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1 Introduction

In this paper we characterize trees whose lexicographic orderings give (up to order isomorphism) sets of
real numbers and sets of ordinals. We then characterize trees whose lexicographic orderings are order
complete (or equivalently, that are compact in the usual open interval topology of the lexicographic order-
ing). For a broad class of trees, we also characterize those trees that are of the first Baire category when
equipped with the open interval topology of their lexicographic orderings. Finally, we collect together
some known results about Aronszajn trees and lines. We prove the harder half of the folklore characteri-
zation of Aronszajn lines as being the lexicographic orderings of Aronszajn trees and then we use earlier
results in the paper to establish certain topological facts about Aronszajn lines.

We generally follow [4] in our terminology and notation for trees. Byree we mean a partially
ordered set7’, <r) with the property that for eache 7', the sefl; = {s € T': s <p tand s # t} is well
ordered by<,. The order type of; is denoted byv(¢) and for each ordinal, T, = {t € T : Iv(t) = a}
is the o level of T. For somex, T, = 0 and the height ofl’ (denotedht(7')) is the first ordinalx
with T,, = (. For anyt € T and anya < lv(t) let t(«) be the unique point of; N 7, i.e. the unique
predecessor afthat lies at levet of the tree, and forr = lv(¢), lett(a) = t.

For eacht € T, thenode ofT" containingt is defined to b&Noder(t) = {s € T : T, = T;}. Let N1 be
the set of all nodes df'. Given a nodeV of 7', there is somex with N C T,, and we writecv = lvp(N).
Let p(IV) = T; wheret is any element ofV. This setp(/V) is called thepath of predecessord the node
N. ltis clear that any two members of a given nodeloére incomparable with respect to the partial
ordering<;. For each nodeV of T, let <, be a linear ordering oN. There is no necessary relation

1This paper is part of the undergraduate honors thesis of the first author, written with financial support from the William and
Mary Charles Center, and under the supervision of David Lutzer.



between the orderings of different nodes/ofGiven a sef{ (N, <y) : N € Nz} of node orderings for’,
we define a new ordering, called thexicographic orderingon the sefl” by the rule that, < t, if and
only if either

(1) t1 <p ty; 0r

(i) t; andt, are incomparable in the partial orderigg and if§ = A(t4, t5) is the first ordinal
such thatt; () # t2(0), then in the nodeV to which botht; (4) andt,(d) belong, we have

t1<5) <N tg((S)

It is easy to verify thaK is a linear ordering of the sé&t.

From time to time we will contrast the theory of lexicographic orderings of trees with the related, but
quite different, theory of branch spaces of trees. (See [1].) Byaachof a tree(7, <) we mean a
maximal (with respect to containment) totally ordered subset7’. Each branclh of 7" is well ordered
and its order type is denoted by(b). Fora < ht(b) let b(«) be the unique member of the det 7.

Given a set of node orderind§ N, <y) : N € Nr} as above, the set of all branchesTof(denoted

by Br) is linearly ordered by a rule that is reminiscent of lexicographic ordering, namely that two branches
b1, by € Br haveb, <z, by if and only if eitherb, = by or by (§) <y b2(0) whered = A(by, by) is the first
ordinal such thab; (9) # b2(d) and N is the node of/" that contains both, (§) andb(6).

In this paper we reserve the symbd)s P andR for the usual sets of rational, irrational, and real
numbers, respectively, The set of all integers is denoted.ldy S is a subset of a linearly ordered det
then a seC is aconvex componewf S if C' C S andC' is order-convex in. and no strictly larger convex
subset ofl. is contained inS. Throughout the paper, we will use the telime to mean any linearly ordered
set. No topology is assumed unless specifically mentioned.

We thank the referee whose comments improved an earlier draft of our paper.

2 Representing lines by lexicographically ordered trees

In this section, we will focus on representing some classical linearly ordered sets (namely, sulsetd of
ordinal lines) as lexicographic orderings of trees. We begin by recalling an observation due tweVadlor

[4] showing that we must place restrictions on the trees used if we are to obtain non-trivial representations
of lines via lexicographic orderings of trees.

Example 2.1 : Any linearly ordered set is order isomorphic to a lexicographically ordered tree.

Proof: Consider any linearly ordered g&f, <). LetT = T, = X and let<; be equality. Thedj is the
unique node of” and we linearly order it to make it a copy @K, <). Using the tre€/’ and the chosen
node ordering, it is clear thafX', <) is exactly the lexicographic ordering @t O

The problem with the tree in Example 2.1 is that the the original linearly ordergd(set) appears
as a node of the tree, and the lexicographic ordering gets all of its structure from that node. Because the
tree in Example 2.1 is just as complicated as the original(IXie<), it is not surprising that such a tree-
representation gives no additional insight into the structureXof). The literature contains many kinds
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of restrictions that one might impose on a tree, e.g., restrictions on the heighiofrestrictions on the
cardinality of the nodes df, or of the levels off’, or of the anti-chains of'. (Recall that aranti-chainis

a subsetd C T such that no pair of distinct elements 4fare comparable in the partial order’6f) We
introduce a new kind of restriction callddnon-degeneracy that seems particularly natural if one wants to
have a representation theory for a linearly ordered Xet ) using trees that are more simple than <)
itself. For a linearly ordered séL, <, ) we say that the node orderings of a tfeare L-non-degenerate
provided for eachV € N, the sef L, <;,) is not order isomorphic to any subset(df, <y).

Example 2.2 : The set) of rational numbers is order isomorphic to a lexicographically ordered tree with
Q-non-degenerate node orderings.

Proof: LetT = (J{"Z : n > 1}, i.e.,T is the set of all non-empty finite sequences of integers. Partially
orderT by end-extension. Each node Bfis countably infinite and in its natural order is a copyZof
Hence the node orderings &enon-degenerate. With the resulting lexicographic orl€r is a countable
densely ordered set without end points (becaubas no root) and s@’, <) is order isomorphic t@). O

Remark 2.3 : By way of contrast with Example 2.2, we show in [1] tha€}fis order isomorphic to the
branch space of some trég then some node af must contain an order isomorphic copy(@f

Having obtainedQ as a non-trivial lexicographically ordered tree, it is natural to wonder whether
interesting uncountable sets of real numbers could be obtained in a similar way. The answer is “Yes,” as
can be seen from the next example.

Example 2.4 : For any setX withQ C X C R, there is a tred/x with countable height and countable
nodes whose lexicographic ordering is order isomorphi&to

Proof: We begin by considering the case wh&re= R. LetT be the height tree used above to give a
lexicographic representation @f. Let B be the set of all branches @fand letU = T'U By. As in [4]

we extend the partial order @f to a partial ordering ot/ as follows. Fort € T andb € By we define

t <y bifand only ift € b. Distinct members oB; are not comparable in the partial orderinglaflt is
straightforward to check that i, is the resulting lexicographic ordering &f, then(U, <) is densely

ordered, has no endpoints, has a countable order-dense set, and satisfies the least upper bound property for
non-empty subsets that have upper bounds. But that list of properties characterizes the orderédkset

an order isomorphism’ from (U, <;) ontoRR.

Now consider the case whe@zC X C R. With U and F' as in the previous paragraph, &t be the
set of branches € B with the property the#'(b) € X — Q. ThenVyx = T U By is a subtree ot/ and
the restriction ofF' to the lexicographically ordered tré& is an order isomorphism froifVx, <y, ) onto
X.O

The construction in Example 2.4 is somewhat unsatisfying because, while every node of thastree
either finite or a copy oZ, thew!” level of V' is a very large anti-chain that mak&slook somewhat like
the trivial tree mentioned in Example 2.1 in the sense that almost all of the structure grows out of a single
level. One might wonder whether it is possible to find a tfeand a choice of node orderings whose
lexicographic ordering representswithout including the seK — Q as a maximal anti-chain. The next
two results answer that question in the negative and show that to a great extent, Example 2.4 is typical of
what must happen when uncountable subsek afe represented as lexicographic orderings of trees. We
begin with a lemma that describes certain intervals in the lexicographic ordefing



Lemma 2.5 : SupposeT, <) is a tree and suppose is the lexicographic ordering df associated with
some choice of node orderings. Then:

i) if a <7 bare comparable elements 6fand if (a,b)< = {z € T : a < x < b} then
(a,b)<={ceT:a<pc<rblU (U{W(c) La<pc<y b})

whereW (c) = (J{T7 : x € Node(c) and & <node(¢) ¢} aNdT* = {t € T': x <7 t}.

i) if <, is the linear order chosen for the nodé of T"and ifa, b € M havea <,; b then

(a,b)< = U{T"’” cx € Manda <px <p b} — {a}.
Proof: LetL = {x € T': a < = < b} and letR be the set

{ceT:a<rec<rb}U (U{U{T”C 2 € Node(c) & & <node(e) €} 1 @ <7 ¢ <r b}) .

We first showR C L. Lett € R. If a <p t <7 bthana < ¢t < b is automatic, So assume there is same
with a <7 ¢ <7 band somer € Node(c) With 2 <yode() ¢ @andt € 7. Thena < t and a case-by-case
analysis shows that< b. Hencet € L.

Conversely, supposec L. If a <p t <r b, thent € R so assume that <, t <t b is false, i.e., that

eithera <1 t ort <t b fails. It cannot happen that<; a or b < t because each of these options would
forcet ¢ L. Hence ifa <7 t fails, thena andt are incomparable in the partially ordered 6Et<r). Now
computed = Ar(a,t) and conclude frona < ¢ that in the node\/ of T" that contains both(§) and(9),
we havea(d) <, t(d). But then we havé < ¢ becauser <7 byieldsb(d) = a(d) < t(J). Therefore,
a <7 t must occur, so thatandb are incomparable i7", <r). Computes = Ar(¢,b). Theno < lv(b)
and in the nodeV of T" that contains both(c) andb(o) we havet(o) <y b(o). If o < 1v(a), thena <r b
would givet(c) <y b(c) = a(o) and that would yield < «a, which is false. Hencér(a) < o < 1v(b).
Thenb(o) is the pointc mentioned in the definition aR and N = Node(c) andx = t(0) <y ¢, sShowing
thatt € R, as required.

The Lemma’s second assertion is proved in a similar way.

Theorem 2.6 : Let (T, <7) be atree and lef (N, <y) : N € N7} be a set of node orderings fdr. Let
= be the associated lexicographic orderinglof Then(7, <) is order isomorphic to a subset &fif and
only if there are subsets and A of T" such that:

a) C'is countable;

b) A s the anti-chain of all maximal elements(@f, <r);
c) ift e T — Cthen some € A hast <7 a;

d) T — Ais countable;

e) if|T| > w, then|A| = |T




f) there are only countably many nodesiohaving more than one point;

g) for each nodeV of T', the linearly ordered setV, <) is order isomorphic to some subsetRf

Proof: SupposéT’, <) is order isomorphic to some subsetl®f If 7" is countable, then (a) through (g)

are immediate and there is nothing to prove. Hence supfidse w. Being order isomorphic to a subset

of R, (T, =) has a countable order dense #kti.e., if z < y in T, then somel € D hasz < d =< y.

The existence ob guarantees that any family of non-degenerate (= having more than one point) pairwise
disjoint convex subsets @f’, <) is countable.

Supposé is any branch ofl’, sayb = {t, : a < ht(b)}. If ht(b) > wy, then for each limit ordinal
A < wy let I, be the=-interval (ty,ty3)<, i.e, Iy = {s € T :ty < s <tyi3}. Then{l, : A < w; and\
is a limit ordinal} is an uncountable collection of pairwise disjoint, non-degenerate convex $&tsn
and that is impossible. Hence each brancii ¢fas countable height. TherefdigT") < w;.

LetS = {z € T : 1 < |T®|}, partially ordered by restricting,. ConsiderS,,, thea'-level of S. If x
andy are distinct members &, thenz andy are incomparable i and hence also ift. Therefore the
setsT* = {t € T : = <¢ t} and the analogously defindd& are disjoint non-degenerate convex subsets
of (T, <r) so thatS, must be countable. In addition, any branchSoéxtends to a branch @f, so each
branch ofS has countable height atd(S) < w;. If ht(S) = w; thenS is an Aronszajn tree. BytS, <g)
is order isomorphic to a subset Bfand that is impossible by Corollary 4.2, below. Heh¢éS) < w.
Having countable levels and countable heighimust be a countable set.

Fors,t € T define thats ~ ¢ if and only if the convex hull of s, ¢} in (T, <) is countable, i.e. the
interval of (7", <) from min<(s, t) to max<(s,t) is countable. Ther- is an equivalence relation df.
Becausg T, <) order-embeds iR, the cofinality and coinitiality of each equivalence clakgt) must
be countable. Henckcls(t)] < w for eacht € T. Furthermore the collectioficls(t) : ¢ € T and
|cls(t)| > 1} is countable, being a pairwise disjoint collection of non-degenerate convex séts=n.
Hence the sef’ = [ J{cls(t) : t € T, |cls(t)| > 1} is also a countable set, so (a) holds.

Let A =T — S. For anya € A we know that/7*| = 1 so thata must be a maximal element of
(T, <r). Furthermore, becausgis countable, we know tha#| = |7'| so that (b) and (e) hold. Assertion
(d) holds becausé& — A = S.

Suppose that € T — C and thatt ¢ A. ThenT" has at least two points. I were a countable set,
thenT® C C contrary tot € T — C. HenceT" is uncountable. Observe that each level of the subtree
T" is contained in a level of’, and thereford™ has only a countable number of levels. Therefore, there
is a level of (7"),, that is uncountable. Becau$é™ : » € (T%), and|T*| > 2} is a pairwise disjoint
collection of non-degenerate convex subset&/of<), the collection must be countable. Hence there are
(uncountably many) points € (7%),, with |7%| = 1 and any such: must belong tod and have <7 z.

This proves assertion (c).

To prove assertion (f), fixx < ht(7"). For each nodél/ of T" at level« with |M| > 2, choose
e, dy € M with ¢y, <y dyr (Where<,, is the linear ordering chosen for the natl®. Then the second
part of Lemma 2.5 shows that the intervéds,, d,,|< of (7, <) are pairwise disjoint non-degenerate
convex sets, so that there are only countably many such nodes atlé®et 7" has only countably many
levels, so that all togeth&r has only countably many non-degenerate nodes.

Assertion (g) must hold because the order-embeddir{@’oK) into R also embed$N, <y ) into R.
Therefore, if(T, <) is order isomorphic to a subsetRfthen assertions (a) through (g) must hold.
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Conversely, we will prove that if conditions (a) through (g) hold, then the linearly orderdd s&t
has a countable order dense subset. That will be enough to sho{f'thé} order-embeds ifR. Let N>
be the family of non-degenerate nodesiofEachN € N, order-embeds ifR and therefore contains a
countable seD(V) that is order dense in the linearly ordered €t <, ). Because the s¢fV, <) can
have at most countably many jumps, we may assumdhat) contains both points of any jump in the set
(N, <n), i.e., ifu,v € N are distinct and no point a¥ lies strictly between andv, thenu,v € D(N).

LetD =CU (T —A)U(U{D(N): N € N2}). ThenD is a countable subset @f. We claim thatD
is order dense i7", <). Supposer < y are points ofl’. There are two cases to consider. First suppose
thatz andy are comparable in the partial ord€r. Thenx < y sothatr €¢ T — A C D and hence
D N [z,y]< # 0. Next suppose that andy are incomparable ir<r. Then computed = Ar(z,y),
obtainingd < min(lv(z),lv(y)) andx(d) < y(0) whereM is the node ofl" containing bothz(J) and
y(9). ThenM € Ns. If some pointu of M hasz(d) <ur u < y(9) then there is a point € D (M) with
z(0) <amr v <pr y(0) and therw € D N [z, y]<. If there is no such point € M, then the points:(6) and
y(9) constitute a jump M, <,,) and therefore)(0) € D(M) C D hasy(d) € D N [z, y|<. Therefore,
D is a countable order dense subsetBf<) and hencéT’, <) is order isomorphic to some subsetRf
O

Remark 2.7 : Theorem 2.6, an order-theoretic result, has a topological partial analog. With notation as
in (2.6), suppos€ is the usual open interval topology of the lexicographic orderngnd suppose there

is a topological embedding (not necessarily order-preserving) of the linearly ordered $pacato the

usual space of real numbers. Th@h 7) is a second countable space and this allows us to prove that
(T,Z) has a countable topologically dense subset and also has at most countably many jumps, so that
(T, <) has a countable order dense set. At one point we need to know that for the subfr&esS is not

an Aronszajn tree, and it is possible to prove th&fif<) embeds topologically iR, then no subtree af

can be an Aronszajn tree. Consequently, properties (a) through (g) still hold. The problem is (potentially)
with the converse. Give (a) through (g), there is an order isomorphism(ffom) onto a subset’ of R,

but the topology thal” inherits fromR might not be the same as the open interval topology generated by
the linear order thaf’ inherits fromR.

The lexicographic representation theory for ordinal lines, i.e., sets of the [foim) where« is an
ordinal number, is more simple than the corresponding theory for subskts/¢ need to recall the idea
of apartition treeof a linearly ordered sétX, <). For any non-degenerate (= having more than one point)
convex subsef C X, let P(I) be a pairwise disjoint collection of (possibly degenerate) convex subsets of
I that coverd. Now define a tree recursively by:

[ ] TO = {X}

o if = 5+ 1and7j is defined, let,, = (J{P(I) : [ € T and |I| > 1}

e if a is a limit ordinal andl; is defined for all3 < «, thenT, = {D = ({Cs : 8 < a} : Cs €
T3 and |D| > 2}.

BecauseX is a set, there must be somewith 7, = (). Partially order’ = (J{T, : T,, # ()} by reverse
inclusion. ThenT is a tree and the'" level of T"is T,,. Any nodeN of T is a collection of pairwise
disjoint convex subsets of, so that for distinct’;, C, € N we may defineg”; <y C, if and only if each
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point of C'; precedes each point 6f, in the original ordering given foX. This node ordering is called
the precedence ordering fronoy .

The central issue in the next theorem is that for a limit ordnahny partition tree of{0, A) can be
used to represetfit, \) as a lexicographic tree.

Theorem 2.8 : Let \ be any limit ordinal and lef” be any partition tree o’ = [0, \). Order the nodes
of T using the precedence order from and let< be the associated lexicographic orderingof Then
(T, <) is order isomorphic toX.

Proof: We will recursively construct a strictly increasing functiorfrom (7', <) onto [0, A). For each
a < A\ leth, ={teT:«aect}. Thenb,isabranchof and? = (J{b, : @ < A}.

Clam11:If I € Tandl & |J{bs : § < a} andif someJ € b, hasl < J, thenl € b, — | J{bs : 5 < a}.
To prove Claim 1, we note thdtn [0, o) = (), anda € J. There are two ways thdt< J can occur. In the
first, I < J,i.e.,J C I,and themn € J C [ as claimed. The second is whdrand.J are incomparable
members of", and in that casén J = ) and if6 = Ar(1,J), then in the nodéV of T" that contains both
I(9) and.J(0) we havel (0) <y J(J), so that every point of the convex sE®) precedes every point of
J(8)in [0, A). Buta € J C J(d) so that every point of (6) precedesy and thereford C 1(4) C [0, «)
contradicting/ N [0, «) = (. Hence Claim 1 holds.

Claim 2 The height of the branch, is less thamv + w. Write 4 = a + w and for contradiction suppose

that the height ob,, is greater than or equal . Then we can find members € b, for eachy <

such that ify; < v < pthenl, <r L, i.e., I, C L,. Fory < plet f(y) = sup(Z,). The function

f cannot have infinite range because there is no strictly decreasing infinite set of ordinals. Hence there is
a finiteny < p such thatf(8) = f(y) whenevem, < 5 < v < A. Defineg(y) = inf(Z,) whenever

no < v < A; theng is strictly increasing. However, becausec I, for eachy, we see thaf(vy) < «

for eachy. Thus we have an order isomorphism from + 1, « + w) into [0, «) and that is impossible.
Thereforeht(b,) < a + w.

Claim 3 For eachy < A, the setS = b, — [J{bg : B < «} is finite. For eaclt < ht(b,), letb,(3) be the

unique member o, N 7. If there is some’ < ht(b,) such thainin(b,(3)) = «, let 3, be the least such

B. If v < By thenmin(b,(y)) < « so thatb,(y) contains some point less thanand therefore belongs

to (J{bs : B < a}. Therefore, any member ¢f has the formb,(y) whereg, < v < ht(b,), and each

such set contains and is contained ih, (3,) C [, A). For 5y < v < ht(b,) defineh(y) = sup(ba(7)).

We thereby obtain a strictly decreasing function. But there are no infinite strictly decreasing sequences
of ordinals, so that the domain éfmust be finite. Therefore, if, is defined, then the sét is finite, as
claimed. The remaining case is where for evéry ht(b,,), the minimum of the sét, (3) is less thanu.

But then every member @f, contains a point less thanand therefore belongs td{b, : v < a}, so that

the setS is empty. In any case, thereforg s finite.

We will now recursively define a collection of functiogs,, : & < A}. By claim (3) we know that
the branchh, of the treeT is finite. Let|by| = ny. Then there is a unique strictly increasing function
¢o : by — [0,n0). Now suppos® < « < A and that we have defined a family of functiofis; : 5 < o}
satisfying the following five assertions that we collectively dall(«).

1) if 8 < athengs : U{b, : v < B} — [0, A) is a strictly increasing function whose range is an initial
segment of0, \);



2) if § < ais not a limit ordinal, therg (IJ{b, : v < 5}) is a proper initial segment ¢, 5 + w);
3) if B < ais alimit ordinal, thenps ((J{b, : v < 8}) = [0, B);

4)if B < aandI,J € J{b, : v < B} havel < J in the lexicographic ordering of’, then
¢(I) < dp(J) In [0, A);

5) if 0 < v < B < a, thengs extendsp,.

If «is alimit ordinal, defines, = |J{¢s : 6 < a}. Clearly assertions 1) ,2), 4), and 5)idf («+ 1)
hold. To verify assertion (3) we must consider two cases separatelis H limit of smaller limit ordinals,
assertion 3) clearly holds, so consider the case whetre: +w for some limit ordinal.. Applying I H(«)
to the ordinalss = 1 + n shows that the range @, is [0, © + w) = [u, ) as required.

Finally consider the case whetids not a limit ordinal. Writen = i+ k£ wherey is a limit ordinal and
0 < k < w. We know that the range of,,.—1) is a proper initial segment ¢, ;» + w) so that finiteness
of the seth, — [J{b, : 7 < o} allows us to uniquely extengd, 1) to a functiong, on|J{b, : v < a}
in such a way that the five assertions/@f (« + 1) all hold.

The above recursion produces a chéin, : a < A} of partial isomorphisms, and then the function
Y = J{¢a : @« < A} is the order isomorphism needed to prove the theofem.

Remark 2.9 : Theorem 2.8 is another illustration of the marked difference between lexicographic repre-
sentation theory and branch space representation theory for linearly ordered sets. In [1] we show that if
A is a regular cardinal (such as), then|0, \) is not isomorphic to a branch space of any tféaunless

some node of " already contains a copy ¢, \) or [0, \)* where[0, \)* indicates|0, \) with the reverse
ordering.

Corollary 2.10 : Every ordinal line[0, «) is order-isomorphic to a lexicographic tree whose levels and
nodes are finite.

Proof: In casev is a limit ordinal, use any binary partition tree [6f o) and apply Theorem 2.8 above. In
casex is not a limit, writeae = A + n wherel < n < w and\ is a limit ordinal. The zeroth level, of
the tree is{[0, \), {\}, {\ + 1}, -, {\+ n — 1}}, ordered naturally. The elemer{ts + i} are maximal
in the tree, and above the elemémt)\) € T}, construct any binary partition tree {f, \). According to
Theorem 2.8, the resulting lexicographically ordered tree is exfcily). O

Example 2.11: There is a partition tree of0, w + 1] whose lexicographic ordering is not isomorphic to
[0,w + 1]. Thus Theorem 2.8 fails for non-limit ordinals.

Proof: For each finite height > 0, let7,, = {{n},[n + 1,w + 1]}. LetT, = {{w,w + 1}} and
T.i2 = {{w},{w+ 1}}. Order each node naturally. The resulting lexicographic tree is order isomorphic
to [0, w + 2], not[0,w + 1]. O



3 Some topology for lexicographically ordered trees

Let T be a tree and lef(N, <y) : N € Nr} be a fixed family of node orderings. When endowed with

the open interval topology of its lexicographic orderirig,s a linearly ordered topological space and
therefore has very strong separation properties (e.g., monotonic normality [3]). We begin by character-
izing compactness of a trée with the open interval topology of (equivalently, we are characterizing
completeness of the ordef) in terms of the properties df’, <r) and of its node orderings. That will
involve showing that certain subsetsBfhave suprema if7’, <) and we will need several preliminary
lemmas.

Lemma 3.1 : Let b be a branch of a tre€T', <r) and let=< be the lexicographic order ¢f associated
with a family of node orderings. If has a maximum elemest in (T, <r), thens* = sup,<(b). If b
does not have a maximum elementdn (i.e., ifht(b) is a limit ordinal) thenb has a supremum ifil’, <)
if and only if there exist an elemesntc 7" and an ordinaly < ht(b) such that

Dv(s) =

2) if v < pthens(v) = b(vy) whereb() is the unique point of N 7,;

3) the points is the immediate successorigf:) in the node of” to which both belong; and
4) if i < o < ht(b), thenb(«) is the maximum element of the node to which it belongs.

Proof: It is clear that any branch that has a maximum element in the partially orderéd set) will
have that maximum element as its supremum in the linearly orderé@ se}.

Next, suppose that the brangthas a supremum in (7', <) and that the branch has no maximum
element in the partially ordered séft, <r). Then the branch has limit height and we can white {¢5 :
B < ht(b)}. Becauses ¢ b, there must be somg < b that is not comparable toin the partial order .
Compute) = Ar(s,t) < lv(s). Theninthe nodé/ of 1" that contains boths(d) ands(d) we know that
ts(0) <ar s(9). If 6 <lv(s), thens(d) <r s and therefore(J) would be an upper bound for the brarich
that strictly precedesin (7', <), and that is impossible becausés the supremum df in (7, <). Hence
d = lv(s). If there were some point € M with t5(d) <u u <pr s thenu would be an upper bound fér
that is strictly less thas = sup,(b). Hences is the immediate successor#{d) in M. Finally consider
any~y with § < v < ht(b). In the notation of the lemma, we haiey) = t.,. If b(~) is not the maximum of
the node to which it belongs, then we could choose a larger elefmerthat node and thereby obtain an
upper bound fob that is strictly less thas = sup(b), which is impossible. Therefore, if the branchas
a supremum in the linearly ordered $&t <), then it must be the maximum éfin the partially ordered
set(T, <r) or else it must be as described in this lemma.

The proof of the converse is straightforwardl.

Lemma 3.2 : Let (T, <r) be a tree and suppose a family of node orderings has been choser. Heet
the associated lexicographic order6f A nodeN of 7" has a supremumin (7', <) if and only if one of
the following conditions hold:



a) s is the maximum element of the linearly ordered(3ét<y);

b) the set N, <) has no maximum element and there is an ordjpat 1v(/N) and a point

s € T with the property thatv(s) = p and for everyt € N, s is the immediate successor
of ¢(u) in the node)/ that contains bottt () and s, and if u < a < 1v(V) then for each

t € N, t(«) is the maximum point of the node to which it belongs.

Proof: The proof of Lemma 3.2 closely parallels the proof of Lemmai3.1.

Lemma 3.3 ; Let < be the lexicographic order associated with some choice of node orderings for the tree
T, and letA be a non-empty initial segment @F, <). For anys € T, the following are equivalent:

(1) for eacha € A, eithera < sor s <r a;
(2) ifa € Ahaslv(a) <lv(s) thena < s.

Proof: Clearly (1) implies (2). Suppose (2) holds angd A. If a < s is false, thers < a. Then either
s <7 a (which is the conclusion we want), or elseanda are incomparable in the partial ord€r.. In

the latter case, if we compute = Ar(a,s), thend < lv(s), ands(d) < a(d) in the nodeM of T

that containss(§) anda(d), and for eachy < 4, a(y) = s(v). Note thata(d) < a becausei(d) <r a.

BecauseA is an initial segment of7’, <), it follows thata(d) € A. But then we havév(a(d)) < lv(s)

ands < a(9) contradicting (2). Therefore, (1) holds.

Lemma 3.4 : Let < be the lexicographic order associated with some choice of node orderings for the tree
(T, <r), and letA be a non-empty initial segment of the lexicographically ordered’Bex). In each of
the following cases4 has a supremum ifil’, <):

(1) There is a point of a nodeN of T such thats = supy(ANN), s ¢ A, ands(a) € A
whenevery < lv(s) (wheres(«) is the unique predecessor ofn 7},).

(2) There is a point* € T — A and a nodeVN of T such that) # NN A = N and (N, <y)
does not have a maximum element, ahe- sup,(N).

(3) There is a point: € N whereN is a node at a successor level- 1 with NN A = (), and
every strict predecessor ofin <, belongs toA.

(4) There is a point: of a nodeN at a limit level such thatv N A = (), andx is the minimum
point of V in the order< y, and every strict predecessor.oin the partial order<; belongs
to A.

Proof: Suppose (1) holds. Becausg A and A is an initial segment of7’, <), we know that each € A
hasa < s. First consider the case in whictin A # (). We will show that there cannot be a poing T

with the property that < s anda < t for eacha € A. The relationt < s can happen in two ways,
depending upon whetherandt are comparable in the partial ord€r-. If t ands are comparable, then

t <r s. Leta; € NN A. Thent < a; because,; ands have exactly the same predecessors. But then
t < a; contrary to the properties of Therefores ands are incomparable it Computed = Ar(s, t).
Thend < lv(s) and in the nodeV/ of T that contains both(d) and¢(5) we havet(d) <y s(5). If

d < lv(s) thens(d) € A because(d) is a strict predecessor efin <;. But thent < s(§) € A contrary
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to assumed properties af Henced = lv(s). But thens(d) = s = supy(N N A) so thatt(é) € N and
t(d) <um s(d) = s provides a pointi, € A N N with ¢(§) <, as. Thent < a, contrary to assumed
properties ot. Therefore, n@ € 7" hast < s and also has < t for eacha € A, S0s = sup . <) (A).

Next consider the case whelen A = (). Thens = sup,(0) tells us thats is the minimum element
of N. We will separately consider the cases whei@) is a successor ordinal and whérés) is a limit
ordinal.

If Iv(s) = 8+ 1is not a limit ordinal, then we claim that3), the unique predecessor©in 7}, is the
supremum ofd in (7, <). The hypothesis of this lemma guarantees #d} € A so that it will be enough
to show thatz < s(3) for eacha € A. For contradiction, suppos&) < as for someas € A. As noted
abovea; < s so thats(5) < a3 < s. Therefore boths(5) <r a3 anda; <r s are impossible so that3)
andas are incomparable in the partial ordef. Compute) = Ar(s(3), a3). Thend < lv(s(3)) = 3, and
s()(9), the unique predecessor €f3) in 75, is the same as(d), the unique predecessor oft levels.
Becauses () < a3z we haves(d) = s(3)(0) <ar az(d) whereM is the node ofl” containing boths(3)(0)
andaz(d) while for eachy < § we haves(y) = s(5)(y) = as(). That is enough to show that< a3 and
that is impossible becausés an upper bound for the sdt Therefores(3) = sup . ) (A) as claimed.

Now consider the case wheré N A = (), s = supy(A N N)is notinA, andlv(s) = Xis a limit
ordinal. As noted aboves = sup, () means that is the minimum element of NV, <x). We claim
thats = supr <) (A). For contradiction, suppose there is some 7' with the property that for each
a € A, a <t < s. There are two possibilities for the relationship betweandt. If ¢ < s, then because
lv(s) = A is a limit ordinal, there is some < A with t <7 s(«) <r s. But thens(a) € A and hence
t < s(«) shows that is not an upper bound fot. Thereforef ands are incomparable in the partial order
<r. Computed = Ar(s,t). Thend <lv(s) = X andt(d) <, s(6) wherel is the node off” containing
both s(9) andt(d) while s(y) = t(y) whenevery < §. If § < A, thens(d) € A. Butthent(d) <, s(9)
shows that < s(d) € A so thatt is not an upper bound fof. Henced < X is impossible and we must
haved = \. But then the nodé/ must beN so thatt(§) <y s(d) = s shows that is not the minimum
element ofN, and that is impossible. Therefose= sup 1 <,(A) as claimed. This completes the proof of

().

Now consider (2). Becausé is an initial segment of7’, <) ands* ¢ A we see that* is an upper
bound forA in (7', <). But becausa* is the supremum i7", <) of the nonempty subseé¥ N A of A, it
follows thats* = supy <) (A).

Next consider (3). Becausec N andN N A = (), we know thatr ¢ A and therefore: is an upper
bound for the initial segmemt of (T, <). Leta = lv(x). Thena = § + 1 so there is a poing € Tj
that is the immediate predecessornofand we know from (3) thag € A. We claim thata < y for each
a € A. If not, then consider some € A with y < a. If y <7 a, thenlv(a) > Iv(y) + 1 = « so that
a has a unique predecessdw) € T,. (Possiblya(a) = a.) But thena(a) € NN A = (). Hence
a andy must be incomparable. Therefokeandx are also incomparable, because<r x. Compute
d = Ar(y,a) < lv(y) = B. Theny(d) <u a(d) in the nodeM of T that contains botla () andy(9).
Note thatz(d) = y(9) so that we have(d) = y(J) <y a(d) andAr(y,a) = Ar(z,a). But then we are
forced to conclude: < a and that is impossible becauseés an upper bound foA. Hence, if (3) holds,
we see thatl has a supremum i7", <).

Finally, consider (4), where is the minimum point of the setV,<y), NN A = 0, lv(z) = «
is a limit ordinal, and every strict predecessoroin <r belongs toA. Becauser ¢ A we know that
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x is an upper bound for the initial segmestin (7', <). We show that there cannot be amy= 7" with

a <y < xforeverya € A. There are two ways foy < z to happen. In the firsty <7 x. But then

the fact thatv(z) is a limit ordinal tells us that there is somec T with y <y z <7 z. Thenz € A

and we have < z contrary to the assumed propertiesjofTherefore,x andy must be incomparable in
<r. Computed = Ar(z,y) < lv(z) = a. We havey(d) <, x(d) in the nodeM that contains botly(9)
andz(0). If § < a, thenz(d) € A. But theny(d) <ur z(0) shows thaty < x(d) € A, contrary to the
assumed properties gf Henced = «. But thenM is the node containing(«) = z so thatM = N

and thery () <y x(6) = = shows that: could not have been the minimum element of its node. Hence
T = sup <) (A4). O

Theorem 3.5: Let (T, <7) be atree and le{(N, <y) : N € N} be a family of node orderings. Let
be the resulting lexicographic ordering @f. Then with its open interval topology, the lexicographically
ordered tree is compact if and only if the following four conditions hold:

C1 For eachN € Nr, N has a least upper bound ifT’, <) (see Lemma 3.2);

C2 If N € Ny and iflvy(N) is a limit ordinal, then(N, <) has a least element. (Note: this condition
also applies to the zeroth level of the tree, which is itself a nodé of

C3 for eachN € AN the linearly ordered setN, <) is conditionally complete, i.e., any non-empty
subset ofV that has an upper bound iN must have a least upper bound/in

C4 for each branchh € Br, eitherb has a maximal element i’ or else the subsét of T" has a
supremunz(b) in (T, <) (see Lemma 3.1).

Proof: In this proof we will need to consider several different partial and linear orders, namely the partial
order<r and its strict versior<r, the lexicographic order onT" and its strict versior<, and the linear
ordering<, chosen for a nod&’ of 7', and its strict versior: y. For a setS C T, we will write sup,.(5)

for the supremum of' in the linearly ordered s€f’, <) and for a subse$ of a nodeN, we will write

supy (S) for the supremum of' in the linearly ordered sétV, <y).

First suppose that a tré&’, <;) has node orderings satisfying (C1) through (C4). We will show that
every initial segmentl of (7, <) has a least upper bound. Af = (), apply (C2) to the s€fy, which is a
node ofT" at limit level. The minimum element df; is the least upper bound fet = (.

Next consider the case where= T'. (This special case is a preview of the approach to be used later,
when A is a proper initial segment.) The s&j, the zeroth level ofl’, is a node ofl". In the light of
C1 applied toT,, we know thatl;, has a supremum i(l’, <). Lett* = supy <) (7p). There is a unique
to € Ty with ¢ty <p t*. Let <7, be the linear ordering chosen for the ndle For anys € T, we have
s < sup(ij)(To) = t* so that, ifs # ¢, we must have < t,. Hences <, t, and sot, is the maximum
element ofl; in its node ordering. (In fact, one can see that t*.) For induction hypothesis, suppose
a > 0is an ordinal and for each ordingl < o we have founds € Tj such thattz is the maximum
element of its node and such thatdf < 8, < a thents <r tz,. There are two cases to consider,
depending upon whether the get {t5 : 5 < a} is a branch ofl".

If pis not a branch, then the sat = {t € T, : T, = p} is non-empty and is a node @f. Apply
(C1) to findt** = sup< (V). We claim that for eacl¥ < «, t3 <7 t**. We know that for any: € N and
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forany 3 < o we havets <y a < t™ so thattz < t**. If there is a3 < « such thatz <, t** is false,
thents and¢** would be incomparable in the partial ord€r and we would computé = Ay (ts, t**)
and find that, in the nodé/ of T" that contains botls(0) andt™(5), we would have z(§) <ar t**(9).
Becausé(d) = t5, ts <u t**(0) is impossible becausg is known to be the maximum element of its
node. Thereforé; <r t** for each < «. But thenlv(t**) > « so thatt** has a unique predecessor
t**(«) at levela of T, and it is immediate that if we defing = ¢t**(«/), then we obtain a point oV that

is the maximum of the linearly ordered $éf, <, ), and so the induction continues.

In the remaining case, the pathis a branch off’. Note thatht(p) = «. We claim thatht(p) is not
a limit ordinal. If it were a limit, we would apply (C4) to find an ordinal= 1(p) < ht(p) such that
p(p) has an immediate successor in its node, and that is once again impossible bg¢pause,, is the
maximum of its node. Therefore, = ht(p) must be a successor ordinal, dayp) = a = 3+ 1. Then
t5 is the maximal element of the branphand hence is a maximal element of the partial orderof 7'.
We claim thattz = sup;(T"). Consider any € 7" and for contradiction supposg < s. Becauség is
maximal inT", we know that; <r s is false. Hence and¢z must be incomparable ifi", <;) so that
if & = Ar(s,tg), then in the nodé/ to which boths(d) andtz(d) belong, we haves(0) <as s(d). But
that is impossible becausg(d) = s andt; is known to be the maximum point of its node. Therefore,

tg = sup(Tyj)(T).

Now we consider the more complicated case where a nonempty, proper initial segment(@f, <),
i.e., if s < a € A, thens € A. Becaused # T, Ais bounded inT, <r). Consider the set

I'={a <ht(T): forsomez € T, a < x foralla € A}.

The setl” is non-empty becausé is a bounded subset ¢1', <). For eachh € T, letU, = {t € T, : for
alla € A, a <t} and lety = min(I"). Observe that minimality of combined with the fact thad is an
initial segment of 7', <), guarantees that

(¥) B < nimplies Ty C A.

We claim that/,, is contained in a single node &t If |U, | = 1 this is clear, so suppose that,| > 1.
Fix z,y € U, with z < y We will show thaty belongs to the node df’ that containsc. Because
lv(x) = n = Iv(y) the pointsr andy are incomparable in the partial order.. Computed = Ar(x,y).
Becauser < y, we know thatz(d) <; y(d) whereM is the node ofl” that contains both(4) andy(9).
Note thaty < lv(z) = n. If § < n, then{z(5),y(0)} C Ts C Ainthe light of (*). But therz < y(J) € A
and that contradicts € U,. Therefore) =  and hence: = () andy = y(9) showing that; belongs to
the node off" that containg:, as claimed. Denote that node by(n).

We next show that eithet has a supremum iff’, <) or else there is a point, such thatAN N (n) # 0
ands, = supy, (A N N(n)) belongs toA, and for eactu € A with Iv(a) < n, eithera < S, or else
s, <r a. There are two cases to analyze, depending upon whether &f,motA = (.

Case 1 First consider the case in whidki(n) N A = (. If nis a limit ordinal, then (C2) implies that the
nodeN (n) has a minimum element ThenN(n) N A = () implies thatz ¢ A. In the light of (*), every
strict predecessor of in < belongs toA. Now apply part (4) of Lemma 3.4 to conclude thathas a
supremum in(7, <) as required. If; is not a limit ordinal, then part (3) of Lemma 3.4 applies to show
that A has a supremum iff’, <).
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Case 2 Now suppose thatt N N(n) # 0. Choose an element, € U,. Then the sed N N(n) is a
nonempty subset aV(n) that is bounded above (by,). Hence (C3) provides a least upper boud
for AN N(n)in (N(n), <w). Observe that becausg andz,, belong to the same node @f we have

sy(77) = x,(7y) for eachy < 7.
If s, & A, thens,, must be the supremum ef in (7', <). This follows from part (1) of Lemma 3.4.

Next consider the case whesg € A. We claim that ifa € A andlv(a) < 7, thena < s,. From
a = x, we conclude that either <, z,, (in which casex = z,(6) = s,(J) < s,) or elsea andz.ta are
incomparable in<. In that second case, the ordinal= A(a, z,) hasé; < lv(a) =6 < nanda(d;) <u
x,(61) where)M is the node ofl" containing bothu(d,) andz.ta(d,). The fact thate,(y) = s, () for all
v < nyieldsé; = A(a, s,) = A(a, z,) anda(d,) <ur s,(01) and therefore < s, in caselv(a) < 7.

We also claim that itv(a) = n thena < s,. If it happens that. € N,, thena < s, follows from
sy = supy(, (AN N(n)). Hence we may assume that 7, — N(n). Thendy, = A(a, z,) hasdy < 7 so
that froma < z,, we conclude:(d;) <, x,(d2) = s,(d2) whereL is the node of" containing bothu(,)
andz, (d2) = s,(d2). Butthena < s,, as claimed.

Therefore we have proved thatife A haslv(a) < 7 thena < s,. Now Lemma 3.3 applies to show
that ifa € A then either < s, ors,, <7 a.

At this point of our proof, we have either showed thahas a supremum ifil’, <) or else we have
initialized a recursive construction by finding the poipt To continue that recursion, suppose that 7
and for each? with n < 3 < o we have found a pointg € A N T such that the following induction
hypotheses$! H),, are satisfied:

(1) ifn < B < By < a, thensg, <7 sg,;

(2) if N(B) is the node ofl” containingsg, thenA N N(3) # () andss = supy ) (N(3) N A)
belongs ta4;

() if a € A haslv(a) < 3, thena =< sz. (Note that in the light of Lemma 3.3, this is
equivalent to the statement that for each A, eithera < sz or elsesz <r a).

We will consider a sequence of cases and in each we will show that either we have a supremum for the set
Ain (T, =), or else we see how to defiagin such a way that/ /)., holds and the induction continues.

Case 3 Supposex = 3 + 1 is a successor ordinal and(a) N A = () where N(«) is the node of all

immediate successors of the already-defined pgjntWe claim that in this cased has a supremum in
(T,=). If N(a) # 0, choosexr € N(«) and apply part (3) of Lemma 3.4 to conclude thhas a

supremum in7, <). If N(«a) = 0, thensg is a maximal point of 7, <r) so thats; <r a never happens
for a € A. Applying part (3) of the induction hypothesis, we see that s; for eacha € A, as claimed.

Therefore, in Case 3, the séthas a supremum ifT’, <).

Case 4 Supposer = f+1and) # N(a)NA = N(«) whereN («), the node of immediate successors of
s3, has a maximum element in the chosen linear ordeting,). Defines, to be that maximum element.
Thens, € A and because, € N(5 + 1), we know thatsz < s, so that the first part of/ H),1
holds. Clearlys, = sup;(A N N(«)) so the second part @f H ), also holds. To verify the third part
of (1H)q+1, consider any, € A withlv(a) < a =+ 1. We must show: < s,. In casév(a) < 3 then
we know thata < sz < s,, SO consider the case wherda) = «. For contradiction suppose, < a.

14



Becausév(s,) = lv(a) = a we cannot have, <7 a, Soa ands, must be incomparable in the partial
order<,. Computed = Arp(sgt1,a). Thend <lv(a) = aands,(§) <ar a(d) wherel is the node of"
containing bothu(6) ands, (). If § < a, thena(d) ands, (6) both belong to the same nod¢ at level§

of the tree, Buts, (0) = ss, which is known to be the maximum of its node in the chosen node ordering,
soa(d) <ur S.(0) and hence: < s,. In case) = «, thena ands,, belong to the same nodé(«) of 7" so
that, s, being the maximum of that node, we have . s, whencea < s,. Therefore the third part of

(I H).41 holds in case 4, and the recursion continues.

Case 5Supposer = 3+ 1 and() # N(a) N A = N(«) whereN(«), the node of immediate successors
of s3, does not have a maximum element in the chosen linear ordeting. However, (C1) guarantees
that N («) has a supremunt in (7', <). Thent* ¢ N(«). We will show thatt* is the supremum aofl in

(T, <). Choose any: € N(«) N A. Then we have; <7 a < t* so thats; < ¢*. We claim that* and

sg are incomparable in the partial ordsr-. If that is not the case, thery < t* would yield sz <7 t*

so thatlv(t*) > « and hence*(«) exists and belongs t&/(«). Letu be any element oN = N(«). If
t*(a) <y uthent* < u < sup,(N) = t* which is impossible. Therefore, eaghe N hasu <y t*(«)
showing that*(«) is the maximum point of V, <) and that is impossible in Case 5. Therefgseand

t* are incomparable in the partial ordeg-.

Now leta € A. According to the induction hypothesis, we know that eithier ss (in which case
a < sz < t*) or elsesg < a. Consider the case whesg <r a. Thenlv(a) > «. In caselv(a) = a,
thenss < ayieldsa € N(a) so thata < t*. In caselv(a) > a, thensg <7 a yieldsa(a) € N(a) so
thata(a) < t*. Buta(a) € N(a) whilet* ¢ N(«) so thata(«) < t*. This could happen in two ways:
eithera(a) < t* or elsea(a) and¢* are not comparable in the partially ordered @Bt<r). The first
option would yieldt*(«) = a(a) € N(«) and hence that'(«) is the maximum element a¥(«) in the
ordering chosen foN («), and in Case 5 that cannot happen. Heticanda(«) are not comparable in
(T, <r). Letd = A(a(«a),t*). Then in the nodé/ that contains both(«)(0) = a(d) andt*(6) we have
a(0) <pr t*(0). Because\(a(w),t*) = A(a,t*) we obtaina < t* as claimed.

At this point in Case 5, we know that=< ¢* for eacha € A. To complete the proof of Case 5, recall
that N(a) N A = N(a) and suppos€ < t* = sup(r <) (N(a) N A). Then there is som& € N(a) N A
with ' < ¢’ < ¢* and that is enough to show thdt = sup,(A). Therefore in Case 5, the sdthas a
supremum (namely*) and the induction stops.

Case 6Supposer = f+1andd) # N(B+1)NA # N(B+1). Choosew € N(3+1)— A. Becaused is
an initial segment of 7", <) it must be true that < « for eacha € A. ThenN (5 + 1) N A is a non-empty
bounded set itV (3 + 1) so that (C3) provides a poift= supyg,1)(N (5 +1) N A). In cases ¢ A, then
part (1) of Lemma 3.4 shows that= sup,(A). If s € A then we defings,, = s. Clearly the first two
parts of(1 H),. are satisfied, so we verify the third part. et A havelv(a) < g+1. If lv(a) < 3, then
the induction hypothesis gives=< sz < sgy1 SO supposév(a) = $ + 1. Then the induction hypothesis
givessg <p a so thata € AN N(5 + 1). Butthena <y(s;1) supN(ﬂH)(A NN(B+1)) = sz and
thereforen < s as required.

Cases 3 through 6 show that in case= § + 1 is a successor ordinal arfdH ), holds, then either
we can construct the supremum 4fin (7', <), or else the induction continues aqfH),,; holds. It
remains to consider the case wherés a limit ordinal and(/H),, holds. LetS = {¢t € T : for some
B < a, t < sg}. ThenS is a linearly ordered subset ¢1’, <;) with the property that <; s € S
guarantees thate S. The setS might, or might not, be a branch @fand that leads to our next cases.
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Case 7 Supposex is a limit ordinal andS is a branch of". Thenht(S) = «. Becausev is a limit ordinal,
S does not have a maximal element. Apply (C4) to find a supreriuior S in (7', <). Observe that there
cannot be am € A such thatsz <7 a for eachf € [, «) because in that casg,would not be a branch
of T'. However, for a fixed: € A and a fixed3 we know that eithet, < sz or elsesz <r a by the last
part of the induction hypothesis. Therefore, gives A somesg hasa < sz < s* showing thats* is an
upper bound ford in (T, <). Butsz € Aforn < [ < « ands* is the supremum ifT, <) of the set
{sp 11 < B < a}. Hences” = supr <) (A).

Case 8Supposer is a limit ordinal ands is not a branch of’, and the nodéV () of immediate successors
of S hasN(S) N A = (). BecauseS is not a branch of”, we know thatN(S) # (). BecauseV(S) is

a nonempty node at a limit level af, (C2) guarantees the existence of a least elemeat N (S) with
respect to the linear orderingys) chosen forV(S). Note thatsz <, s* for eachs < . We claim that
s* is the supremum forl in (7', <). If there were some € A with sz <7 « for eachf € [, «) then

a € N(S)Nn A = (. Therefore, the final part dff /), shows that the points; of A are cofinal inA so
thats* is an upper bound for the sdt We claim thats* is the least upper bound fet in (7', <).

For contradiction, suppose that some T hasa < ¢t < s* for eacha € A. Thensz <t < s* for
eachp € [n,«). The pointst ands* must be incomparable in the partially ordered §et<r), because
otherwiset < s* so thatt € S and then we could choose ap € S with ¢t <r sz and that would give
t <r sg = t which is impossible. Compute= Ar(s*,t) < lv(s*) = a. If v < § we havei(y) = s*(v),
and in the nodé\/ of T' that contains both(J) and s*(9) we havet(d) <,; s*(6). Becauses* is the
least member of the nod€(.S) we know that < «. But thens*(§) € S so we can choose somg with
s*(0) < sg. Thensg(d) = s*(9) sothatt(d) <ar s3(d). Furthermore, ify < 4§, thent(y) = s*(v) = s3(7).
That is enough to show that< sz. But we know thak; < t so thatt < ¢ which is impossible. Therefore,
s* is the least upper bound fetrin (7', <), as claimed.

Case 9 Supposevis a limit ordinal ands is not a branch of’ and NV (S), the node of immediate successors
of S, has # N(S)N A = N(S), andN(S) has a largest element in the linear orderings) chosen
forit. Let s, be that largest element. Then € AN N(S) ands, = supys)(N(S)) so that the first two
parts of(/ H),, are satisfied. Observe that becallsé AN N(S) C N(S) the points, must also be the
supremum ofA N N (5) in the se{(T', <).

We now verify the third part of /H),.1. Suppose: € A haslv(a) < a. In the light of Lemma 3.3
we need to show < s,. If lv(a) < « then there must be somewith lv(a) < 5 < a so that(/H),
tells us that eithet. < sz or elsesg < a. Becausdv(a) < 3, the second option cannot occur, so we
havea < sg <r s, and hences < s,. If Iv(a) = a. Then for eachy < «, the last part of / H),, yields
sg <r a sothata € N(S)N A. Butthena < sup,(N(S) Na) = s,, as required. Hencg H),, holds
and the induction continues.

Case 10 Supposex is a limit ordinal andS is not a branch ofl’ and N(S), the node of immediate
successors aof, has) # N(S) N A = N(S), and the nodéV(S) has no largest element in the linear
ordering<x(s) chosen for it. Neverthelesd/((S) has a supremurs® in (7', <) according to (C1). We
claim thats* must be the supremum dfin (7', <). Because* is the supremum i(i7’, <) of the nonempty
subsetV (S) of A, in order to show that* = sup;. <, (A) it will be enough to show that < s* for each
a€A.

We claim that for some& < «, the pointss* ands; are incomparable irCr. Otherwiselv(s*) > «
ands*(«) € N(S) would be the maximum element 6fV), and in Case 10 there is no such maximum
element. Hence there ist< « such thats; ands* are incomparable irC;.
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Computed = Ap(sg, s*). Thend < § < aandify < 6 thensg(y) = s*(y) while sg(d) < s*(9) in
the node)/ of T" that contains botl;(9) ands*(9).

Now consider any, € A. If a < sg then for anya, € N(S) N Awe havea < sg <7 ap < s* whence
a = s*. Hence suppose = sg is false. Then by the last part 6f 7 ), we know thatss <r a. Because
sg ands* are incomparable in the partial ord€r, so arex ands*. Furthermoreq(y) = sz(v) = s*(v)
whenevery < § anda(d) = s3(6) <um s*(9). But that is enough to show that< s* as required. Hence
s* is the supremum aft in (7', <), as claimed.

Case 11 Supposex is a limit ordinal andS is not a branch of’, and the nodeV(S) of immediate
successors of, has) # N(S) N A # N(S). Write N = N(S5) and<y for <y(s). Choosev € N — A.

BecauseA is an initial segment ofT’, <), v is an upper bound for the non-empty gétn A in N(5).

According to (C3), there is a point = sup_ (N N A). If u ¢ A, then Lemma 3.4 shows thatis the
desired supremum of in (7, <). If u € A, then we defing, = u. Because, € N(S) we know that
the first part of(/ /), is satisfied, and the second part holds by construction, oft remains to verify
the third part, i.e., that for eache A, eithera < s, or elses, <7 a.

Leta € A. Supposer =< s, is false. Then for eacl¥ < a, a < sz is false. According to the
induction hypothesisss <7 a must hold for everys < «. Thereforelv(a) > « so thata(«) is defined
anda(a) € N(S) N A. Thereforen(a) <y s,. However, it cannot happen thafn) <y s, because that
would yielda < s,, SO we must have(«) = s,. But thens, = a or elses,, <r a, as required.

Let us summarize what has happened so far: either at somecstaget(7") we have found a point
of T that is the supremum ol in (7', <) or else we have constructed a #&t= {s, : o < ht(T")} of
points that satisfy/H),, for eacha < ht(7"). The setB is cofinal in a branch* = {t € T : for some
a <ht(T), t <7 sa}.

Apply (C4) to the branch*. If ht(b*) is a successor ordinal, théhhas a maximal element, € A.
Thens, is also maximal in the partial ordef and has the property that for everye A, eithera < s,
or elses, <r a. But the second option cannot happen becayds maximal inT’, so we see that, is
the supremum (actually, the maximum)fin (7, <). Hence assume that has limit height. According
to (C4) there is a supremurtb®) in (7', =) for the subseb* of 7" and there is an ordinal < ht(b*)
and ift € b* hasy < lv(t) thent is the maximum element of the node to which it belongs, gat) is
the immediate successor &f() in the node to which* (1) belongs (wheré*(x) is the unique point of
b« N T,.) But then we see tha{b*) is the supremum afl in (T, <), because(b*) ¢ A.

We have now completed the proof that conditions (C1) through (C4) are sufficiefit'fet) to be
order-complete. It remains to verify necessity. Supgdsex) is known to be order complete. Then every
subset ofl" has both a supremum and an infimun{ih <) so that C1 and C4 are automatic.

To verify C2, supposéV, # () is a node off” at a limit level\. Then there is a point, € T satisfying
xo = infp(Np). If 2 € Ny we have our minimum point fofNy, <y, ), SO assume, ¢ No.

FiX yo € Ny. Thenxy < yo. If 29 andy, were comparable in the partial ord€r, thenzy <7 yo SOz
is a strict predecessor gf in 7. Because\ is a limit, there would be some < A with zy <7 yo(a) <7 yo.
But all points of the nodeV, have the same strict predecessor§lin<r) and soy,(«) <r y for each
y € Ny showing thaty,(«) < y for eachy € N,. But that is impossible becausg < y(«) and
ro = inf(7,<)(No). Therefore, the pointg andx, are incomparable in the partial ordey;.

Computedy = Ar(yo, xo). Thendy, < lv(yy) = A and in the node\/ of 7" that contains bothy,(do)
andzxy(dg) we havery(dy) <ar yo(do). If dg < A, then because all members &f have the same strict
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predecessors, we know that,) = yo(do) for all y € Ny. But thenzy < yo(dy) < y for all y € Ny and
that is impossible becausg = infr(Ny). Therefored, < ) is impossible, so we hawg = \. From
A =0 = Ar(yo, xg) < lv(zo) we know thatry()) is defined and belongs to the same nodé& dahat
containsyy(A) = o, i.e. the nodeVy, and hencery(\) € Ny. Lety € Ny. If y <n, 2o(A) theny < z
which is impossible becausg = infr(Ny) andy € N,. Thereforezo(\) <y, y for eachy € N, and
that is enough to show thaiV,, <y,) has a minimum element, as required in C2.

Finally we verify that C3 holds provided’, <) is order-complete. Lel be any node of". Let « be
the level of N and suppos@ # B C N is bounded above iV, <y) by vy € N. Choose any, € B.
For contradiction, suppose

sup (B) does not exist. (okk%)
(N, <n)
BecausgT, <) is order complete, there is a poia € 7' with uy = sup <) (B). Then in the lexico-
graphic order< of T', by < ug = vp.

Claim I uy ¢ N because ifiy € N thenu, would be the supremum ifiV, <) of B, contrary to(ssssx).

Claim2 No zy € N can haver, < wy. For if such anzy € N existed, then by Claim lv(xy) =
a < lv(ug). Butthenzy < wuy and for eachh € B with b # g, if 9y <y bthenwuy, < b contrary to
uy = Sup(T,<)(B). But then for eaclh € B we haveb < 2y < ug and that is impossible becausgis the
supremum of3 in (7', <). This establishes Claim 2.

Claim 3 No x; € N can haveu, <7 x; because all members &f, includingb, € B, have exactly the
same predecessors(ifi, <r) as does;;, and that would force, <7 by, contrary to the fact that, is the
supremum of3 in (7', <). Hence Claim 3 holds.

Bothu, anduv, are upper bounds fds in (7', <) so that becausewp . < (B) = ug # vo we must have
up < vp. Claims 2 and 3 show that, andv, must be incomparable elements of the tfée<, so that, if
we computel = Ar(ug, vo) we haved < min(lv(ug),1v(vg)) andug(d) <ar vo(d) wherelM is the node
of T" that contains both () andwvy(4).

Claim 4 § < lv(vp). If not, thend = 1v(vy) so thatuy(d) = vy and the nodé/ of 7" containinguy(d) and
uo(d) must be identical withV. But then some member éf, namelyu, () is a predecessor af, in the
tree(T, <r) and that is impossible in the light of Claim 3. Hence Claim 4 holds.

Claim5 ¢ < Iv(uop) is impossible, because §f = 1v(ug) thenuy = uo(d) <a vo(d) in the nodeM!
of T" that contains bothu,(d) andwvy(d). But by andv, belong to the same nod€ of 7" and therefore
have exactly the same strict predecessors. By Claim 4, 1v(vy) so thatug = uo(d) <ar vo(d) =
bo(0). Becauseiy andb, are incomparable ifi’, that inequality inM yieldsu, < by contrary toug =
supr, -, (B). Hence Claim 5 holds.

At this stage, we know that < min(1v(uo, lv(vy)) and by Claims 2 and 3, we know thiatandu, are
incomparable i7, <r). Furthermore, we know that, andb, have exactly the same strict predecessors
in (T, <) and that givesiy(d) <as vo(d) = bo(d) from which we conclude that, < by, contrary to
ug = supr,<)(B). Therefore(x x xx) cannot hold, so that property C3 is established.

Example 3.6 : Theorem 3.5 gives an easy way to describe ordered compactifications of lexicographic
trees with order complete nodes by adding suprema to branches of the tree.
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Construction: Le{T, <r) be a tree whose node orderings are complete B, dte the set of all branches
of T" that have limit height (i.e., that have no supremum in the partial ordgr Consider the disjoint
unionT* = T U By. The partial ordering<* of 7™ is an extension oK, with all additional relations
defined as follows. It € T andb € B, then we defing <* b if and only ift € b. Fort € T, the node

of T* to whicht belongs is exactly the same as the nodd’db which¢ belongs, and fob € B, the
node of7™ containingp is a singleton. Hence every node’of is order complete, and it is clear that each
branch of7™ has a maximum point. Therefofi& satisfies C1 through C4 of Theorem 3.5 so that in its
lexicographic orderingl™ is order completel

We now turn our attention from compactness to Baire category. In our next theorem we give necessary
and sufficient conditions for a broad class of lexicographically ordered trees (namely, the splitting trees) to
be of the first Baire category when equipped with their open interval topologies. Recall that a topological
space is of thdirst Baire categoryif and only if it is the union of countably many closed nowhere dense
subsets. The corresponding tree property is that theltisesemi-speciali.e., there are countably many
anti-chainsA,, in T such that for each € T', there is am > 1 and some: € A,, such that < a. We
chose that name because if it happensthat | J{ A, : n > 1}, thenT is said to be &pecial tree Being
special is a property of trees that appears frequently in the literature.

Lemma 3.7 : Suppose thatT’, <7) is a splitting tree, and that no nod¥ of 7" at a non-limit level has a
least element in its chosen linear orderify, <y ). Let < be the associated lexicographic ordering and
let 7 be the open interval topology associated withFor any closed nowhere dense geof (7', 7) there

is an anti-chainA of T with the property that for eacth € D someu(d) € A hasd <r a(d).

Proof: Recall that for any € T, the setl” = {s € T : t <r s} is a convex subset afl’, <) whose
minimum point in< is . Becausd' is a splitting tree, eaci” has at least three points afil — {¢} is a
non-void convex open subset @, <).

Fix d € D. We claim that some(d) € T hasd <r e(d) andT*% N D C {e(d)}. (Notice that this
allows the case wherE*) N D = ().) If that is not the case, fix anyc T — {d} and any pair < v with
t € (u,v)< C T9. Then by Lemma 2.5 there is a poinwith « <7 ¢ <7 v and somer € Node(c) with
T <Node(e) ¢ SUCh thafl™ C (u,v)<. Note thatz € T and therefore must ha#®* N D ¢ {z}. Therefore
0+ T*N D C (u,v)< showing that every point of the nonempty openEét- {d} is a limit point of D.
But that is impossible becaugeis closed and nowhere dense. Hence sefrg € 7" hasd < e(d) and
T N D C {e(d)}.

Let £ = {e(d) : d € D} and letA be the set of minimal elements 6f(in the partial ordeK ). Then
A is an anti-chain of 7', <r). Now fix anyd € D and its associatee(d) € E. If e(d) € A the proof is
complete. Ife(d) ¢ A then there is some(d’) € A with d € D ande(d') <r e(d). Then the elements
d,d,e(d') are all predecessors efd) so thatd ande(d’) are comparable. If it were true thaid') <r d,
thend € T°4) N D C {e(d')} and this is impossible. Therefode<r e(d’) € A as claimedd

Theorem 3.8 : Suppos€ is anw- splitting tree whose nodes are ordered in such a way that no node at a
non-limit level has a first point in its chosen linear ordering. Then in the open interval topology of
is of the first Baire category if and onlyif is semi-special.

Proof: First suppose that the tréeis semi-special. Then we have a sequeAgef anti-chains with the
property that for each € T there is somé and some: € A; with t <; a. Without loss of generality
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we may assume that each, is a maximal anti-chain. For each> 1 let B; = {t € T : for some
a € A;, t <7 a}. LetT be the usual open interval topology sf

We claim that eachB; is 7-closed. Lett €¢ T' — B,;. Because4; is maximal, some, € A, is
comparable t@, and because ¢ B; it cannot happen that<; a;. Hencea; <, t. Because no member
of 7" is maximal, there is some € 7" with t <r b. Then(a., b)< is a7-open neighborhood aof and
we claim that(a;, b)< N B; = . If that is not true then ley € (a;,b)< with y € B;. As noted in the
proof of Lemma 2.5, <7 bforcesa; <r y. Because, € B, there is some, € A; with y < a,.
But thena, <1 y <r q, so thate, <1 a, and that is impossible becaudg is an anti-chain. Therefore
(a¢, b) N B; = (). HenceB; is closed.

We claim thatB; is nowhere dense ifV", 7). It will be enough to show thaB; contains no non-empty
open intervals of<. Supposer < z and suppose that the nonempty open intefwat)~ is contained
in B;. Eitherz and z are incomparable in the partially ordered $&t <) or elsez <7 z. In the
latter case, becausg is a splitting tree and nodes at non-limit levels have no first points, there is an
immediate successarof = with u < z and a predecessar of  in the ordering ofNode(u) such that
the nonempty s€i™ is contained inx, z)<. Replacinge with w if necessary, we may assume thiand
z are incomparable in the partial orde€r. Note that) # 7% — {z} C (z,z)< C B;.

Becaused; is a maximal anti-chain, there is somg < A, that is comparable to in the partial order
<r. We claim thata, <r x is not possible. For i, <r z, then because is not maximal in(7’, <r)
we may choose a point € 7" with z <r y. Theny € (z,z)< C B, and so some, € A; hasy <7 qa,
and therefore we would have <; = <r y <r a,, something that is impossible becausgis an anti-
chain. Therefore we have < a, Because no member @f is maximal in<; we may choosew € T
with a, <y w Thenw € T% C T* C B; so that somer,, € A; hasw <7 a,. But then we have
a, <t w <t a, and that is impossible in the anti-chai. Therefore,B; contains no nonempty interval
(x, z)< and henceB; is closed and nowhere dense(iil 7).

Becausél' is semi-special, we see that= | J{B; : ¢ > 1} and thereforéT, T) is of the first Baire
category.

Conversely, suppose that = | J{D; : i« > 1} where eachD; is a closed, nowhere dense subset of
(T, T). for eachi > 1 apply Lemma 3.7 to find an anti-chaity of (7, <7) such that for anyl € D;,
somea(d, i) € A; hasd < a(d, ). Therefore(T, <r) is semi-speciald

Recall that éSouslin treds a tree of height;, such that each anti-chain is countable. Whether such
tree exist is undecidable in ZFC.

Corollary 3.9 : Let (7, <r) be a splitting Souslin tree such that no nadleof 7" at a non-limit level has a
least element in its chosen linear orderiag,;. Then in the open interval topolody of the lexicographic
ordering <, the spacdT’, 7) is not of the first Baire category.

Proof: Let7 be the open interval topology &f. If (T, 7) were of the first category, then each of the anti-
chainsA; found in the proof of Lemma 3.7 would be countable. For eaehl’, the set of predecessors of
t is countable (because Souslin trees have no uncountable branches) anfthefitet <; a for some

a € A;} is countable. Hence soisand that is impossiblel
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4  Aronszajn lines and trees

The results in this section are part of the folklore of the subject, but we have not been able to find a proof
of the hard part of Theorem 4.1 in the literature. Furthermore, we needed some of this material in the
proof of Theorem 2.6.

An Aronszajn treds a tree(7, <r) of heightw, that has countable levels and countable branches.
Aronszajn trees exist in ZFC [4]. By alwonszajn linewe mean a linearly ordered sgX, <) that has
cardinalityw;, contains no order isomorphic copy©f or of w;, and contains no order isomorphic copy
of any uncountable set of real numbers. Aronszajn lines also exist in ZFC.

It is important to understand that being an Aronszajn line is an order-theoretic issue, and not a topological
property. It is easy to show that {fX, <) is an Aronszajn line, then so is the lexicographic product

Y = X x Z and the latter set, when endowed with its open interval topology, is a discrete metric space.
Other Aronszajn lines are certainly not metrizable. Aronszajn lines and trees are intimately linked, as
our next result shows. The result is known, but we have not been able to find a proof of half of it in the

literature.

Theorem 4.1 : Every Aronszajn line is order isomorphic to a lexicographically ordered Aronszajn tree,
and any lexicographic ordering of an Aronszajn tree is an Aronszajn line.

Proof: The proof that any lexicographic ordering of an Aronszajn tree gives an Aronszajn line appears in
[4]. We have not been able to find the converse in the literature.

For the converse, IdtL, <) be any Aronszajn line. By recursion over< w;, we will define two
related families{L(a) : o < wi} and{U(«) : o < w;} and in the end the desired tr@ewill be
T=U{L(a): a <w}.

As a set,I" will coincide with L, so we cannot use a partition tree construction. Instead we begin with

a standard way to choose cofinal and coinitial subsets of convex subdet§of any singleton set, let

S(I) be the unique point of. For any non-degenerate convex subiset I we know thatcf(7) is either
finite (in which casel has a right end point) or elsé(/) = w because. contains no copy of;. An
analogous assertion holds for coinitialities. Therefore we can find a stibBeC I that is both coinitial

and cofinal in/, and is an order-copy df0, 1}, w, w* or w* 4+ w when ordered using ;. (We will later

use these linear orderings 8t/) as node orderings for a tree.) We may assume thaisifan infinite set,
then for any distinct:, y € S(I), some point of lies strictly between: andy.

In the following recursive construction it will be convenient to think of partial orders as being sets of
ordered pairs. To initialize our recursion, wedéf0) = {L} andL(0) = S(L). Define the partial order
<p on L(0) to be equality. Let/(1) be the collection of all convex componentsiof- L(0). Now let
L(1) = U{S(I) : I € U(1)}. We will say that an ordered paft:, y) is 1-acceptable i € L(0) and
y € L(1) and if J is the unigue member @f(1) containingy, thenxz <, J (meaning that: precedes
every point of.J in the linear ordering of.) and{x} U J is a convex subset df. Now define a partial
order onT'(1) = L(0) U L(1) by the rule that

< =<oU{(z,2): z€ L(1)} U{(x,y) : (x,y) is a 1 — acceptable pair}.

For our induction hypothesis suppose that w; and that the following is satisfied:
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(IH),: for eachs < a we have
1) U () is the family of all convex components of the get- | J{L(~) : v < §};

2) L(B) = U{SU) : T eU(p)} UU(B) € L —U{L(y) : v < B}
3) <g is a partial order on the s&t(3) = (J{L(v) : v < f} and<, C <z whenevery < ;

4) <pg =< iy < B U{(#,2) : z € L(B)} U{(x,y) : (x,y) is a f—acceptable pair}
where a paifz, y) is said to be3-acceptable if and only iff € L(3) andz € L(~) for some
v < pandifJ is the unique member @f(v + 1) that containg;, thenxz <, J and{z} U J
is convex in(L, <p).

Given (I H), we definel/(«) to be the family of all convex components bf— (J{L(5) : § < a} and
L) =U{S(I) : I e U(cv)}. We define<, = | J{<p: B <atU{(z,2):z€ L(a)}U{(z,y) : (z,y) s

an a-acceptable pajrwhere anv-acceptable pair is defined to fit the pattern in part (4) of the recursion
hypothesis. Clearly/H),, holds and the recursion continues. et= |J{L(«) : @ < w;} and let

<r ={<o:a <wi}. Then(T, <r)is atree.

Claml L = [J{L(a) : @ < wy}. Itis enough to verify that. C |J{L(«) : @ < wy}. Letx € L. If
x ¢ L(a) for eacha < wy, then for eachy there is a membef(«) € U(«) with € I(a). But then
{I(a) : @ < w} is a strictly decreasing collection of convex subsetd @fnd that allows us to find an
order copy of eithew,; orw; in L, which is impossible. Hence Claim 1 holds.

Claim 2 Each branch of T, <r) is countable because otherwide <) would contain an order copy of
Wi

Claim 3 Each level ofl" is countable. The levels @f are the setd.(«). If Claim 3 is false, letl.(«) be

the first uncountable level &f. Becausdl'(«) = |J{S(/) : I € U(«)} and eachS([]) is countable, the
collectionl/ () must be uncountable. For eathe U/ («) choose a poinp(/) € I. Let D = [J{L(p) :

8 < a}. Minimality of « insures thatD is countable. Let\/ = D U {p(I) : I € U(a)}. ThenD is a
countable order-dense subset)df so that)/ is order isomorphic to some uncountable subsek.oBut

that is impossible becaus¢ C L and L contains no order isomorphic copies of any uncountable subset
of R. Hence Claim 3 holds.

Claims 1,2, and 3 combine to prove thd8t <r) is an Aronszajn tree. Lek be the lexicographic
ordering of7" associated with the node orderings given by the chosery§&tsWe claim that the function
f: (L, <) — (T, =X) given by f(z) = x is an order isomorphism. It is enough to show that i, y in
L thenz < yin T. For contradiction, suppose=< y is false. Because # y it follows thaty < x. This
can happen in two different ways, depending upon wheghemdx are comparable in the partial order
<r. In casey andx are comparable ir, theny < x forcesy < x. Then there are ordinal$ < « such
thaty € L(5) andx € L(«), and if J is the unigue member @i(3 + 1) that containse, theny < J
and{y} U Jis convex inL. Buty <, J andz € J givey < x and that is not true. Heneceandy must
be incomparable in the partial orderBf Therefore we comput€ = Ar(z,y) < min(lv(z),lv(y)) and
we know thaty(d) <,; () in the nodeM of T that contains both:(§) andy(d). Then in(L, <) we
havey(d) <r =(0). There are several possibilities to consider. In the #irst min(lv(z),1lv(y)). Then
there are unique membeyg and.J, of (0 + 1) withy € J, andz € J,, y(d) <. J, andz(d) < J,,
and having both of the sefy/} U J, and{z} U J, convex inL. ThenJ, = J, is impossible because
the left endpoints of the convex sdts} U J, and{y} U J, are different. Because € J,, y € .J, and
x <1 y we know thatJ, <, J,. Thereforex(d) <, y(9) as required to show that < y. The next case
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is whered = lv(z) < lv(y). Thenz(d) = = andy(d) <r y. Let J, be the unique member &f(6 + 1)
that containg,. Because{y} U J, is convex inL andz < y we know thatr <, y(J). But we also
know thatr = x(d) # y(d) so thatr <, y(d) and that is enough to shaw~< y. The third case is where
d = lv(y) < lv(x) and that is analogous to the second case. The final case is iwheye= § = lv(y).
But thenz <, y forcesz <,; y in the nodeM of T" that contains both andy so that, once agaim, < y.
Therefore,f : (L, <) — (T, <) is the required order isomorphism

Corollary 4.2 : If < is the lexicographic ordering of an Aronszajn tréethen there is no order isomor-
phism from(T', <) into R.

Proof: By Theorem 4.1(T, <) is an Aronszajn line which, by definition, cannot contain (or be) an un-
countable set of real numbeirss.

Remark 4.3 : Theorem 4.1 allows us to point out once again the contrast between the theory of lexico-
graphic and branch space representations of linearly ordered sets. Theorem 4.1 shows that any lexico-
graphic ordering of an Aronszajn tree gives an Aronszajn line, while in [1] we show that the branch space
of an Aronszajn tree is never an Aronszajn line (although it must contain an Aronszajn line).

Corollary 4.4 : In its open-interval topology, any Aronszajn line is
a) not separable;
b) hereditarily paracompact;
C) not compact;

d) zero-dimensional.

Proof: Let(L, <) be an Aronszajn line. From Theorem 4.1 we know thas order isomorphic to the
lexicographic ordering of some Aronszajn trge <7). If the Aronszajn lineL is separable in its open
interval topology, then so is the Aronszajn tfEén the open interval topology of its lexicographic order
=. Let D be a countable dense subse{'6fZ). Then there is a countable ordinakuch thatv(d) < «
for eachd € D. Being anw;-tree, T has a point with Iv(t) = a + w. Lets = t(« + 1) be the unique
predecessor afat levela + 1 of the tree. Thefl™ is an infinite convex subset ¢1", <) and therefore has
non-void interior. Howevef™ N D = (), showing thatD is not dense 7', Z).

If the Aronszajn ling L, <) is not hereditarily paracompact, then by a result of Engelking and Lutzer
[2] there is a strictly increasing or strictly decreasing embedding(ihte<) of a stationary subsef of
a regular uncountable cardinal But that gives an order isomorphism fram or wj into L, and that is
impossible.

Finally, suppose the Aronszajn linke is compact. Then so is the Aronszajn tfBewith the open
interval topology of the linear ordering. It is known [4] that any Aronszajn tree contains a complete
binary treeS of heightw. For each branch of S choose a brancht of 7" that hag C b*. In the light of
(C4) of Theorem 3.5, eadit has a supremuryi(v*) in (7, <). Observe thak, <g, b, impliesb; <g,. b}
and hence thaf(b;) < f(b%).

Forby, by € Bg defineb, ~ b, if and only if f(b}) = f(b%). Clearly~ is an equivalence relation on
Bs. Supposeé; <z, by andb, ~ b,. If both b7 andb; have successor height, therp_ (b]) = sup(b3)
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impliesb; = b3 and henceé, = b,. If both b7 andb; have limit height, then (C4) of Theorem 3.5 forces

by = by. Supposeé; has successor height abichas limit height. Apply (C4) of 3.5 té, to find i < ht(b3)

with the property thab}(u) hasf(bs) = sup<(b3) as its immediate successor in the node to whig)

belongs. Therf(by) = f(b;) would forceb; <p,. bi and hencé, <z, by, which is false. Hence the only
possibility forb, <z, be andb; ~ b, is whereb] has limit height and; has successor height. That is
enough to guarantee that the functipn Bs — 7' is at most two-to-one. We know that the branch space

Bs is an uncountable real order (in fact, it is the Cantor set). The(y), being the image oBs under a

weakly increasing function that is at most two-to-one, is also an uncountable real order, and is a subset of
the Aronszajn ling7’, <), and that is impossible.

To see than an Aronszajn liré,, <) is zero-dimensional in its open-interval topology, note that if
L contained a non-degenerate connected open intdrviilen a “middle third” construction inside of
J would produce a Cantor-like set i, and that would yield an uncountable subset.ahis is order-
isomorphic to a subset &, which is impossibled

5 Open Questions

If an Aronszajn line has countable topological cellularity in its open interval topology, must the
Aronszajn tree from which it comes (see Theorem 4.1) contain a Souslin subtree?

Can an Aronszajn line be Lind#lin its open interval topology without containing a Souslin line?

Characterize properties such as paracompact, Laficehd perfect in the open interval topology of
the lexicographic ordering of a tree, in terms of tree and node properties.

In terms of the partial ordex of a treeT” and the chosen node orderingsigfcharacterize which
lexicographically ordered tre€g’, <) are of the first Baire Category in their open interval topology.
(Theorem 3.8 provides an answer, but only for certain kinds of trees.)
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