in the previous paragraph, letBX be the
set of branchesb ∈ BT with the property theF (b) ∈ X − Q. ThenVX = T ∪ BX is a subtree ofU and
the restriction ofF to the lexicographically ordered treeVX is an order isomorphism from(VX ,�VX

) onto
X.2

The construction in Example 2.4 is somewhat unsatisfying because, while every node of the treeV is
either finite or a copy ofZ, theωth level ofV is a very large anti-chain that makesV look somewhat like
the trivial tree mentioned in Example 2.1 in the sense that almost all of the structure grows out of a single
level. One might wonder whether it is possible to find a treeT and a choice of node orderings whose
lexicographic ordering representsX without including the setX − Q as a maximal anti-chain. The next
two results answer that question in the negative and show that to a great extent, Example 2.4 is typical of
what must happen when uncountable subsets ofR are represented as lexicographic orderings of trees. We
begin with a lemma that describes certain intervals in the lexicographic ordering�T .
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Lemma 2.5 : Suppose(T,≤) is a tree and suppose� is the lexicographic ordering ofT associated with
some choice of node orderings. Then:

i) if a <T b are comparable elements ofT and if (a, b)� = {x ∈ T : a ≺ x ≺ b} then

(a, b)� = {c ∈ T : a <T c <T b} ∪
(⋃

{W (c) : a <T c ≤T b}
)

whereW (c) =
⋃
{T x : x ∈ Node(c) and x <Node(c) c} andT x = {t ∈ T : x ≤T t}.

ii) if <M is the linear order chosen for the nodeM of T and ifa, b ∈M havea <M b then

(a, b)� =
⋃
{T x : x ∈M and a ≤M x <M b} − {a}.

Proof: LetL = {x ∈ T : a ≺ x ≺ b} and letR be the set

{c ∈ T : a <T c <T b} ∪
(⋃

{
⋃
{T x : x ∈ Node(c) & x <Node(c) c} : a <T c ≤T b}

)
.

We first showR ⊆ L. Let t ∈ R. If a <T t <T b thana ≺ t ≺ b is automatic, so assume there is somec
with a <T c ≤T b and somex ∈ Node(c) with x <Node(c) c andt ∈ T x. Thena <T t and a case-by-case
analysis shows thatt ≺ b. Hencet ∈ L.

Conversely, supposet ∈ L. If a <T t <T b, thent ∈ R so assume thata <T t <T b is false, i.e., that
eithera <T t or t <T b fails. It cannot happen thatt ≤T a or b ≤T t because each of these options would
forcet 6∈ L. Hence ifa <T t fails, thena andt are incomparable in the partially ordered set(T,≤T ). Now
computeδ = ∆T (a, t) and conclude froma ≺ t that in the nodeM of T that contains botha(δ) andt(δ),
we havea(δ) <M t(δ). But then we haveb ≺ t becausea <T b yieldsb(δ) = a(δ) <M t(δ). Therefore,
a <T t must occur, so thatt andb are incomparable in(T,≤T ). Computeσ = ∆T (t, b). Thenσ ≤ lv(b)
and in the nodeN of T that contains botht(σ) andb(σ) we havet(σ) <N b(σ). If σ ≤ lv(a), thena <T b
would givet(σ) <N b(σ) = a(σ) and that would yieldt ≺ a, which is false. Hencelv(a) < σ ≤ lv(b).
Thenb(σ) is the pointc mentioned in the definition ofR andN = Node(c) andx = t(σ) <N c, showing
thatt ∈ R, as required.

The Lemma’s second assertion is proved in a similar way.2

Theorem 2.6 : Let (T,≤T ) be a tree and let{(N,<N) : N ∈ NT} be a set of node orderings forT . Let
� be the associated lexicographic ordering ofT . Then(T,�) is order isomorphic to a subset ofR if and
only if there are subsetsC andA of T such that:

a) C is countable;

b) A is the anti-chain of all maximal elements of(T,≤T );

c) if t ∈ T − C then somea ∈ A hast ≤T a;

d) T − A is countable;

e) if |T | > ω, then|A| = |T |;
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f) there are only countably many nodes ofT having more than one point;

g) for each nodeN of T , the linearly ordered set(N,<N) is order isomorphic to some subset ofR.

Proof: Suppose(T,�) is order isomorphic to some subset ofR. If T is countable, then (a) through (g)
are immediate and there is nothing to prove. Hence suppose|T | > ω. Being order isomorphic to a subset
of R, (T,�) has a countable order dense setD, i.e., if x ≺ y in T , then somed ∈ D hasx � d � y.
The existence ofD guarantees that any family of non-degenerate (= having more than one point) pairwise
disjoint convex subsets of(T,�) is countable.

Supposeb is any branch ofT , sayb = {tα : α < ht(b)}. If ht(b) ≥ ω1, then for each limit ordinal
λ < ω1 let Iλ be the�-interval(tλ, tλ+3)�, i.e.,Iλ = {s ∈ T : tλ ≺ s ≺ tλ+3}. Then{Iλ : λ < ω1 andλ
is a limit ordinal} is an uncountable collection of pairwise disjoint, non-degenerate convex sets in(T,�)
and that is impossible. Hence each branch ofT has countable height. Thereforeht(T ) ≤ ω1.

Let S = {x ∈ T : 1 < |T x|}, partially ordered by restricting≤T . ConsiderSα, theαth-level ofS. If x
andy are distinct members ofSα thenx andy are incomparable inS and hence also inT . Therefore the
setsT x = {t ∈ T : x ≤T t} and the analogously definedT y are disjoint non-degenerate convex subsets
of (T,≤T ) so thatSα must be countable. In addition, any branch ofS extends to a branch ofT , so each
branch ofS has countable height andht(S) ≤ ω1. If ht(S) = ω1 thenS is an Aronszajn tree. But(S,�S)
is order isomorphic to a subset ofR and that is impossible by Corollary 4.2, below. Henceht(S) < ω1.
Having countable levels and countable height,S must be a countable set.

For s, t ∈ T define thats ∼ t if and only if the convex hull of{s, t} in (T,�) is countable, i.e. the
interval of (T,�) from min�(s, t) to max�(s, t) is countable. Then∼ is an equivalence relation onT .
Because(T,�) order-embeds inR, the cofinality and coinitiality of each equivalence classcls(t) must
be countable. Hence| cls(t)| ≤ ω for eacht ∈ T . Furthermore the collection{cls(t) : t ∈ T and
| cls(t)| > 1} is countable, being a pairwise disjoint collection of non-degenerate convex sets in(T,�).
Hence the setC =

⋃
{cls(t) : t ∈ T, | cls(t)| > 1} is also a countable set, so (a) holds.

Let A = T − S. For anya ∈ A we know that|T a| = 1 so thata must be a maximal element of
(T,≤T ). Furthermore, becauseS is countable, we know that|A| = |T | so that (b) and (e) hold. Assertion
(d) holds becauseT − A = S.

Suppose thatt ∈ T − C and thatt 6∈ A. ThenT t has at least two points. IfT t were a countable set,
thenT t ⊆ C contrary tot ∈ T − C. HenceT t is uncountable. Observe that each level of the subtree
T t is contained in a level ofT , and thereforeT t has only a countable number of levels. Therefore, there
is a level of(T t)α that is uncountable. Because{T x : x ∈ (T t)α and |T x| ≥ 2} is a pairwise disjoint
collection of non-degenerate convex subsets of(T,�), the collection must be countable. Hence there are
(uncountably many) pointsx ∈ (T t)α with |T x| = 1 and any suchx must belong toA and havet ≤T x.
This proves assertion (c).

To prove assertion (f), fixα < ht(T ). For each nodeM of T at levelα with |M | ≥ 2, choose
cM , dM ∈M with cM <M dM (where<M is the linear ordering chosen for the nodeM ). Then the second
part of Lemma 2.5 shows that the intervals[cM , dM ]� of (T,�) are pairwise disjoint non-degenerate
convex sets, so that there are only countably many such nodes at levelα. But T has only countably many
levels, so that all togetherT has only countably many non-degenerate nodes.

Assertion (g) must hold because the order-embedding of(T,�) into R also embeds(N,<N) into R.
Therefore, if(T,�) is order isomorphic to a subset ofR then assertions (a) through (g) must hold.
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Conversely, we will prove that if conditions (a) through (g) hold, then the linearly ordered set(T,�)
has a countable order dense subset. That will be enough to show that(T,�) order-embeds inR. LetN2

be the family of non-degenerate nodes ofT . EachN ∈ N2 order-embeds inR and therefore contains a
countable setD(N) that is order dense in the linearly ordered set(N,<N). Because the set(N,<N) can
have at most countably many jumps, we may assume thatD(N) contains both points of any jump in the set
(N,<N), i.e., if u, v ∈ N are distinct and no point ofN lies strictly betweenu andv, thenu, v ∈ D(N).

LetD = C ∪ (T −A) ∪ (
⋃
{D(N) : N ∈ N2}). ThenD is a countable subset ofT . We claim thatD

is order dense in(T,�). Supposex ≺ y are points ofT . There are two cases to consider. First suppose
thatx andy are comparable in the partial order≤T . Thenx <T y so thatx ∈ T − A ⊆ D and hence
D ∩ [x, y]� 6= ∅. Next suppose thatx andy are incomparable in≤T . Then computeδ = ∆T (x, y),
obtainingδ ≤ min(lv(x), lv(y)) andx(δ) <M y(δ) whereM is the node ofT containing bothx(δ) and
y(δ). ThenM ∈ N2. If some pointu of M hasx(δ) <M u <M y(δ) then there is a pointv ∈ D(M) with
x(δ) <M v ≤M y(δ) and thenv ∈ D ∩ [x, y]�. If there is no such pointu ∈ M , then the pointsx(δ) and
y(δ) constitute a jump in(M,<M) and thereforey(δ) ∈ D(M) ⊆ D hasy(δ) ∈ D ∩ [x, y]�. Therefore,
D is a countable order dense subset of(T,�) and hence(T,�) is order isomorphic to some subset ofR.
2

Remark 2.7 : Theorem 2.6, an order-theoretic result, has a topological partial analog. With notation as
in (2.6), supposeI is the usual open interval topology of the lexicographic ordering�, and suppose there
is a topological embedding (not necessarily order-preserving) of the linearly ordered space(T, I) into the
usual space of real numbers. Then(T, I) is a second countable space and this allows us to prove that
(T, I) has a countable topologically dense subset and also has at most countably many jumps, so that
(T,�) has a countable order dense set. At one point we need to know that for the subtreeS of T , S is not
an Aronszajn tree, and it is possible to prove that if(T,�) embeds topologically inR, then no subtree ofT
can be an Aronszajn tree. Consequently, properties (a) through (g) still hold. The problem is (potentially)
with the converse. Give (a) through (g), there is an order isomorphism from(T,�) onto a subset̂T of R,
but the topology that̂T inherits fromR might not be the same as the open interval topology generated by
the linear order that̂T inherits fromR.

The lexicographic representation theory for ordinal lines, i.e., sets of the form[0, α) whereα is an
ordinal number, is more simple than the corresponding theory for subsets ofR. We need to recall the idea
of apartition treeof a linearly ordered set(X,<). For any non-degenerate (= having more than one point)
convex subsetI ⊆ X, let P(I) be a pairwise disjoint collection of (possibly degenerate) convex subsets of
I that coversI. Now define a tree recursively by:

• T0 = {X}

• if α = β + 1 andTβ is defined, letTα =
⋃
{P (I) : I ∈ Tβ and |I| > 1}

• if α is a limit ordinal andTβ is defined for allβ < α, thenTα = {D =
⋂
{Cβ : β < α} : Cβ ∈

Tβ and |D| ≥ 2}.

BecauseX is a set, there must be someα with Tα = ∅. Partially orderT =
⋃
{Tα : Tα 6= ∅} by reverse

inclusion. ThenT is a tree and theαth level of T is Tα. Any nodeN of T is a collection of pairwise
disjoint convex subsets ofX, so that for distinctC1, C2 ∈ N we may defineC1 <N C2 if and only if each
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point ofC1 precedes each point ofC2 in the original ordering given forX. This node ordering is called
theprecedence ordering fromX.

The central issue in the next theorem is that for a limit ordinalλ, any partition tree of[0, λ) can be
used to represent[0, λ) as a lexicographic tree.

Theorem 2.8 : Let λ be any limit ordinal and letT be any partition tree ofX = [0, λ). Order the nodes
of T using the precedence order fromX and let� be the associated lexicographic ordering ofT . Then
(T,�) is order isomorphic toX.

Proof: We will recursively construct a strictly increasing functionψ from (T,�) onto [0, λ). For each
α < λ, let bα = {t ∈ T : α ∈ t}. Thenbα is a branch ofT andT =

⋃
{bα : α < λ}.

Claim 1: If I ∈ T andI 6∈
⋃
{bβ : β < α} and if someJ ∈ bα hasI ≺ J , thenI ∈ bα −

⋃
{bβ : β < α}.

To prove Claim 1, we note thatI ∩ [0, α) = ∅, andα ∈ J . There are two ways thatI ≺ J can occur. In the
first, I ≤T J , i.e.,J ⊆ I, and thenα ∈ J ⊆ I as claimed. The second is whereI andJ are incomparable
members ofT , and in that caseI ∩ J = ∅ and ifδ = ∆T (I, J), then in the nodeN of T that contains both
I(δ) andJ(δ) we haveI(δ) <N J(δ), so that every point of the convex setI(δ) precedes every point of
J(δ) in [0, λ). But α ∈ J ⊆ J(δ) so that every point ofI(δ) precedesα and thereforeI ⊆ I(δ) ⊆ [0, α)
contradictingI ∩ [0, α) = ∅. Hence Claim 1 holds.

Claim 2: The height of the branchbα is less thanα + ω. Write µ = α + ω and for contradiction suppose
that the height ofbα is greater than or equal toµ. Then we can find membersIγ ∈ bα for eachγ < µ
such that ifγ1 < γ2 < µ thenIγ1 <T Iγ2, i.e., Iγ2 ⊂ Iγ1 . For γ < µ let f(γ) = sup(Iγ). The function
f cannot have infinite range because there is no strictly decreasing infinite set of ordinals. Hence there is
a finiten0 < µ such thatf(β) = f(γ) whenevern0 < β < γ < λ. Defineg(γ) = inf(Iγ) whenever
n0 < γ < λ; theng is strictly increasing. However, becauseα ∈ Iγ for eachγ, we see thatf(γ) ≤ α
for eachγ. Thus we have an order isomorphism from[n0 + 1, α + ω) into [0, α) and that is impossible.
Therefore,ht(bα) < α + ω.

Claim 3: For eachα < λ, the setS = bα −
⋃
{bβ : β < α} is finite. For eachβ < ht(bα), let bα(β) be the

unique member ofbα ∩ Tβ. If there is someβ < ht(bα) such thatmin(bα(β)) = α, letβ0 be the least such
β. If γ < β0 thenmin(bα(γ)) < α so thatbα(γ) contains some point less thanα and therefore belongs
to

⋃
{bβ : β < α}. Therefore, any member ofS has the formbα(γ) whereβ0 < γ < ht(bα), and each

such set containsα and is contained inbα(β0) ⊆ [α, λ). Forβ0 < γ < ht(bα) defineh(γ) = sup(bα(γ)).
We thereby obtain a strictly decreasing function. But there are no infinite strictly decreasing sequences
of ordinals, so that the domain ofh must be finite. Therefore, ifβ0 is defined, then the setS is finite, as
claimed. The remaining case is where for everyβ < ht(bα), the minimum of the setbα(β) is less thanα.
But then every member ofbα contains a point less thanα and therefore belongs to

⋃
{bγ : γ < α}, so that

the setS is empty. In any case, therefore,S is finite.

We will now recursively define a collection of functions{φα : α < λ}. By claim (3) we know that
the branchb0 of the treeT is finite. Let |b0| = n0. Then there is a unique strictly increasing function
φ0 : b0 → [0, n0). Now suppose0 < α < λ and that we have defined a family of functions{φβ : β < α}
satisfying the following five assertions that we collectively callIH(α).

1) if β < α thenφβ :
⋃
{bγ : γ < β} → [0, λ) is a strictly increasing function whose range is an initial

segment of[0, λ);
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2) if β < α is not a limit ordinal, thenφβ (
⋃
{bγ : γ < β}) is a proper initial segment of[0, β + ω);

3) if β < α is a limit ordinal, thenφβ (
⋃
{bγ : γ < β}) = [0, β);

4) if β < α and I, J ∈
⋃
{bγ : γ < β} haveI ≺ J in the lexicographic ordering ofT , then

φβ(I) < φβ(J) in [0, λ);

5) if 0 ≤ γ < β < α, thenφβ extendsφγ.

If α is a limit ordinal, defineφα =
⋃
{φβ : β < α}. Clearly assertions 1) ,2), 4), and 5) ofIH(α+ 1)

hold. To verify assertion (3) we must consider two cases separately, Ifα is a limit of smaller limit ordinals,
assertion 3) clearly holds, so consider the case whereα = µ+ω for some limit ordinalµ. ApplyingIH(α)
to the ordinalsβ = µ+ n shows that the range ofφα is [0, µ+ ω) = [µ, α) as required.

Finally consider the case whereα is not a limit ordinal. Writeα = µ+k whereµ is a limit ordinal and
0 < k < ω. We know that the range ofφµ+(k−1) is a proper initial segment of[0, µ+ ω) so that finiteness
of the setbα −

⋃
{bγ : γ < α} allows us to uniquely extendφµ+(k−1) to a functionφα on

⋃
{bγ : γ < α}

in such a way that the five assertions ofIH(α+ 1) all hold.

The above recursion produces a chain{φα : α < λ} of partial isomorphisms, and then the function
ψ =

⋃
{φα : α < λ} is the order isomorphism needed to prove the theorem.2

Remark 2.9 : Theorem 2.8 is another illustration of the marked difference between lexicographic repre-
sentation theory and branch space representation theory for linearly ordered sets. In [1] we show that if
λ is a regular cardinal (such asω1), then[0, λ) is not isomorphic to a branch space of any treeT , unless
some node ofT already contains a copy of[0, λ) or [0, λ)∗ where[0, λ)∗ indicates[0, λ) with the reverse
ordering.

Corollary 2.10 : Every ordinal line[0, α) is order-isomorphic to a lexicographic tree whose levels and
nodes are finite.

Proof: In caseα is a limit ordinal, use any binary partition tree of[0, α) and apply Theorem 2.8 above. In
caseα is not a limit, writeα = λ + n where1 ≤ n < ω andλ is a limit ordinal. The zeroth levelT0 of
the tree is{[0, λ), {λ}, {λ+ 1}, · · · , {λ+ n− 1}}, ordered naturally. The elements{λ+ i} are maximal
in the tree, and above the element[0, λ) ∈ T0 construct any binary partition tree of[0, λ). According to
Theorem 2.8, the resulting lexicographically ordered tree is exactly[0, α). 2

Example 2.11 : There is a partition tree of[0, ω + 1] whose lexicographic ordering is not isomorphic to
[0, ω + 1]. Thus Theorem 2.8 fails for non-limit ordinals.

Proof: For each finite heightn ≥ 0, let Tn = {{n}, [n + 1, ω + 1]}. Let Tω = {{ω, ω + 1}} and
Tω+2 = {{ω}, {ω + 1}}. Order each node naturally. The resulting lexicographic tree is order isomorphic
to [0, ω + 2], not [0, ω + 1]. 2
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3 Some topology for lexicographically ordered trees

Let T be a tree and let{(N,<N) : N ∈ NT} be a fixed family of node orderings. When endowed with
the open interval topology of its lexicographic ordering,T is a linearly ordered topological space and
therefore has very strong separation properties (e.g., monotonic normality [3]). We begin by character-
izing compactness of a treeT with the open interval topology of� (equivalently, we are characterizing
completeness of the order�) in terms of the properties of(T,≤T ) and of its node orderings. That will
involve showing that certain subsets ofT have suprema in(T,�) and we will need several preliminary
lemmas.

Lemma 3.1 : Let b be a branch of a tree(T,≤T ) and let� be the lexicographic order ofT associated
with a family of node orderings. Ifb has a maximum elements∗ in (T,≤T ), thens∗ = sup(T,�)(b). If b
does not have a maximum element in≤T (i.e., if ht(b) is a limit ordinal) thenb has a supremum in(T,�)
if and only if there exist an elements ∈ T and an ordinalµ < ht(b) such that

1) lv(s) = µ;

2) if γ < µ thens(γ) = b(γ) whereb(γ) is the unique point ofb ∩ Tγ;

3) the points is the immediate successor ofb(µ) in the node ofT to which both belong; and

4) if µ < α < ht(b), thenb(α) is the maximum element of the node to which it belongs.

Proof: It is clear that any branch that has a maximum element in the partially ordered set(T,≤T ) will
have that maximum element as its supremum in the linearly ordered set(T,�).

Next, suppose that the branchb has a supremums in (T,�) and that the branchb has no maximum
element in the partially ordered set(T,≤T ). Then the branch has limit height and we can writeb = {tβ :
β < ht(b)}. Becauses 6∈ b, there must be sometβ ∈ b that is not comparable tos in the partial order≤T .
Computeδ = ∆T (s, tβ) ≤ lv(s). Then in the nodeM of T that contains bothtβ(δ) ands(δ) we know that
tβ(δ) <M s(δ). If δ < lv(s), thens(δ) <T s and therefores(δ) would be an upper bound for the branchb
that strictly precedess in (T,�), and that is impossible becauses is the supremum ofb in (T,�). Hence
δ = lv(s). If there were some pointu ∈M with tβ(δ) <M u <M s thenu would be an upper bound forb
that is strictly less thans = supT (b). Hences is the immediate successor oftβ(δ) in M . Finally consider
anyγ with δ < γ < ht(b). In the notation of the lemma, we haveb(γ) = tγ. If b(γ) is not the maximum of
the node to which it belongs, then we could choose a larger elementt′ in that node and thereby obtain an
upper bound forb that is strictly less thans = supT (b), which is impossible. Therefore, if the branchb has
a supremum in the linearly ordered set(T,�), then it must be the maximum ofb in the partially ordered
set(T,≤T ) or else it must be as described in this lemma.

The proof of the converse is straightforward.2

Lemma 3.2 : Let (T,≤T ) be a tree and suppose a family of node orderings has been chosen. Let� be
the associated lexicographic order ofT . A nodeN of T has a supremums in (T,�) if and only if one of
the following conditions hold:
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a) s is the maximum element of the linearly ordered set(N,<N);

b) the set(N,<N) has no maximum element and there is an ordinalµ < lv(N) and a point
s ∈ T with the property thatlv(s) = µ and for everyt ∈ N, s is the immediate successor
of t(µ) in the nodeM that contains botht(µ) and s, and if µ < α < lv(N) then for each
t ∈ N, t(α) is the maximum point of the node to which it belongs.

Proof: The proof of Lemma 3.2 closely parallels the proof of Lemma 3.1.2

Lemma 3.3 ; Let� be the lexicographic order associated with some choice of node orderings for the tree
T , and letA be a non-empty initial segment of(T,�). For anys ∈ T , the following are equivalent:

(1) for eacha ∈ A, eithera � s or s <T a;

(2) if a ∈ A haslv(a) ≤ lv(s) thena � s.

Proof: Clearly (1) implies (2). Suppose (2) holds anda ∈ A. If a � s is false, thens ≺ a. Then either
s <T a (which is the conclusion we want), or elses anda are incomparable in the partial order≤T . In
the latter case, if we computeδ = ∆T (a, s), thenδ ≤ lv(s), ands(δ) <M a(δ) in the nodeM of T
that containss(δ) anda(δ), and for eachγ < δ, a(γ) = s(γ). Note thata(δ) � a becausea(δ) ≤T a.
BecauseA is an initial segment of(T,�), it follows thata(δ) ∈ A. But then we havelv(a(δ)) ≤ lv(s)
ands ≺ a(δ) contradicting (2). Therefore, (1) holds.2

Lemma 3.4 : Let� be the lexicographic order associated with some choice of node orderings for the tree
(T,≤T ), and letA be a non-empty initial segment of the lexicographically ordered set(T,�). In each of
the following cases,A has a supremum in(T,�):

(1) There is a points of a nodeN of T such thats = supN(A ∩ N), s 6∈ A, ands(α) ∈ A
wheneverα < lv(s) (wheres(α) is the unique predecessor ofs in Tα).

(2) There is a points∗ ∈ T − A and a nodeN of T such that∅ 6= N ∩ A = N and(N,<N)
does not have a maximum element, ands∗ = supT (N).

(3) There is a pointx ∈ N whereN is a node at a successor levelβ + 1 withN ∩A = ∅, and
every strict predecessor ofx in ≤T belongs toA.

(4) There is a pointx of a nodeN at a limit level such thatN ∩A = ∅, andx is the minimum
point ofN in the order<N , and every strict predecessor ofx in the partial order≤T belongs
toA.

Proof: Suppose (1) holds. Becauses 6∈ A andA is an initial segment of(T,�), we know that eacha ∈ A
hasa ≺ s. First consider the case in whichN ∩ A 6= ∅. We will show that there cannot be a pointt ∈ T
with the property thatt ≺ s anda � t for eacha ∈ A. The relationt ≺ s can happen in two ways,
depending upon whethers andt are comparable in the partial order≤T . If t ands are comparable, then
t <T s. Let a1 ∈ N ∩ A. Thent <T a1 becausea1 ands have exactly the same predecessors. But then
t ≺ a1 contrary to the properties oft. Therefore,t ands are incomparable in≤T . Computeδ = ∆T (s, t).
Then δ ≤ lv(s) and in the nodeM of T that contains boths(δ) and t(δ) we havet(δ) <M s(δ). If
δ < lv(s) thens(δ) ∈ A becauses(δ) is a strict predecessor ofs in ≤T . But thent ≺ s(δ) ∈ A contrary
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to assumed properties oft. Henceδ = lv(s). But thens(δ) = s = supN(N ∩ A) so thatt(δ) ∈ N and
t(δ) <M s(δ) = s provides a pointa2 ∈ A ∩ N with t(δ) <M a2. Thent ≺ a2 contrary to assumed
properties oft. Therefore, not ∈ T hast ≺ s and also hasa � t for eacha ∈ A, sos = sup(T,�)(A).

Next consider the case whereN ∩ A = ∅. Thens = supN(∅) tells us thats is the minimum element
of N . We will separately consider the cases wherelv(s) is a successor ordinal and wherelv(s) is a limit
ordinal.

If lv(s) = β+1 is not a limit ordinal, then we claim thats(β), the unique predecessor ofs in Tβ, is the
supremum ofA in (T,�). The hypothesis of this lemma guarantees thats(β) ∈ A so that it will be enough
to show thata � s(β) for eacha ∈ A. For contradiction, supposes(β) ≺ a3 for somea3 ∈ A. As noted
above,a3 ≺ s so thats(β) ≺ a3 ≺ s. Therefore boths(β) <T a3 anda3 <T s are impossible so thats(β)
anda3 are incomparable in the partial order≤T . Computeδ = ∆T (s(β), a3). Thenδ ≤ lv(s(β)) = β, and
s(β)(δ), the unique predecessor ofs(β) in Tδ, is the same ass(δ), the unique predecessor ofs at levelδ.
Becauses(β) ≺ a3 we haves(δ) = s(β)(δ) <M a3(δ) whereM is the node ofT containing boths(β)(δ)
anda3(δ) while for eachγ < δ we haves(γ) = s(β)(γ) = a3(γ). That is enough to show thats ≺ a3 and
that is impossible becauses is an upper bound for the setA. Therefore,s(β) = sup(T,�)(A) as claimed.

Now consider the case whereN ∩ A = ∅, s = supN(A ∩ N) is not inA, andlv(s) = λ is a limit
ordinal. As noted above,s = supN(∅) means thats is the minimum element of(N,<N). We claim
that s = sup(T,�)(A). For contradiction, suppose there is somet ∈ T with the property that for each
a ∈ A, a � t ≺ s. There are two possibilities for the relationship betweens andt. If t <T s, then because
lv(s) = λ is a limit ordinal, there is someα < λ with t <T s(α) <T s. But thens(α) ∈ A and hence
t ≺ s(α) shows thatt is not an upper bound forA. Therefore,t ands are incomparable in the partial order
≤T . Computeδ = ∆T (s, t). Thenδ ≤ lv(s) = λ andt(δ) <M s(δ) whereM is the node ofT containing
boths(δ) andt(δ) while s(γ) = t(γ) wheneverγ < δ. If δ < λ, thens(δ) ∈ A. But thent(δ) <M s(δ)
shows thatt ≺ s(δ) ∈ A so thatt is not an upper bound forA. Henceδ < λ is impossible and we must
haveδ = λ. But then the nodeM must beN so thatt(δ) <N s(δ) = s shows thats is not the minimum
element ofN , and that is impossible. Therefores = sup(T,�)(A) as claimed. This completes the proof of
(1).

Now consider (2). BecauseA is an initial segment of(T,�) ands∗ 6∈ A we see thats∗ is an upper
bound forA in (T,�). But becauses∗ is the supremum in(T,�) of the nonempty subsetN ∩ A of A, it
follows thats∗ = sup(T,�)(A).

Next consider (3). Becausex ∈ N andN ∩ A = ∅, we know thatx 6∈ A and thereforex is an upper
bound for the initial segmentA of (T,�). Let α = lv(x). Thenα = β + 1 so there is a pointy ∈ Tβ

that is the immediate predecessor ofx, and we know from (3) thaty ∈ A. We claim thata � y for each
a ∈ A. If not, then consider somea ∈ A with y ≺ a. If y <T a, thenlv(a) ≥ lv(y) + 1 = α so that
a has a unique predecessora(α) ∈ Tα. (Possiblya(α) = a.) But thena(α) ∈ N ∩ A = ∅. Hence
a andy must be incomparable. Therefore,a andx are also incomparable, becausey <T x. Compute
δ = ∆T (y, a) ≤ lv(y) = β. Theny(δ) <M a(δ) in the nodeM of T that contains botha(δ) andy(δ).
Note thatx(δ) = y(δ) so that we havex(δ) = y(δ) <N a(δ) and∆T (y, a) = ∆T (x, a). But then we are
forced to concludex ≺ a and that is impossible becausex is an upper bound forA. Hence, if (3) holds,
we see thatA has a supremum in(T,�).

Finally, consider (4), wherex is the minimum point of the set(N,<N), N ∩ A = ∅, lv(x) = α
is a limit ordinal, and every strict predecessor ofx in ≤T belongs toA. Becausex 6∈ A we know that
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x is an upper bound for the initial segmentA in (T,�). We show that there cannot be anyy ∈ T with
a � y ≺ x for everya ∈ A. There are two ways fory ≺ x to happen. In the first,y <T x. But then
the fact thatlv(x) is a limit ordinal tells us that there is somez ∈ T with y <T z <T x. Thenz ∈ A
and we havey ≺ z contrary to the assumed properties ofy. Therefore,x andy must be incomparable in
≤T . Computeδ = ∆T (x, y) ≤ lv(x) = α. We havey(δ) <M x(δ) in the nodeM that contains bothy(δ)
andx(δ). If δ < α, thenx(δ) ∈ A. But theny(δ) <M x(δ) shows thaty ≺ x(δ) ∈ A, contrary to the
assumed properties ofy. Henceδ = α. But thenM is the node containingx(α) = x so thatM = N
and theny(δ) <N x(δ) = x shows thatx could not have been the minimum element of its node. Hence
x = sup(T,�)(A). 2

Theorem 3.5 : Let (T,≤T ) be a tree and let{(N,<N) : N ∈ NT} be a family of node orderings. Let�
be the resulting lexicographic ordering ofT . Then with its open interval topology, the lexicographically
ordered tree is compact if and only if the following four conditions hold:

C1 For eachN ∈ NT , N has a least upper bound in(T,�) (see Lemma 3.2);

C2 IfN ∈ NT and if lvT (N) is a limit ordinal, then(N,<N) has a least element. (Note: this condition
also applies to the zeroth level of the tree, which is itself a node ofT .)

C3 for eachN ∈ NT the linearly ordered set(N,<N) is conditionally complete, i.e., any non-empty
subset ofN that has an upper bound inN must have a least upper bound inN .

C4 for each branchb ∈ BT , either b has a maximal element inT or else the subsetb of T has a
supremums(b) in (T,�) (see Lemma 3.1).

Proof: In this proof we will need to consider several different partial and linear orders, namely the partial
order≤T and its strict version<T , the lexicographic order� onT and its strict version≺, and the linear
ordering≤N chosen for a nodeN of T , and its strict version<N . For a setS ⊆ T , we will write supT (S)
for the supremum ofS in the linearly ordered set(T,�) and for a subsetS of a nodeN , we will write
supN(S) for the supremum ofS in the linearly ordered set(N,≤N).

First suppose that a tree(T,≤T ) has node orderings satisfying (C1) through (C4). We will show that
every initial segmentA of (T,�) has a least upper bound. IfA = ∅, apply (C2) to the setT0, which is a
node ofT at limit level. The minimum element ofT0 is the least upper bound forA = ∅.

Next consider the case whereA = T . (This special case is a preview of the approach to be used later,
whenA is a proper initial segment.) The setT0, the zeroth level ofT , is a node ofT . In the light of
C1 applied toT0, we know thatT0 has a supremum in(T,�). Let t∗ = sup(T,�)(T0). There is a unique
t0 ∈ T0 with t0 ≤T t∗. Let≤T0 be the linear ordering chosen for the nodeT0. For anys ∈ T0 we have
s � sup(T,�)(T0) = t∗ so that, ifs 6= t0 we must haves ≺ t0. Hences ≤T0 t0 and sot0 is the maximum
element ofT0 in its node ordering. (In fact, one can see thatt0 = t∗.) For induction hypothesis, suppose
α > 0 is an ordinal and for each ordinalβ < α we have foundtβ ∈ Tβ such thattβ is the maximum
element of its node and such that ifβ1 < β2 < α then tβ1 <T tβ2. There are two cases to consider,
depending upon whether the setρ = {tβ : β < α} is a branch ofT .

If ρ is not a branch, then the setN = {t ∈ Tα : Tt = ρ} is non-empty and is a node ofT . Apply
(C1) to findt∗∗ = sup�(N). We claim that for eachβ < α, tβ <T t∗∗. We know that for anya ∈ N and
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for anyβ < α we havetβ <T a � t∗∗ so thattβ ≺ t∗∗. If there is aβ < α such thattβ <T t∗∗ is false,
thentβ andt∗∗ would be incomparable in the partial order≤T and we would computeδ = ∆T (tβ, t

∗∗)
and find that, in the nodeM of T that contains bothsβ(δ) andt∗∗(δ), we would havetβ(δ) <M t∗∗(δ).
Becausetβ(δ) = tδ, tδ <M t∗∗(δ) is impossible becausetδ is known to be the maximum element of its
node. Thereforetβ <T t∗∗ for eachβ < α. But thenlv(t∗∗) ≥ α so thatt∗∗ has a unique predecessor
t∗∗(α) at levelα of T , and it is immediate that if we definetα = t∗∗(α), then we obtain a point ofN that
is the maximum of the linearly ordered set(N,<N), and so the induction continues.

In the remaining case, the pathρ is a branch ofT . Note thatht(ρ) = α. We claim thatht(ρ) is not
a limit ordinal. If it were a limit, we would apply (C4) to find an ordinalµ = µ(ρ) < ht(ρ) such that
ρ(µ) has an immediate successor in its node, and that is once again impossible becauseρ(µ) = tµ is the
maximum of its node. Therefore,α = ht(ρ) must be a successor ordinal, sayht(ρ) = α = β + 1. Then
tβ is the maximal element of the branchρ, and hence is a maximal element of the partial order≤T of T .
We claim thattβ = supT (T ). Consider anys ∈ T and for contradiction supposetβ ≺ s. Becausetβ is
maximal inT , we know thattβ <T s is false. Hences andtβ must be incomparable in(T,≤T ) so that
if δ = ∆T (s, tβ), then in the nodeM to which boths(δ) andtβ(δ) belong, we havetβ(δ) <M s(δ). But
that is impossible becausetβ(δ) = tδ andtδ is known to be the maximum point of its node. Therefore,
tβ = sup(T,�)(T ).

Now we consider the more complicated case whereA is a nonempty, proper initial segment of(T,�),
i.e., if s ≺ a ∈ A, thens ∈ A. BecauseA 6= T, A is bounded in(T,�T ). Consider the set

Γ = {α < ht(T ) : for some x ∈ Tα, a ≺ x for all a ∈ A}.

The setΓ is non-empty becauseA is a bounded subset of(T,�). For eachα ∈ Γ, letUα = {t ∈ Tα : for
all a ∈ A, a ≺ t} and letη = min(Γ). Observe that minimality ofη combined with the fact thatA is an
initial segment of(T,�), guarantees that

(∗) β < η implies Tβ ⊆ A.

We claim thatUη is contained in a single node ofT . If |Uη| = 1 this is clear, so suppose that|Uη| > 1.
Fix x, y ∈ Uη with x ≺ y We will show thaty belongs to the node ofT that containsx. Because
lv(x) = η = lv(y) the pointsx andy are incomparable in the partial order≤T . Computeδ = ∆T (x, y).
Becausex ≺ y, we know thatx(δ) <M y(δ) whereM is the node ofT that contains bothx(δ) andy(δ).
Note thatδ ≤ lv(x) = η. If δ < η, then{x(δ), y(δ)} ⊆ Tδ ⊆ A in the light of (*). But thenx ≺ y(δ) ∈ A
and that contradictsx ∈ Uη. Thereforeδ = η and hencex = x(δ) andy = y(δ) showing thaty belongs to
the node ofT that containsx, as claimed. Denote that node byN(η).

We next show that eitherA has a supremum in(T,�) or else there is a pointsη such thatA∩N(η) 6= ∅
andsη = supN(η)(A ∩ N(η)) belongs toA, and for eacha ∈ A with lv(a) ≤ η, eithera � Sη or else
sη <T a. There are two cases to analyze, depending upon whether or notNη ∩ A = ∅.

Case 1: First consider the case in whichN(η) ∩ A = ∅. If η is a limit ordinal, then (C2) implies that the
nodeN(η) has a minimum elementz. ThenN(η) ∩ A = ∅ implies thatz 6∈ A. In the light of (*), every
strict predecessor ofz in ≤T belongs toA. Now apply part (4) of Lemma 3.4 to conclude thatA has a
supremum in(T,�) as required. Ifη is not a limit ordinal, then part (3) of Lemma 3.4 applies to show
thatA has a supremum in(T,�).
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Case 2: Now suppose thatA ∩ N(η) 6= ∅. Choose an elementxη ∈ Uη. Then the setA ∩ N(η) is a
nonempty subset ofN(η) that is bounded above (byxη). Hence (C3) provides a least upper boundsη

for A ∩ N(η) in (N(η), <N(η)). Observe that becausesη andxη belong to the same node ofT , we have
sη(γ) = xη(γ) for eachγ < η.

If sη 6∈ A, thensη must be the supremum ofA in (T,�). This follows from part (1) of Lemma 3.4.

Next consider the case wheresη ∈ A. We claim that ifa ∈ A and lv(a) < η, thena � sη. From
a � xη we conclude that eithera ≤T xη (in which casea = xη(δ) = sη(δ) � sη) or elsea andxeta are
incomparable in≤T . In that second case, the ordinalδ1 = ∆(a, xη) hasδ1 ≤ lv(a) = δ < η anda(δ1) <M

xη(δ1) whereM is the node ofT containing botha(δ1) andxeta(δ1). The fact thatxη(γ) = sη(γ) for all
γ < η yieldsδ1 = ∆(a, sη) = ∆(a, xη) anda(δ1) <M sη(δ1) and thereforea � sη in caselv(a) < η.

We also claim that iflv(a) = η thena � sη. If it happens thata ∈ Nη, thena � sη follows from
sη = supN(η)(A ∩N(η)). Hence we may assume thata ∈ Tη −N(η). Thenδ2 = ∆(a, xη) hasδ2 < η so
that froma � xη we concludea(δ2) <L xη(δ2) = sη(δ2) whereL is the node ofT containing botha(δ2)
andxη(δ2) = sη(δ2). But thena � sη, as claimed.

Therefore we have proved that ifa ∈ A haslv(a) ≤ η thena � sη. Now Lemma 3.3 applies to show
that if a ∈ A then eithera � sη or sη <T a.

At this point of our proof, we have either showed thatA has a supremum in(T,�) or else we have
initialized a recursive construction by finding the pointsη. To continue that recursion, suppose thatα > η
and for eachβ with η ≤ β < α we have found a pointsβ ∈ A ∩ Tβ such that the following induction
hypotheses(IH)α are satisfied:

(1) if η ≤ β1 < β2 < α, thensβ1 <T sβ2 ;

(2) if N(β) is the node ofT containingsβ, thenA ∩N(β) 6= ∅ andsβ = supN(β)(N(β) ∩A)
belongs toA;

(3) if a ∈ A has lv(a) ≤ β, thena � sβ. (Note that in the light of Lemma 3.3, this is
equivalent to the statement that for eacha ∈ A, eithera � sβ or elsesβ <T a).

We will consider a sequence of cases and in each we will show that either we have a supremum for the set
A in (T,�), or else we see how to definesα in such a way that(IH)α+1 holds and the induction continues.

Case 3: Supposeα = β + 1 is a successor ordinal andN(α) ∩ A = ∅ whereN(α) is the node of all
immediate successors of the already-defined pointsβ. We claim that in this case,A has a supremum in
(T,�). If N(α) 6= ∅, choosex ∈ N(α) and apply part (3) of Lemma 3.4 to conclude thatA has a
supremum in(T,�). If N(α) = ∅, thensβ is a maximal point of(T,≤T ) so thatsβ <T a never happens
for a ∈ A. Applying part (3) of the induction hypothesis, we see thata � sβ for eacha ∈ A, as claimed.
Therefore, in Case 3, the setA has a supremum in(T,�).

Case 4: Supposeα = β+1 and∅ 6= N(α)∩A = N(α) whereN(α), the node of immediate successors of
sβ, has a maximum element in the chosen linear ordering<N(α). Definesα to be that maximum element.
Thensα ∈ A and becausesα ∈ N(β + 1), we know thatsβ <T sα so that the first part of(IH)α+1

holds. Clearlysα = supT (A ∩ N(α)) so the second part of(IH)α+1 also holds. To verify the third part
of (IH)α+1, consider anya ∈ A with lv(a) ≤ α = β + 1. We must showa � sα. In caselv(a) ≤ β then
we know thata � sβ ≺ sα, so consider the case wherelv(a) = α. For contradiction supposesα ≺ a.
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Becauselv(sα) = lv(a) = α we cannot havesα <T a, soa andsα must be incomparable in the partial
order≤T . Computeδ = ∆T (sβ+1, a). Thenδ ≤ lv(a) = α andsα(δ) <M a(δ) whereM is the node ofT
containing botha(δ) andsα(δ). If δ < α, thena(δ) andsα(δ) both belong to the same nodeM at levelδ
of the tree, Butsα(δ) = sδ, which is known to be the maximum of its node in the chosen node ordering,
soa(δ) <M sα(δ) and hencea ≺ sα. In caseδ = α, thena andsα belong to the same nodeN(α) of T so
that,sα being the maximum of that node, we havea <N(α) sα whencea ≺ sα. Therefore the third part of
(IH)α+1 holds in case 4, and the recursion continues.

Case 5: Supposeα = β + 1 and∅ 6= N(α) ∩ A = N(α) whereN(α), the node of immediate successors
of sβ, does not have a maximum element in the chosen linear ordering<N(α). However, (C1) guarantees
thatN(α) has a supremumt∗ in (T,�). Thent∗ 6∈ N(α). We will show thatt∗ is the supremum ofA in
(T,�). Choose anya ∈ N(α) ∩ A. Then we havesβ <T a � t∗ so thatsβ ≺ t∗. We claim thatt∗ and
sβ are incomparable in the partial order≤T . If that is not the case, thensβ ≺ t∗ would yield sβ <T t∗

so thatlv(t∗) ≥ α and hencet∗(α) exists and belongs toN(α). Let u be any element ofN = N(α). If
t∗(α) <N u thent∗ ≺ u � supT (N) = t∗ which is impossible. Therefore, eachu ∈ N hasu ≤N t∗(α)
showing thatt∗(α) is the maximum point of(N,<N) and that is impossible in Case 5. Thereforesβ and
t∗ are incomparable in the partial order≤T .

Now let a ∈ A. According to the induction hypothesis, we know that eithera ≺ sβ (in which case
a ≺ sβ ≺ t∗) or elsesβ <T a. Consider the case wheresβ <T a. Thenlv(a) ≥ α. In caselv(a) = α,
thensβ <T a yieldsa ∈ N(α) so thata ≺ t∗. In caselv(a) > α, thensβ <T a yieldsa(α) ∈ N(α) so
thata(α) � t∗. But a(α) ∈ N(α) while t∗ 6∈ N(α) so thata(α) ≺ t∗. This could happen in two ways:
eithera(α) <T t∗ or elsea(α) andt∗ are not comparable in the partially ordered set(T,≤T ). The first
option would yieldt∗(α) = a(α) ∈ N(α) and hence thatt∗(α) is the maximum element ofN(α) in the
ordering chosen forN(α), and in Case 5 that cannot happen. Hencet∗ anda(α) are not comparable in
(T,<T ). Let δ = ∆(a(α), t∗). Then in the nodeM that contains botha(α)(δ) = a(δ) andt∗(δ) we have
a(δ) <M t∗(δ). Because∆(a(α), t∗) = ∆(a, t∗) we obtaina ≺ t∗ as claimed.

At this point in Case 5, we know thata � t∗ for eacha ∈ A. To complete the proof of Case 5, recall
thatN(α) ∩ A = N(α) and supposet′ ≺ t∗ = sup(T,�)(N(α) ∩ A). Then there is somea′ ∈ N(α) ∩ A
with t′ ≺ a′ � t∗ and that is enough to show thatt∗ = supT (A). Therefore in Case 5, the setA has a
supremum (namelyt∗) and the induction stops.

Case 6: Supposeα = β+1 and∅ 6= N(β+1)∩A 6= N(β+1). Chooseu ∈ N(β+1)−A. BecauseA is
an initial segment of(T,�) it must be true thata ≺ u for eacha ∈ A. ThenN(β + 1)∩A is a non-empty
bounded set inN(β + 1) so that (C3) provides a points = supN(β+1)(N(β + 1)∩A). In cases 6∈ A, then
part (1) of Lemma 3.4 shows thats = supT (A). If s ∈ A then we definesβ+1 = s. Clearly the first two
parts of(IH)α+1 are satisfied, so we verify the third part. Leta ∈ A havelv(a) ≤ β+1. If lv(a) ≤ β, then
the induction hypothesis givesa � sβ ≺ sβ+1 so supposelv(a) = β + 1. Then the induction hypothesis
givessβ <T a so thata ∈ A ∩ N(β + 1). But thena ≤N(β+1) supN(β+1)(A ∩ N(β + 1)) = sβ+1 and
thereforea � sβ+1 as required.

Cases 3 through 6 show that in caseα = β + 1 is a successor ordinal and(IH)α holds, then either
we can construct the supremum ofA in (T,�), or else the induction continues and(IH)α+1 holds. It
remains to consider the case whereα is a limit ordinal and(IH)α holds. LetS = {t ∈ T : for some
β < α, t ≤ sβ}. ThenS is a linearly ordered subset of(T,≤T ) with the property thatt <T s ∈ S
guarantees thatt ∈ S. The setS might, or might not, be a branch ofT and that leads to our next cases.
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Case 7: Supposeα is a limit ordinal andS is a branch ofT . Thenht(S) = α. Becauseα is a limit ordinal,
S does not have a maximal element. Apply (C4) to find a supremums∗ for S in (T,�). Observe that there
cannot be ana ∈ A such thatsβ <T a for eachβ ∈ [η, α) because in that case,S would not be a branch
of T . However, for a fixeda ∈ A and a fixedβ we know that eithera � sβ or elsesβ <T a by the last
part of the induction hypothesis. Therefore, givena ∈ A somesβ hasa � sβ � s∗ showing thats∗ is an
upper bound forA in (T,�). But sβ ∈ A for η ≤ β < α ands∗ is the supremum in(T,�) of the set
{sβ : η ≤ β < α}. Hences∗ = sup(T,�)(A).

Case 8: Supposeα is a limit ordinal andS is not a branch ofT , and the nodeN(S) of immediate successors
of S hasN(S) ∩ A = ∅. BecauseS is not a branch ofT , we know thatN(S) 6= ∅. BecauseN(S) is
a nonempty node at a limit level ofT , (C2) guarantees the existence of a least elements∗ of N(S) with
respect to the linear ordering<N(S) chosen forN(S). Note thatsβ <T s∗ for eachβ < α. We claim that
s∗ is the supremum forA in (T,�). If there were somea ∈ A with sβ <T a for eachβ ∈ [η, α) then
a ∈ N(S) ∩ A = ∅. Therefore, the final part of(IH)α shows that the pointssβ of A are cofinal inA so
thats∗ is an upper bound for the setA. We claim thats∗ is the least upper bound forA in (T,�).

For contradiction, suppose that somet ∈ T hasa � t ≺ s∗ for eacha ∈ A. Thensβ � t ≺ s∗ for
eachβ ∈ [η, α). The pointst ands∗ must be incomparable in the partially ordered set(T,≤T ), because
otherwiset <T s∗ so thatt ∈ S and then we could choose ansβ ∈ S with t <T sβ and that would give
t <T sβ � t which is impossible. Computeδ = ∆T (s∗, t) ≤ lv(s∗) = α. If γ < δ we havet(γ) = s∗(γ),
and in the nodeM of T that contains botht(δ) ands∗(δ) we havet(δ) <M s∗(δ). Becauses∗ is the
least member of the nodeN(S) we know thatδ < α. But thens∗(δ) ∈ S so we can choose somesβ with
s∗(δ) < sβ. Thensβ(δ) = s∗(δ) so thatt(δ) <M sβ(δ). Furthermore, ifγ < δ, thent(γ) = s∗(γ) = sβ(γ).
That is enough to show thatt ≺ sβ. But we know thatsβ � t so thatt ≺ t which is impossible. Therefore,
s∗ is the least upper bound forA in (T,�), as claimed.

Case 9: Supposeα is a limit ordinal andS is not a branch ofT andN(S), the node of immediate successors
of S, has∅ 6= N(S) ∩ A = N(S), andN(S) has a largest element in the linear ordering<N(S) chosen
for it. Let sα be that largest element. Thensα ∈ A ∩N(S) andsα = supN(S)(N(S)) so that the first two
parts of(IH)α+1 are satisfied. Observe that because∅ 6= A∩N(S) ⊆ N(S) the pointsα must also be the
supremum ofA ∩N(S) in the set(T,�).

We now verify the third part of(IH)α+1. Supposea ∈ A haslv(a) ≤ α. In the light of Lemma 3.3
we need to showa � sα. If lv(a) < α then there must be someβ with lv(a) ≤ β < α so that(IH)α

tells us that eithera � sβ or elsesβ <T a. Becauselv(a) ≤ β, the second option cannot occur, so we
havea � sβ <T sα and hencea ≺ sα. If lv(a) = α. Then for eachβ < α, the last part of(IH)α yields
sβ <T a so thata ∈ N(S) ∩ A. But thena � supT (N(S) ∩ a) = sα, as required. Hence(IH)α+1 holds
and the induction continues.

Case 10: Supposeα is a limit ordinal andS is not a branch ofT andN(S), the node of immediate
successors ofS, has∅ 6= N(S) ∩ A = N(S), and the nodeN(S) has no largest element in the linear
ordering<N(S) chosen for it. Nevertheless,N(S) has a supremums∗ in (T,�) according to (C1). We
claim thats∗ must be the supremum ofA in (T,�). Becauses∗ is the supremum in(T,�) of the nonempty
subsetN(S) of A, in order to show thats∗ = sup(T,�)(A) it will be enough to show thata � s∗ for each
a ∈ A.

We claim that for someβ < α, the pointss∗ andsβ are incomparable in≤T . Otherwiselv(s∗) ≥ α
ands∗(α) ∈ N(S) would be the maximum element ofS(N), and in Case 10 there is no such maximum
element. Hence there is aβ < α such thatsβ ands∗ are incomparable in≤T .
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Computeδ = ∆T (sβ, s
∗). Thenδ ≤ β < α and ifγ < δ thensβ(γ) = s∗(γ) while sβ(δ) <M s∗(δ) in

the nodeM of T that contains bothsβ(δ) ands∗(δ).

Now consider anya ∈ A. If a � sβ then for anya0 ∈ N(S) ∩ A we havea � sβ <T a0 � s∗ whence
a � s∗. Hence supposea � sβ is false. Then by the last part of(IH)α we know thatsβ <T a. Because
sβ ands∗ are incomparable in the partial order≤T , so area ands∗. Furthermore,a(γ) = sβ(γ) = s∗(γ)
wheneverγ < δ anda(δ) = sβ(δ) <M s∗(δ). But that is enough to show thata ≺ s∗ as required. Hence
s∗ is the supremum ofA in (T,�), as claimed.

Case 11: Supposeα is a limit ordinal andS is not a branch ofT , and the nodeN(S) of immediate
successors ofS, has∅ 6= N(S) ∩ A 6= N(S). WriteN = N(S) and<N for <N(S). Choosev ∈ N − A.
BecauseA is an initial segment of(T,�), v is an upper bound for the non-empty setN ∩ A in N(S).
According to (C3), there is a pointu = sup<N

(N ∩ A). If u 6∈ A, then Lemma 3.4 shows thatu is the
desired supremum ofA in (T,�). If u ∈ A, then we definesα = u. Becausesα ∈ N(S) we know that
the first part of(IH)α+1 is satisfied, and the second part holds by construction ofsα. It remains to verify
the third part, i.e., that for eacha ∈ A, eithera � sα or elsesα <T a.

Let a ∈ A. Supposea � sα is false. Then for eachβ < α, a � sβ is false. According to the
induction hypothesis,sβ <T a must hold for everyβ < α. Thereforelv(a) ≥ α so thata(α) is defined
anda(α) ∈ N(S) ∩ A. Thereforea(α) ≤N sα. However, it cannot happen thata(α) <N sα because that
would yielda � sα, so we must havea(α) = sα. But thensα = a or elsesα <T a, as required.

Let us summarize what has happened so far: either at some stageα < ht(T ) we have found a point
of T that is the supremum ofA in (T,�) or else we have constructed a setB = {sα : α < ht(T )} of
points that satisfy(IH)α for eachα < ht(T ). The setB is cofinal in a branchb∗ = {t ∈ T : for some
α < ht(T ), t ≤T sα}.

Apply (C4) to the branchb∗. If ht(b∗) is a successor ordinal, thenb∗ has a maximal elementsα ∈ A.
Thensα is also maximal in the partial order≤T and has the property that for everya ∈ A, eithera � sα

or elsesα <T a. But the second option cannot happen becausesα is maximal inT , so we see thatsα is
the supremum (actually, the maximum) ofA in (T,�). Hence assume thatb∗ has limit height. According
to (C4) there is a supremums(b∗) in (T,�) for the subsetb∗ of T and there is an ordinalµ < ht(b∗)
and if t ∈ b∗ hasµ < lv(t) thent is the maximum element of the node to which it belongs, ands(b∗) is
the immediate successor ofb∗(µ) in the node to whichb∗(µ) belongs (whereb∗(µ) is the unique point of
b∗ ∩ Tµ.) But then we see thats(b∗) is the supremum ofA in (T,�), becauses(b∗) 6∈ A.

We have now completed the proof that conditions (C1) through (C4) are sufficient for(T,�) to be
order-complete. It remains to verify necessity. Suppose(T,�) is known to be order complete. Then every
subset ofT has both a supremum and an infimum in(T,�) so that C1 and C4 are automatic.

To verify C2, supposeN0 6= ∅ is a node ofT at a limit levelλ. Then there is a pointx0 ∈ T satisfying
x0 = infT (N0). If x0 ∈ N0 we have our minimum point for(N0, <N0), so assumex0 6∈ N0.

Fix y0 ∈ N0. Thenx0 ≺ y0. If x0 andy0 were comparable in the partial order≤T , thenx0 <T y0 sox0

is a strict predecessor ofy0 in T . Becauseλ is a limit, there would be someα < λwith x0 <T y0(α) <T y0.
But all points of the nodeN0 have the same strict predecessors in(T,≤T ) and soy0(α) <T y for each
y ∈ N0 showing thaty0(α) ≺ y for eachy ∈ N0. But that is impossible becausex0 ≺ y0(α) and
x0 = inf(T,�)(N0). Therefore, the pointsy0 andx0 are incomparable in the partial order≤T .

Computeδ0 = ∆T (y0, x0). Thenδ0 ≤ lv(y0) = λ and in the nodeM of T that contains bothy0(δ0)
andx0(δ0) we havex0(δ0) <M y0(δ0). If δ0 < λ, then because all members ofN0 have the same strict
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predecessors, we know thaty(δ0) = y0(δ0) for all y ∈ N0. But thenx0 ≺ y0(δ0) ≺ y for all y ∈ N0 and
that is impossible becausex0 = infT (N0). Therefore,δ0 < λ is impossible, so we haveδ0 = λ. From
λ = δ0 = ∆T (y0, x0) ≤ lv(x0) we know thatx0(λ) is defined and belongs to the same node ofT that
containsy0(λ) = y0, i.e. the nodeN0, and hencex0(λ) ∈ N0. Let y ∈ N0. If y <N0 x0(λ) theny ≺ x0

which is impossible becausex0 = infT (N0) andy ∈ N0. Therefore,x0(λ) ≤N0 y for eachy ∈ N0 and
that is enough to show that(N0, <N0) has a minimum element, as required in C2.

Finally we verify that C3 holds provided(T,�) is order-complete. LetN be any node ofT . Letα be
the level ofN and suppose∅ 6= B ⊆ N is bounded above in(N,<N) by v0 ∈ N . Choose anyb0 ∈ B.
For contradiction, suppose

sup
(N,<N )

(B) does not exist. (∗∗∗∗)

Because(T,�) is order complete, there is a pointu0 ∈ T with u0 = sup(T,�)(B). Then in the lexico-
graphic order� of T, b0 � u0 � v0.

Claim 1: u0 6∈ N because ifu0 ∈ N thenu0 would be the supremum in(N,<N) of B, contrary to(∗∗∗∗).

Claim 2: No x0 ∈ N can havex0 ≤T u0. For if such anx0 ∈ N existed, then by Claim 1lv(x0) =
α < lv(u0). But thenx0 ≺ u0 and for eachb ∈ B with b 6= x0, if x0 <N b thenu0 ≺ b contrary to
u0 = sup(T,≺)(B). But then for eachb ∈ B we haveb � x0 ≺ u0 and that is impossible becauseu0 is the
supremum ofB in (T,≺). This establishes Claim 2.

Claim 3: No x1 ∈ N can haveu0 <T x1 because all members ofN , includingb0 ∈ B, have exactly the
same predecessors in(T,≤T ) as doesx1, and that would forceu0 <T b0, contrary to the fact thatu0 is the
supremum ofB in (T,�). Hence Claim 3 holds.

Bothu0 andv0 are upper bounds forB in (T,�) so that becausesup(T,�)(B) = u0 6= v0 we must have
u0 ≺ v0. Claims 2 and 3 show thatu0 andv0 must be incomparable elements of the tree(T,≤) so that, if
we computeδ = ∆T (u0, v0) we haveδ ≤ min(lv(u0), lv(v0)) andu0(δ) <M v0(δ) whereM is the node
of T that contains bothu0(δ) andv0(δ).

Claim 4: δ < lv(v0). If not, thenδ = lv(v0) so thatv0(δ) = v0 and the nodeM of T containingv0(δ) and
u0(δ) must be identical withN . But then some member ofN , namelyu0(δ) is a predecessor ofu0 in the
tree(T,≤T ) and that is impossible in the light of Claim 3. Hence Claim 4 holds.

Claim 5: δ < lv(u0) is impossible, because ifδ = lv(u0) thenu0 = u0(δ) <M v0(δ) in the nodeM
of T that contains bothu0(δ) andv0(δ). But b0 andv0 belong to the same nodeN of T and therefore
have exactly the same strict predecessors. By Claim 4,δ < lv(v0) so thatu0 = u0(δ) <M v0(δ) =
b0(δ). Becauseu0 andb0 are incomparable inT , that inequality inM yieldsu0 ≺ b0 contrary tou0 =
sup(T,≺)(B). Hence Claim 5 holds.

At this stage, we know thatδ < min(lv(u0, lv(v0)) and by Claims 2 and 3, we know thatb0 andu0 are
incomparable in(T,≤T ). Furthermore, we know thatv0 andb0 have exactly the same strict predecessors
in (T,≤T ) and that givesu0(δ) <M v0(δ) = b0(δ) from which we conclude thatu0 ≺ b0, contrary to
u0 = sup(T,≺)(B). Therefore,(∗ ∗ ∗∗) cannot hold, so that property C3 is established.2

Example 3.6 : Theorem 3.5 gives an easy way to describe ordered compactifications of lexicographic
trees with order complete nodes by adding suprema to branches of the tree.
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Construction: Let(T,≤T ) be a tree whose node orderings are complete. LetB0 be the set of all branches
of T that have limit height (i.e., that have no supremum in the partial order≤T ). Consider the disjoint
unionT ∗ = T ∪ B0. The partial ordering≤∗ of T ∗ is an extension of≤T , with all additional relations
defined as follows. Ift ∈ T andb ∈ B0 then we definet ≤∗ b if and only if t ∈ b. For t ∈ T , the node
of T ∗ to which t belongs is exactly the same as the node ofT to which t belongs, and forb ∈ B0 the
node ofT ∗ containingb is a singleton. Hence every node ofT ∗ is order complete, and it is clear that each
branch ofT ∗ has a maximum point. ThereforeT ∗ satisfies C1 through C4 of Theorem 3.5 so that in its
lexicographic ordering,T ∗ is order complete.2

We now turn our attention from compactness to Baire category. In our next theorem we give necessary
and sufficient conditions for a broad class of lexicographically ordered trees (namely, the splitting trees) to
be of the first Baire category when equipped with their open interval topologies. Recall that a topological
space is of thefirst Baire categoryif and only if it is the union of countably many closed nowhere dense
subsets. The corresponding tree property is that the treeT is semi-special, i.e., there are countably many
anti-chainsAn in T such that for eacht ∈ T , there is ann ≥ 1 and somea ∈ An such thatt ≤T a. We
chose that name because if it happens thatT =

⋃
{An : n ≥ 1}, thenT is said to be aspecial tree. Being

special is a property of trees that appears frequently in the literature.

Lemma 3.7 : Suppose that(T,≤T ) is a splitting tree, and that no nodeN of T at a non-limit level has a
least element in its chosen linear ordering(N,<N). Let� be the associated lexicographic ordering and
letT be the open interval topology associated with�. For any closed nowhere dense setD of (T, T ) there
is an anti-chainA of T with the property that for eachd ∈ D somea(d) ∈ A hasd ≤T a(d).

Proof: Recall that for anyt ∈ T , the setT t = {s ∈ T : t ≤T s} is a convex subset of(T,�) whose
minimum point in� is t. BecauseT is a splitting tree, eachT t has at least three points andT t − {t} is a
non-void convex open subset of(T,�).

Fix d ∈ D. We claim that somee(d) ∈ T hasd ≤T e(d) andT e(d) ∩ D ⊆ {e(d)}. (Notice that this
allows the case whereT e(d) ∩D = ∅.) If that is not the case, fix anyt ∈ T d−{d} and any pairu ≺ v with
t ∈ (u, v)� ⊆ T d. Then by Lemma 2.5 there is a pointc with u <T c ≤T v and somex ∈ Node(c) with
x <Node(c) c such thatT x ⊆ (u, v)�. Note thatx ∈ T d and therefore must haveT x ∩D 6⊆ {x}. Therefore
∅ 6= T x ∩D ⊆ (u, v)� showing that every point of the nonempty open setT d − {d} is a limit point ofD.
But that is impossible becauseD is closed and nowhere dense. Hence somee(d) ∈ T hasd ≤ e(d) and
T e(d) ∩D ⊆ {e(d)}.

LetE = {e(d) : d ∈ D} and letA be the set of minimal elements ofE (in the partial order≤T ). Then
A is an anti-chain of(T,≤T ). Now fix anyd ∈ D and its associatede(d) ∈ E. If e(d) ∈ A the proof is
complete. Ife(d) 6∈ A then there is somee(d′) ∈ A with d′ ∈ D ande(d′) <T e(d). Then the elements
d, d′, e(d′) are all predecessors ofe(d) so thatd ande(d′) are comparable. If it were true thate(d′) <T d,
thend ∈ T e(d′) ∩D ⊆ {e(d′)} and this is impossible. Therefored ≤T e(d

′) ∈ A as claimed.2

Theorem 3.8 : SupposeT is anω- splitting tree whose nodes are ordered in such a way that no node at a
non-limit level has a first point in its chosen linear ordering. Then in the open interval topology of�, T
is of the first Baire category if and only ifT is semi-special.

Proof: First suppose that the treeT is semi-special. Then we have a sequenceAi of anti-chains with the
property that for eacht ∈ T there is somei and somea ∈ Ai with t ≤T a. Without loss of generality
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we may assume that eachAn is a maximal anti-chain. For eachi ≥ 1 let Bi = {t ∈ T : for some
a ∈ Ai, t ≤T a}. Let T be the usual open interval topology of�.

We claim that eachBi is T -closed. Lett ∈ T − Bi. BecauseAi is maximal, someat ∈ Ai is
comparable tot, and becauset 6∈ Bi it cannot happen thatt ≤T at. Henceat <T t. Because no member
of T is maximal, there is someb ∈ T with t <T b. Then(at, b)� is a T -open neighborhood oft and
we claim that(at, b)� ∩ Bi = ∅. If that is not true then lety ∈ (at, b)� with y ∈ Bi. As noted in the
proof of Lemma 2.5,at <T b forcesat <T y. Becausey ∈ Bi there is someay ∈ Ai with y ≤T ay.
But thenat <T y ≤T ay so thatat <T ay and that is impossible becauseAi is an anti-chain. Therefore
(at, b) ∩Bi = ∅. HenceBi is closed.

We claim thatBi is nowhere dense in(T, T ). It will be enough to show thatBi contains no non-empty
open intervals of�. Supposex � z and suppose that the nonempty open interval(x, z)� is contained
in Bi. Either x and z are incomparable in the partially ordered set(T,≤T ) or elsex <T z. In the
latter case, becauseT is a splitting tree and nodes at non-limit levels have no first points, there is an
immediate successoru of x with u ≤T z and a predecessorw of u in the ordering ofNode(u) such that
the nonempty setTw is contained in(x, z)�. Replacingx with w if necessary, we may assume thatx and
z are incomparable in the partial order≤T . Note that∅ 6= T x − {x} ⊆ (x, z)� ⊆ Bi.

BecauseAi is a maximal anti-chain, there is someax ∈ Ai that is comparable tox in the partial order
≤T . We claim thatax ≤T x is not possible. For ifax ≤T x, then becausex is not maximal in(T,≤T )
we may choose a pointy ∈ T with x <T y. Theny ∈ (x, z)≺ ⊆ Bi and so someay ∈ Ai hasy ≤T ay

and therefore we would haveax <T x <T y ≤T ay, something that is impossible becauseAi is an anti-
chain. Therefore we havex <T ax Because no member ofT is maximal in≤T we may choosew ∈ T
with ax <T w Thenw ∈ T ax ⊆ T x ⊆ Bi so that someaw ∈ Ai hasw ≤T aw. But then we have
ax <T w <T aw and that is impossible in the anti-chainAi. Therefore,Bi contains no nonempty interval
(x, z)� and henceBi is closed and nowhere dense in(T, T ).

BecauseT is semi-special, we see thatT =
⋃
{Bi : i ≥ 1} and therefore(T, T ) is of the first Baire

category.

Conversely, suppose thatT =
⋃
{Di : i ≥ 1} where eachDi is a closed, nowhere dense subset of

(T, T ). for eachi ≥ 1 apply Lemma 3.7 to find an anti-chainAi of (T,≤T ) such that for anyd ∈ Di,
somea(d, i) ∈ Ai hasd ≤ a(d, i). Therefore,(T,≤T ) is semi-special.2

Recall that aSouslin treeis a tree of heightω1 such that each anti-chain is countable. Whether such
tree exist is undecidable in ZFC.

Corollary 3.9 : Let (T,≤T ) be a splitting Souslin tree such that no nodeN of T at a non-limit level has a
least element in its chosen linear ordering<N . Then in the open interval topologyT of the lexicographic
ordering�, the space(T, T ) is not of the first Baire category.

Proof: LetT be the open interval topology of�. If (T, T ) were of the first category, then each of the anti-
chainsAi found in the proof of Lemma 3.7 would be countable. For eacht ∈ T , the set of predecessors of
t is countable (because Souslin trees have no uncountable branches) and hence{t ∈ T : t ≤T a for some
a ∈ Ai} is countable. Hence so isT and that is impossible.2
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4 Aronszajn lines and trees

The results in this section are part of the folklore of the subject, but we have not been able to find a proof
of the hard part of Theorem 4.1 in the literature. Furthermore, we needed some of this material in the
proof of Theorem 2.6.

An Aronszajn treeis a tree(T,≤T ) of heightω1 that has countable levels and countable branches.
Aronszajn trees exist in ZFC [4]. By anAronszajn linewe mean a linearly ordered set(X,<) that has
cardinalityω1, contains no order isomorphic copy ofω1 or of ω∗1, and contains no order isomorphic copy
of any uncountable set of real numbers. Aronszajn lines also exist in ZFC.

It is important to understand that being an Aronszajn line is an order-theoretic issue, and not a topological
property. It is easy to show that if(X,<) is an Aronszajn line, then so is the lexicographic product
Y = X × Z and the latter set, when endowed with its open interval topology, is a discrete metric space.
Other Aronszajn lines are certainly not metrizable. Aronszajn lines and trees are intimately linked, as
our next result shows. The result is known, but we have not been able to find a proof of half of it in the
literature.

Theorem 4.1 : Every Aronszajn line is order isomorphic to a lexicographically ordered Aronszajn tree,
and any lexicographic ordering of an Aronszajn tree is an Aronszajn line.

Proof: The proof that any lexicographic ordering of an Aronszajn tree gives an Aronszajn line appears in
[4]. We have not been able to find the converse in the literature.

For the converse, let(L,<L) be any Aronszajn line. By recursion overα < ω1, we will define two
related families{L(α) : α < ω1} and {U(α) : α < ω1} and in the end the desired treeT will be
T =

⋃
{L(α) : α < ω1}.

As a set,T will coincide withL, so we cannot use a partition tree construction. Instead we begin with
a standard way to choose cofinal and coinitial subsets of convex subsets ofL. For any singleton setI, let
S(I) be the unique point ofI. For any non-degenerate convex subsetI ⊂ L we know thatcf(I) is either
finite (in which caseI has a right end point) or elsecf(I) = ω becauseL contains no copy ofω1. An
analogous assertion holds for coinitialities. Therefore we can find a subsetS(I) ⊆ I that is both coinitial
and cofinal inI, and is an order-copy of{0, 1}, ω, ω∗ or ω∗ + ω when ordered using<L. (We will later
use these linear orderings ofS(I) as node orderings for a tree.) We may assume that ifI is an infinite set,
then for any distinctx, y ∈ S(I), some point ofI lies strictly betweenx andy.

In the following recursive construction it will be convenient to think of partial orders as being sets of
ordered pairs. To initialize our recursion, we letU(0) = {L} andL(0) = S(L). Define the partial order
≤0 on L(0) to be equality. LetU(1) be the collection of all convex components ofL − L(0). Now let
L(1) =

⋃
{S(I) : I ∈ U(1)}. We will say that an ordered pair(x, y) is 1-acceptable ifx ∈ L(0) and

y ∈ L(1) and if J is the unique member ofU(1) containingy, thenx <L J (meaning thatx precedes
every point ofJ in the linear ordering ofL) and{x} ∪ J is a convex subset ofL. Now define a partial
order onT (1) = L(0) ∪ L(1) by the rule that

≤1 = ≤0 ∪ {(z, z) : z ∈ L(1)} ∪ {(x, y) : (x, y) is a 1− acceptable pair}.

For our induction hypothesis suppose thatα < ω1 and that the following is satisfied:
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(IH)α: for eachβ < α we have

1) U(β) is the family of all convex components of the setL−
⋃
{L(γ) : γ < β};

2)L(β) =
⋃
{S(I) : I ∈ U(β)} ⊆

⋃
U(β) ⊆ L−

⋃
{L(γ) : γ < β};

3)≤β is a partial order on the setT (β) =
⋃
{L(γ) : γ ≤ β} and≤γ ⊆ ≤β wheneverγ < β;

4) ≤β =
⋃
{≤γ : γ < β} ∪ {(z, z) : z ∈ L(β)} ∪ {(x, y) : (x, y) is a β−acceptable pair}

where a pair(x, y) is said to beβ-acceptable if and only ify ∈ L(β) andx ∈ L(γ) for some
γ < β and ifJ is the unique member ofU(γ + 1) that containsy, thenx <L J and{x} ∪ J
is convex in(L,<L).

Given (IH)α we defineU(α) to be the family of all convex components ofL −
⋃
{L(β) : β < α} and

L(α) =
⋃
{S(I) : I ∈ U(α)}. We define≤α =

⋃
{≤β : β < α}∪{(z, z) : z ∈ L(α)}∪{(x, y) : (x, y) is

anα-acceptable pair} where anα-acceptable pair is defined to fit the pattern in part (4) of the recursion
hypothesis. Clearly(IH)α+1 holds and the recursion continues. LetT =

⋃
{L(α) : α < ω1} and let

≤T =
⋃
{≤α : α < ω1}. Then(T,≤T ) is a tree.

Claim 1: L =
⋃
{L(α) : α < ω1}. It is enough to verify thatL ⊆

⋃
{L(α) : α < ω1}. Let x ∈ L. If

x 6∈ L(α) for eachα < ω1, then for eachα there is a memberI(α) ∈ U(α) with x ∈ I(α). But then
{I(α) : α < ω} is a strictly decreasing collection of convex subsets ofL and that allows us to find an
order copy of eitherω1 or ω∗1 in L, which is impossible. Hence Claim 1 holds.

Claim 2: Each branch of(T,≤T ) is countable because otherwise(L,<L) would contain an order copy of
ω1.

Claim 3: Each level ofT is countable. The levels ofT are the setsL(α). If Claim 3 is false, letL(α) be
the first uncountable level ofT . BecauseT (α) =

⋃
{S(I) : I ∈ U(α)} and eachS(I) is countable, the

collectionU(α) must be uncountable. For eachI ∈ U(α) choose a pointp(I) ∈ I. LetD =
⋃
{L(β) :

β < α}. Minimality of α insures thatD is countable. LetM = D ∪ {p(I) : I ∈ U(α)}. ThenD is a
countable order-dense subset ofM , so thatM is order isomorphic to some uncountable subset ofR. But
that is impossible becauseM ⊆ L andL contains no order isomorphic copies of any uncountable subset
of R. Hence Claim 3 holds.

Claims 1,2, and 3 combine to prove that(T,≤T ) is an Aronszajn tree. Let� be the lexicographic
ordering ofT associated with the node orderings given by the chosen setsS(I). We claim that the function
f : (L,<L) → (T,�) given byf(x) = x is an order isomorphism. It is enough to show that ifx <L y in
L thenx ≺ y in T . For contradiction, supposex ≺ y is false. Becausex 6= y it follows thaty ≺ x. This
can happen in two different ways, depending upon whethery andx are comparable in the partial order
≤T . In casey andx are comparable in≤, theny ≺ x forcesy <T x. Then there are ordinalsβ < α such
thaty ∈ L(β) andx ∈ L(α), and ifJ is the unique member ofU(β + 1) that containsx, theny <L J
and{y} ∪ J is convex inL. But y <L J andx ∈ J give y <L x and that is not true. Hencex andy must
be incomparable in the partial order ofT . Therefore we computeδ = ∆T (x, y) ≤ min(lv(x), lv(y)) and
we know thaty(δ) <M x(δ) in the nodeM of T that contains bothx(δ) andy(δ). Then in(L,<L) we
havey(δ) <L x(δ). There are several possibilities to consider. In the firstδ < min(lv(x), lv(y)). Then
there are unique membersJy andJx of U(δ + 1) with y ∈ Jy andx ∈ Jx, y(δ) <L Jy andx(δ) <L Jx,
and having both of the sets{y} ∪ Jy and{x} ∪ Jx convex inL. ThenJy = Jx is impossible because
the left endpoints of the convex sets{x} ∪ Jx and{y} ∪ Jy are different. Becausex ∈ Jx, y ∈ Jy and
x <L y we know thatJx <L Jy. Thereforex(δ) <L y(δ) as required to show thatx ≺ y. The next case
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is whereδ = lv(x) < lv(y). Thenx(δ) = x andy(δ) <T y. Let Jy be the unique member ofU(δ + 1)
that containsy. Because{y} ∪ Jy is convex inL andx <L y we know thatx ≤L y(δ). But we also
know thatx = x(δ) 6= y(δ) so thatx <L y(δ) and that is enough to showx ≺ y. The third case is where
δ = lv(y) < lv(x) and that is analogous to the second case. The final case is wherelv(x) = δ = lv(y).
But thenx <L y forcesx <M y in the nodeM of T that contains bothx andy so that, once again,x ≺ y.
Therefore,f : (L,<L) → (T,�) is the required order isomorphism2

Corollary 4.2 : If � is the lexicographic ordering of an Aronszajn treeT , then there is no order isomor-
phism from(T,�) into R.

Proof: By Theorem 4.1,(T,�) is an Aronszajn line which, by definition, cannot contain (or be) an un-
countable set of real numbers.2

Remark 4.3 : Theorem 4.1 allows us to point out once again the contrast between the theory of lexico-
graphic and branch space representations of linearly ordered sets. Theorem 4.1 shows that any lexico-
graphic ordering of an Aronszajn tree gives an Aronszajn line, while in [1] we show that the branch space
of an Aronszajn tree is never an Aronszajn line (although it must contain an Aronszajn line).

Corollary 4.4 : In its open-interval topology, any Aronszajn line is

a) not separable;

b) hereditarily paracompact;

c) not compact;

d) zero-dimensional.

Proof: Let(L,<L) be an Aronszajn line. From Theorem 4.1 we know thatL is order isomorphic to the
lexicographic ordering of some Aronszajn tree(T,≤T ). If the Aronszajn lineL is separable in its open
interval topology, then so is the Aronszajn treeT in the open interval topologyI of its lexicographic order
�. LetD be a countable dense subset of(T, I). Then there is a countable ordinalα such thatlv(d) ≤ α
for eachd ∈ D. Being anω1-tree,T has a pointt with lv(t) = α + ω. Let s = t(α + 1) be the unique
predecessor oft at levelα+ 1 of the tree. ThenT s is an infinite convex subset of(T,�) and therefore has
non-void interior. HoweverT s ∩D = ∅, showing thatD is not dense in(T, I).

If the Aronszajn line(L,<L) is not hereditarily paracompact, then by a result of Engelking and Lutzer
[2] there is a strictly increasing or strictly decreasing embedding into(L,�) of a stationary subsetS of
a regular uncountable cardinalκ. But that gives an order isomorphism fromω1 or ω∗1 into L, and that is
impossible.

Finally, suppose the Aronszajn lineL is compact. Then so is the Aronszajn treeT with the open
interval topology of the linear ordering�. It is known [4] that any Aronszajn tree contains a complete
binary treeS of heightω. For each branchb of S choose a branchb∗ of T that hasb ⊆ b∗. In the light of
(C4) of Theorem 3.5, eachb∗ has a supremumf(b∗) in (T,�). Observe thatb1 <BS

b2 impliesb∗1 <BT
b∗2

and hence thatf(b∗1) � f(b∗2).
For b1, b2 ∈ BS defineb1 ∼ b2 if and only if f(b∗1) = f(b∗2). Clearly∼ is an equivalence relation on

BS. Supposeb1 <BS
b2 andb1 ∼ b2. If both b∗1 andb∗2 have successor height, thensup�(b∗1) = sup�(b∗2)
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impliesb∗1 = b∗2 and henceb1 = b2. If both b∗1 andb∗2 have limit height, then (C4) of Theorem 3.5 forces
b1 = b2. Supposeb∗1 has successor height andb∗2 has limit height. Apply (C4) of 3.5 tob2 to findµ < ht(b∗2)
with the property thatb∗2(µ) hasf(b2) = sup�(b∗2) as its immediate successor in the node to whichb∗2(µ)
belongs. Thenf(b2) = f(b1) would forceb∗2 <BT

b∗1 and henceb2 <BS
b1, which is false. Hence the only

possibility for b1 <BS
b2 andb1 ∼ b2 is whereb∗1 has limit height andb∗2 has successor height. That is

enough to guarantee that the functionf : BS → T is at most two-to-one. We know that the branch space
BS is an uncountable real order (in fact, it is the Cantor set). ThenIm(f), being the image ofBS under a
weakly increasing function that is at most two-to-one, is also an uncountable real order, and is a subset of
the Aronszajn line(T,�), and that is impossible.

To see than an Aronszajn line(L,<L) is zero-dimensional in its open-interval topology, note that if
L contained a non-degenerate connected open intervalJ , then a “middle third” construction inside of
J would produce a Cantor-like set inL, and that would yield an uncountable subset ofL this is order-
isomorphic to a subset ofR, which is impossible.2

5 Open Questions

• If an Aronszajn line has countable topological cellularity in its open interval topology, must the
Aronszajn tree from which it comes (see Theorem 4.1) contain a Souslin subtree?

• Can an Aronszajn line be Lindelöf in its open interval topology without containing a Souslin line?

• Characterize properties such as paracompact, Lindelöf, and perfect in the open interval topology of
the lexicographic ordering of a tree, in terms of tree and node properties.

• In terms of the partial order≤T of a treeT and the chosen node orderings ofT , characterize which
lexicographically ordered trees(T,≺) are of the first Baire Category in their open interval topology.
(Theorem 3.8 provides an answer, but only for certain kinds of trees.)
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