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Introduction When is a group isomorphic to a proper subgroup of itself? Clearly,
no finite group can have this property, but what about Z, @, R, or C, the familiar
additive groups of integers, rational, real, and complex numbers? What about R, the
additive group of n-dimensional vectors® What about the multiplicative groups of
non-zero rational, real, or complex numbers? What about the multiplicative group
T={z&C:fz]=1} of complex numbers with modulus one? What about your own
favorite infinite group from the first modein aigebra class?

These easily stated questions are very special cases of an important problem in
group theory (namely to determine whether or not two groups are isomorphic) and
can be the basis for classroom discussion in an introductory modern algebra course as
soon as the notions of group, subgroup, and isomorphism have been introduced.
Further, such questions can be posed again as new algebraic constructions (e.g.,
product groups and quotient groups) are introduced, and they have analogues for the
other familiar algebraic structures (rings, fields) often found in undergraduate modern
algebra. In addition, the isomorphic subgroup question provides a valuable way to get
students to think about the familiar groups Z,Q, R, and C in a2 non-trivial contest.
Finally, the question can be the basis for open-ended student projects in such a
course. '

Textbooks develop standard techniques for showing that two groups are not
isomorphic. Perhaps one is cyclic and the other is not. Perhaps the groups have
different cardinalities. Perhaps the two groups have a different number of elements of
some order k. On the other hand, for students in an introductory course, showing that
two groups are isomorphic usually means constructing a specific isomorphism. As a
result, many of the examples of isomorphic groups given in introductory courses are
transparently isomorphic.

The goal of this note is to illustrate how the proper subgroup question can be used
in an introductory course, and to show how ideas from linear algebra can be used in
an introductory modern algebra course to exhibit non-transparently isomorphic groups.
We will answer the questions posed in the opening paragraph, and suggest further
projects that might be of interest to students. We do not claim novelty for the results
below, nor do we give the most general statements or the best possible proofs of the
results. (An elegant classical reference for related material is [2].)

Some easy examples Clearly, if 2 group G is isomorphic to a proper subgroup of
itself, then |Gl, the cardinality of G, must be infinite. However, being infinite is not
enough, because easy examples show that some infinite groups are, and others are not,
- isomorphic to proper subgroups of themselves.

ExamPLE 1. The additive group Z of all integers is isomorphic to the subgroup of
even integers under the isomorphism f(x)= 2= x.
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EXaMPLE 2. The additive group Q of all rational numbers is not isomorphic to a
proper subgroup of itself because every homomorphism f:Q — Q has the form
f(x)=f1)x z, so that that every isomorphism from @ into Q is actually an isomor-
phism onto Q.

QUESTION 1. What about the direct sumrgroup Q ® Q7 Is it isomorphic to a proper
subgroup of itself? What about Q & Z? (The answers are “No” and “Yes,” respec-
tvely.)

QUESTION 2. What about the quotient group € /Z? It is not isomorphic to a proper
subgroup of itself because if g Is an isomorphism from Q/Z into itself and if
Ak)={x€Q/Z. ¢ has order &}, then g[ A(k)] c A(k). But then, A(%) being finite
and g being one-to-one, we have o[ A(k)] = A(k). Because Q/Z=0U{ak): k21
g must be onto.

Next we show that some familiar multiplicative groups provide manv different
examples of groups that are isomorphic to proper subgroups of themselves, We
consider the multiplicative groups 7 Q* R™ R* consisting, respectively, of all
Dositive rationals, non-zerg rationals, positive reals, and non-zero reuls.

PROPOSITION 1. The multiplicative groups Q°, Q*, R™, and R* are all isomerphic
to proper subgroups of themselyes.

Proof. Define f:QF - Q= by f(x) ==z This fisan isomorphism from Q* onto
2 proper subgroup of itself, and when restricted to @, f provides an isomorphism
from @* onto a proper subgroup of itself. Next, the function g{x}=¢e* is an
isomorphism from the additive group R onto the multiplicative group R™. Hence, by
Theorem 1 (to follow), we have that R™ is isomorphic to a proper subgroup of itself,
Because the multiplicative group R* is the interal direct sum of R* and the two
element group T = {—~ 1, 1} with its usual multiplication, we see that R* is isomorphic
to a proper subgroup of itself. (See also Exercise L, below.)

It is natural to wonder whether the groups in Proposition 1 are reallv different.
They are. Cardinality arguments show that the rational and real groups in Proposition
1 are distinct. To distinguish between Q* and Q*, ask how many solutions the
equation x* = I has in each group. The same question distinguishes between R* and
R*, Compare this with Proposition 4, below.

More complicated examples and Q-linearity Certain groups are able to carrv
more than just group structure. For example, the additive groups R, C, and R* are
also vector spaces-over the field Q, and group homomorphisms of these groups are
easily seen to be Q-linear mappings as well. Those facts allow students to use some of
the ideas that they encountered in their first linear algebra course, namely the notions
of spanning sets, bases, and dimension. Of course, one must now deal with vector
spaces that are infinite dimensional over Q, and one must distinguish between finite,
countable, and uncountable dimensional spaces. That added complication allows
students to review the finite-dimensional proofs they encountered in linear algebra, to
see whether basis theory still works in more general spaces. By mimicking the
finite-dimensional proofs, and using the observation that the Q-linear span of an
infinite set § has cardinality |Q(={S]=!5], strong students would be able to prove:

PROPOSITION 2, Two vector spaces V and W over the field Q are Q-linearly
Lomorphic if and only if V and W have bases over Q of the same cardinality.
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There is a second result that is useful in exploiting the Q-linear structure of certain,
groups, but one that is rarely mentioned in introductory textbooks, probably because it
depends on what Halmos called “transfinite trickery” (1, p. 13).

PROPOSITION 3. Any lineurly independent set in any vector space V is contained in
a basis for V. In particular, there is a basis B for the Q-vector space R with 1 = B.

Undergraduates have no problem understanding the statement of Proposition 3.
Our experience suggests that most are willing to accept the statement without insisting
~on a proof. For the others, Proposition 3 could be the basis for an outside reading
project on Zorn's lemma. Students who know that @ is countable while R is not will
be able to prove that the basis B for R over Q is infinite, a fact that we need below.
Using Propositions 2 and 3, one can prove:

THEOREM 1. The additive group R is isomorphic to a proper subgroup of itself.

Proof. Using Proposition 3 choose any basis B for R over Q. Then B is infinite.
Choose distinct 5(1),5(2),... in B and define s: B — B by s(b(n}) = b(n + 1) and
s(b)=b if b=B~{b(n):n>1}. Then extend s over R in a Q-linear way. The
resulting Q-vector space isomorphism is the required group isomorphism from R onto
a proper subgroup of itself.

Students might be tempted to think that additional examples of groups that are
isomorphic to proper subgroups could be obtained from other familiar groups such
as R" and C. Such examples do exist, but they are not new examples because
Proposition 2 yields:

PROPOSITION 4. Each of the additive groups R", C" R[ X1 ={ p(X): p is a polyno-
mial with coefficients in R}, and C[X]= {p(X): p is a polynomial with coefficients
in C} is isomorphic to the additive group R.

Proof. Starting with a basis B for R over @, one can show that each of these groups
is a Q-vector space with a basis of cardinality |Bi. Now apply Proposition 2 to
conclude that the groups listed in this proposition are Q-linearly isomorphic, and
hence group isomorphic.

A slighly less familiar but very important group is the multiplicative group
T={z€C:lz{=1}, where |z} denotes the usual absolute value of the complex
number z. In a moment we will need to know that the function R(x) = e>™* induces
a group isomorphism from R/Z onto T.

Consider €*, the multiplicative group of all non-zero complex numbers, This group
is not isomorphic to any of the groups considered above (namely, the multiplicative
groups Q7, Q*, R™, R*, and the additive groups listed in Proposition 4) because it
contains two elements of order three (i.e., nontrivial solutions of the equation x° = 1)
while none of the other groups has this property. Is C* isomorphic to a proper
subgroup of itself? The answer is “yes.” The most elementary proof that we know
uses the linear algebra tools from the previous section as a start, and then makes
careful use of the isomorphism theorems for groups. In this case, one can give a
concrete example of a proper subgroup of C* to which C* is isomorphic, and the
result is somewhat counter-intuitive.

THEOREM 2. The multiplicative groups C* and T are isomorphic.

* Proof. Using Proposition 3, choose a basis B for R as a Q-vector space, with 1 € B.
Because B is infinite, we can write B = B, U B, where B, N B,=@, {B;|=1B| and
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L& 8,. For each 4 < B let O, be the Q-vector space {grb:qQ). Then Propos;.
ton 2 yields an isomorphism f from the Q-vector space R onto ( Q68N e
({0, b S8,D) that sends the number 1€ R to the vector 1€Q CR, where
Bi=a{Q,.be B}. By Proposition 2, each R, is Q-linearly isomorphic to R.

Now think of the Q-vector Spaces above as additjve groups. Then f is 5 group
isomorphism from R onto R @R, and (R,, +) is Sroup isomorphic to (R*, «)
under the Exponential functign. Wn'ting Z = flZ] and WITHNg = to denote group
isornorphism. we have R/Z =R /Z, SR, =(T, «) S (R*, ). But the usual polar
TEpresentation of non-zere complex numbers establishes a group isomorphism be.
tween T@ (R* ) and C*, Thys T = R/Z=ToR*= C*, as claimed.

More exercises for undergradyates The ideas in this paper can be the basis for
exploration Projects in a first modery algebra course. In this section, we give a few
examples of questions that an Instructor might pose at varioys stages of the course.

same be trye of one of G and H?

EXERCISE 2. Whic, sroups are Q-linear spaces® The central idea in our paper is
that many famjliar groups are, in fact, Q-linear vector spaces. Characterize ] Abelian
groups that are Q-lineq, vector spaces.

ExERcIsE 3. Countz'ng morphisms. How many group hamomorpiu'sms exist from
the additive group Q into itself? From the additive group R into itself? From the
multiplicative &roups considered in Section 3 into themselves? How many group

isomorphisms exist in each case?

EXERCISE 4. Figlds and subfields. Which fields are field isomorphic to proper
subfields of themselves? One can show that the ysya] fields Q and R are por
isomorphic to Proper subfields of themselves, byt that there are fields lving between
@ and R that are isomorphic o Proper subfields of themselves. One approach is to
prove that the identity function is the only field Isomorphism from either Q or R into
itself. One can also show that the ugyg) field C of complex numbers s Isomorphic to a
Droper subfield of jtself In addition, unlike the situation for @ and R, there are many
field automorphisms of . See (3] for an elegant discussion,
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