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1 Introduction

The set of countable ordinals is the unique uncountable, well-ordered set in which each element
has only countably many predecessors. If we endow the set with the usual open interval topology
of the well-ordering1, we obtain the usual space of countable ordinals, a space that provides a rich
source of strange examples in introductory topology courses. In this paper we will use an old-
fashioned notation, [0, ω1), for this space with its usual topology. If we need to consider the set of
countable ordinals with some other topology τ , we will write ([0, ω1), τ).

Our first goal in this paper is to explore what kinds of spaces can be obtained by forming contin-
uous and quotient images of [0, ω1), with particular emphasis on paracompactness and metrization
of such spaces. Our second goal is to continue the study of spaces that have monotonically normal

1In this topology, the initial point 0 is isolated and basic neighborhoods of a point β > 0 have the form (α, β] =
(α, β + 1) where α < β and β + 1 is the first element of the set larger than β.
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compactifications, and as we will show, T3-spaces that are continuous images of [0, ω1) are among
the most simple examples of this type.

Monotone normality was introduced by Borges [5] and studied in [14]. For any space X, let
Pair(X) be the collection of all pairs (A,U) where A is closed, U is open, and A ⊆ U . A space
is monotonically normal if it has a function G which, for each (A,U) ∈ Pair(X), produces an
open set G(A,U) with A ⊆ G(A,U) ⊆ clX(G(A,U)) ⊆ U and which is monotonic in the sense
that if (A1, U1), (A2, U2) ∈ Pair(X) have A1 ⊆ A2 and U1 ⊆ U2, then G(A1, U1) ⊆ G(A2, U2).
All metric spaces and all linearly ordered topological spaces (with the open interval topology) are
monotonically normal. Monotone normality is a very strong property: it is a hereditary property,
implies collectionwise normality, and is preserved by closed mappings. One problem of current
research interest is to study spaces that have monotonically normal compactifications. Locally
separable metric spaces have such compactifications, but (surprisingly) metric spaces in general do
not [16]. Because the linearly ordered space [0, ω1] is a compactification of [0, ω1), we see that [0, ω1)
has a monotonically normal compactification.

In order to make this paper widely readable, in the first three sections we have tried to give
proofs of an elementary type, even when our results could be deduced from more general theorems
in the literature. There are two notable exceptions to that rule. The first exception is our use of
the Pressing Down Lemma (see below). The second, and more major, exception to the simple-
proofs-rule occurs when, in Section 3, we invoke the Balogh-Rudin theorem (see Theorem 3.6)
that characterizes paracompactness in monotonically normal spaces. (As noted in Section 3, van
Douwen’s paper [9] provides another non-elementary approach.) Looking for more elementary proofs
that do not invoke these theorems could be an interesting project for students.

Wherever possible we follow notations and conventions from Engelking’s book [10]. Definitions
of some of the more esoteric topics studied in Sections 3 and 4 can be found in the survey papers
by Gruenhage [12] and Burke [7], [8]. A word of warning about our terminology: we know that the
word “perfect” is over-used in mathematics, but we don’t see any way to avoid it. A topological
space is perfect if each closed set is a Gδ-set, and a mapping f : X → Y is perfect if it is a closed
mapping and each fiber f−1[y] of f is a compact subset of X.

The cardinality of a set S is denoted by |S|. Because we want to use the symbol ω1 as the right
endpoint of the linearly ordered set [0, ω1), and ω for the first point in [0, ω1) with infinitely many
predecessors, we will use ℵ0 and ℵ1 for the cardinality of the sets [0, ω) and [0, ω1) respectively.

A closed, unbounded subset of [0, ω1) is called a CUB-set. A subset S ⊆ [0, ω1) is stationary if
S ∩C 6= ∅ for each CUB-set C. Obviously, any set that contains a CUB-set is stationary, but there
are stationary sets that do not contain any CUB-set. The most important fact about stationary
sets is given by the Pressing Down Lemma which asserts that if S ⊆ [0, ω1) is a stationary set, and
if g : S → [0, ω1) is a regressive function (i.e., has the property that g(σ) < σ for all σ ∈ S − {0}),
then there is some β ∈ [0, ω1) and some stationary T ⊆ S with the property that g(σ) = β for each
σ ∈ T . (A more general version of the Pressing Down Lemma can be proved for regressive functions
defined on stationary subsets of any regular initial ordinal [18].) For most of our applications in
[0, ω1), it will be enough to know that the set T ⊆ S is uncountable. Almost any set theory book
includes this lemma, e.g., [18].

We want to thank Gary Gruenhage for his valuable consultations that led to the main result in
Section 4. That result, which may be of interest in other contexts, is an absolute version (i.e., one
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that holds in any model of ZFC) for spaces of cardinality ℵ1 of a famous consistency result proved
by Juhasz and Szentmiklossy [15]. We show that any compact Hausdorff space of cardinality ℵ1
is metrizable if and only if it has a small diagonal. Subsequently Gruenhage [13] proved that any
compact scattered Hausdorff space with a small diagonal must be metrizable. In addition, we want
to thank the referee whose suggestions simplified the paper’s exposition.

Unless otherwise specified, all spaces in this paper are at least T1 so that, for example, regular
and T3 mean the same thing, as do normal and T4.

2 General properties of continuous images of [0, ω1)

Suppose that f : [0, ω1)→ Y is continuous and onto. Two things follow immediately from conti-
nuity of the function f , namely that the space Y is countably compact and sequentially compact,
meaning that any countable open cover of Y has a finite subcover, and any sequence of points of Y
has a convergent subsequence.

Separation properties like T1, T2, T3, · · · are another matter. The fact that [0, ω1) has such strong
separation properties (hereditary normality, hereditary collectionwise normality, hereditary mono-
tone normality) might make one suspect that the image space Y must also have strong separation
properties. That is not the case, as can be seen from the continuous mapping f(x) = x from [0, ω1)
with the order topology onto the set [0, ω1) with the indiscrete topology. An example where the
image space Y is T1 but not T2 can be obtained if Y = ([0, ω1), τ) where τ is the co-finite topology2

on [0, ω1) and f(x) = x. The next example, which will be needed several times in this paper, shows
that a continuous 1-1 image of [0, ω1) can be Hausdorff but not regular.

Example 2.1 There is a Hausdorff space Y that is not regular and that is a continuous 1-1 image
of [0, ω1). This space Y is not locally compact and is not sequential, and there are two points of Y
that do not have neighborhoods with disjoint closures.

Proof: We define neighborhood bases at points of the set [0, ω1), starting with α = 0. For each
limit ordinal λ ≥ ω let U(λ) = {0} ∪ {ν + 1 : ν is a limit ordinal with ν ≥ λ} and let N (0) =
{U(λ) : λ < ω1 is a limit ordinal}. Notice that for any finite collection λi of limit ordinals, we have⋂
{U(λi) : 1 ≤ i ≤ n} = U(max{λi : 1 ≤ i ≤ n}). In a similar way we define V (λ) = {1}∪{ν+2 : ν

is a limit ordinal with ν ≥ λ} and let N (1) = {V (λ) : λ < ω1 is a limit ordinal }. Finally, for each
α ∈ [0, ω1) with α > 1, let N (α) be the usual neighborhood system of α in the usual topology of
ω1. Let τ be the topology on the set [0, ω1) that has the collection S =

⋃
{N (α) : α ∈ ω1} as a

subbase. Because each member of S is open in the usual topology of ω1, we see that the function
f(x) = x from [0, ω1) onto ([0, ω1), τ) is continuous and 1-1.

Clearly, Y = ([0, ω1), τ) is Hausdorff. Consider neighborhoods U(λ) and V (µ) of the points 0
and 1. Note that the limit ordinal max(λ, µ)+ω2 is a limit point of both U(λ) and V (µ). Therefore
0 and 1 do not have neighborhoods with disjoint closures. Consequently, the space Y = ([0, ω1), τ)
is not regular. Because any locally compact Hausdorff space is regular, we see that Y is not locally
compact. 2

2A set belongs to the co-finite topology if it is empty or if its complement is finite.
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However, as we shall prove in the next few propositions, if we know that the image space Y is
T3, then Y has many of the same properties as [0, ω1) and as other linearly ordered and generalized
ordered spaces3. Our results might lead one to ask whether all regular continuous images of [0, ω1)
must be orderable, so we start with an example of a compact continuous image of [0, ω1) that is
neither orderable nor generalized orderable.

Example 2.2 There is a continuous image of [0, ω1) that is compact T2 and is neither orderable
nor generalized orderable.

Proof: Let C be a CUB-set in [0, ω1) such that [0, ω1) − C is uncountable. Then [0, ω1) − C is a
disjoint union of open convex subspaces that we will call “arms,” each of which is countable. Let
Y = [0, ω1)/C be the quotient space obtained by identifying C to a single point C∗.

The space Y is compact. For suppose U is any open cover of Y . Choose U0 ∈ U with C∗ ∈ U0.
Let q : [0, ω1) → Y be the quotient mapping. Then the set V0 = q−1[U0] is an open subset of
[0, ω1) containing the set C and [0, ω1) − V0 is also closed. Because [0, ω1) cannot contain disjoint
CUB-sets, [0, ω1)− V0 must be countable and therefore compact so that finitely many members of
U cover all of Y .

Note that the space Y cannot be first-countable at the point C∗ because that would force the
set C to be a Gδ-subset of [0, ω1) so that [0, ω1)− C would be countable.

For contradiction, suppose Y is orderable using some linear order <. Because Y is not first-
countable at the point C∗, either (←, C∗) or (C∗,→) is not closed and has uncountable cofinality
(or co-initiality). The two cases are analogous so we consider only the first. Write J = (←, C∗) and
choose any a1 ∈ J . Let A1 be the the arm (see above) of [0, ω1)− C that contains a1. Then A1 is
countable. Suppose we have chosen points a1 < a2 < · · · < an of J and arms Ai containing ai in
such a way that for each i ≤ n, ai 6∈

⋃
{Aj : j < i}. The set

⋃
{Ai : i ≤ n} is countable, so there is

a point an+1 ∈ J with an < an+1 and an+1 6∈
⋃
{Ai : i ≤ n}.

Because the points an were chosen from distinct arms of [0, ω1) − C we see that no point of Y
except possibly C∗ can be a limit of the infinite set S = {an : n < ω}. Because J has uncountable
cofinality, there is a point b ∈ J with an < b for all n. Then (b,→) is a neighborhood of C∗

containing no point an so that C∗ is not a limit point of the infinite set S = {an : n ≥ 1}. Therefore
S has no limit point in Y and that is impossible because Y is compact. Consequently Y is not
orderable (or generalized orderable). 2

Remark 2.3 Because any countable metric space embeds in the usual space of rational numbers,
the argument in Example 2.2 shows that if C is a CUB-set in [0, ω1), then the quotient space
Y = [0, ω1)/C is orderable if and only if Y is countable. (That every subspace of the rationals is
orderable is a consequence of Herrlich’s theorem given in Problem 6.3.2-f of [10].)

Question 2.4 Among T3 spaces that are continuous images of [0, ω1), characterize those that are
orderable or generalized orderable. Our Example 3.2 is of this type. In addition, in [9], van Douwen

3A space is linearly orderable if its underlying set carries a linear order and its topology is the usual open-interval
topology of that ordering. A space is generalized orderable if it is homeomorphic to a subspace of a linearly ordered
space. There are other characterizations of generalized ordered spaces, e.g., in [19].
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proved the surprising theorem that if Y is a regular continuous image of [0, ω1) and Y is not com-
pact, then Y is orderable; thus our question concerns only those compact Hausdorff spaces that are
continuous images of [0, ω1).

Proposition 2.5 Suppose f : [0, ω1) → Y is continuous and onto. If Y is T3, then Y is (heredi-
tarily) monotonically normal and has a monotonically normal compactification.

Proof: First we prove that Y must be normal. Suppose C and D are disjoint closed sets in Y . Then
f−1[C] and f−1[D] are disjoint closed sets in [0, ω1) so that one of them must be countable. Suppose
f−1[C] is countable. Then the closed set C is also countable. For each point x ∈ C, regularity of
Y gives open sets V (x) and W (x) having x ∈ V (x), D ⊆ W (x) and V (x) ∩W (x) = ∅. Because C
is countably compact (being a closed subset of the countably compact space Y ), finitely many sets
V (x1), · · ·V (xn) cover all of C. Let V =

⋃
{V (xi) : 1 ≤ i ≤ n} and W =

⋂
{W (xi) : 1 ≤ i ≤ n}.

Then V and W are the two disjoint open sets needed to show normality of Y .

Because Y is T4, Y has a Čech-Stone compactification β(Y ) and there is a continuous extension
β(f) : β([0, ω1)) → β(Y ). We know that β([0, ω1)) is the usual linearly ordered space [0, ω1] and
therefore β([0, ω1)) is monotonically normal. Because β(f) is a closed mapping, it follows that β(Y )
is also monotonically normal. But monotone normality is a hereditary property [14], showing that
Y is (hereditarily) monotonically normal.

Because the mapping f : [0, ω1)→ Y gives β(f) : [0, ω1]→ β(Y ) we see that β(Y ) is the desired
monotonically normal compactification of Y . 2

The proof of Proposition 2.5 would be much easier if we knew that whenever Y is T3, the
continuous mapping f : [0, ω1) → Y is a closed mapping. Unfortunately, that is not the case, as
the next example shows. See also Proposition 3.1 below.

Example 2.6 There is a compact Hausdorff space Y and a 1-1 continuous mapping f from [0, ω1)
onto Y that is not a closed mapping or a quotient mapping.

Proof: Let Y = [1, ω1] with its usual topology and define f : [0, ω1) → Y by f(0) = ω1 and
f(α) = α for each α ∈ [1, ω1). Then f is 1-1 and continuous but is not a quotient mapping because
f−1[{ω1}] = {0} is an open set in [0, ω1), but {ω1} is not open in Y . Therefore f is not a closed
mapping. 2

Proposition 2.7 If f : [0, ω1)→ Y is continuous and onto, and if Y is T3 and not compact, then
f is a perfect (and therefore closed) mapping and |β(Y )− Y | = 1 so that Y is locally compact.

Proof: As in the proof of Proposition 2.5, consider the function β(f) : β([0, ω1))→ β(Y ). Because
its domain is compact and its range is T2, we know that β(f) is a perfect mapping. We also know
that β([0, ω1)) = [0, ω1]. Because Y is not compact, we cannot have β(f)(ω1) ∈ Y , showing that
Y = β(Y )−{β(f)(ω1)}. Therefore |β(Y )−Y | = 1 and β(f)−1[Y ] = [0, ω1). But f is β(f) restricted
to β(f)−1[Y ] so that f is also a perfect mapping (Proposition 2.1.4 in [10]).

To verify that Y is locally compact, note that either Y is compact or else β(Y )−Y is a singleton,
showing that Y is open in β(Y ) and therefore is locally compact. 2

The space Y in Example 2.1 is not locally compact, showing that the hypothesis of regularity
is needed in Proposition 2.7.
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Proposition 2.8 Suppose f : [0, ω1) → Y is a continuous, onto function, and suppose Y is T3.
Then Y is scattered.

Proof: Consider β(f) : β([0, ω1))→ β(Y ). We know that β([0, ω1)) = [0, ω1]. Suppose ∅ 6= A ⊆ Y .
We will show that A has a relatively isolated point. Let B = β(f)−1[A]. Because β(f)|B is a perfect
mapping, there is a B-closed set C ⊆ B and an irreducible perfect onto mapping g : C → A. The
space C is scattered, so there is a relatively isolated point x ∈ C. If the set g−1[g(x)] has more
than one point, then g cannot be irreducible. Therefore g−1[g(x)] = {x} is relatively isolated in C
so that g(x) must be a relatively isolated point of A, as required. 2

3 Special properties of continuous images of [0, ω1)

Suppose Y is a continuous image of [0, ω1). The goal of this section is to study three properties
that Y might, or might not, have, namely compactness, paracompactness, and metrizability. We
begin with a result that distinguishes sharply between spaces that are quotient images of [0, ω1)
and spaces that are merely continuous images of [0, ω1).

Proposition 3.1 Suppose f : [0, ω1) → Y is continuous and onto, and suppose that Y is T2. The
following are equivalent:

a) f : [0, ω1)→ Y is a quotient mapping;

b) Y is sequential 4;

c) every continuous function g : [0, ω1)→ Y is a closed mapping;

d) Y is Frechet 5.

Proof: Quotient mappings preserve the property of being sequential (Problem 2.4.G in [10]) so
that a) implies b). Every closed mapping is a quotient mapping so that when c) is applied to
f : [0, ω1) → Y , we see that a) holds. Therefore c) implies a) and it remains to prove that
b)⇒ c)⇒ d)⇒ c).

To see that b) implies c) suppose Y is sequential and g is any continuous function from [0, ω1)
onto Y . Suppose C is a closed subset of [0, ω1) and consider D = g[C]. Hypothesis b) gives
us that Y is sequential so that it is enough to show that D is sequentially closed. To that end,
suppose dn ∈ D has lim dn = e ∈ Y . For each n, choose cn ∈ C with g(cn) = dn. Because C is
a closed subset of the sequentially compact space [0, ω1), we know there is a subsequence cnk

that
converges to some point c ∈ C. But then g(cnk

) converges to g(c) because g is continuous, and
because g(cnk

) = dnk
is a subsequence of the convergent sequence dn → e, g(cnk

) also converges to
e. Therefore e = g(c) ∈ g[C] = D, so that D is sequentially closed. Because Y is a sequential space,
D is a closed set. Therefore, the mapping g is closed.

4A set S in a space Y is sequentially closed provided that if sn ∈ S and sn → t, then t ∈ S. Clearly, any closed
set is sequentially closed. A topological space is sequential if each sequentially closed set is closed [10]

5A space Y is Frechet if for each S ⊆ Y and each p ∈ cl(S) there is a sequence sn ∈ S having sn → p [10]
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To see that c) implies d), apply c) to the given mapping f : [0, ω1) → Y . Then the mapping f
is a closed map, and we know that closed mappings preserve the Frechet property (Problem 2.4.G
in [10]). Hence Y is a Frechet space.

To see that d) implies c), note that if C is a closed subset of [0, ω1), then C is sequentially
compact. Therefore for any continuous g : [0, ω1) → Y , the set g[C] is sequentially compact. But
in any Frechet space, any sequentially compact set is closed, so that c) holds. (Another proof for
T3-spaces follows from Proposition 2.5 and a result of Kannan [17] who proved that any hereditarily
normal, countably compact sequential space must be Frechet (see also 3.10.E of [10]). 2

It was announced in [22] that any perfect image of [0, ω1) must be homeomorphic to [0, ω1), an
error that was corrected by an example given on pages 310-11 of [23]. Some arguments in [23] can
be simplified, and so we re-describe their example.

Example 3.2 There is a perfect mapping f from [0, ω1) onto a space Y where Y is regular (and
hence monotonically normal) and yet Y is not homeomorphic to [0, ω1).

Proof: Let L be the second derived set of [0, ω1) and let f be the quotient mapping that identifies
each point λ ∈ L with the point λ + ω. Because f is a quotient mapping, Proposition 3.1 shows
that f is a closed mapping, and because each fiber of f has at most two points, we see that f is a
perfect mapping.

Suppose Y is homeomorphic to [0, ω1) under the mapping g : Y → [0, ω1). Let h = g ◦ f . Then
h is continuous and at most 2-to-1, so that the set L′ = h[L] is uncountable and closed (because L,
and therefore L′, is a sequentially compact subset of [0, ω1)). Therefore L′ is a CUB-set in [0, ω1).
For each h(λ) ∈ L′ (where λ ∈ L), the sequence {h(λ + n) : n < ω} converges to h(λ) so there is
some nλ with h(λ+nλ) < h(λ), where < is the usual ordering of [0, ω1). Write α(h(λ)) = h(λ+nλ).
Then α is a regressive function on the stationary set h[L] so there is an uncountable set S ⊆ L with
the property that α(σ) = α(τ) for every σ, τ ∈ S. But that is impossible because h is at most a
2-to-1 function.2

3-a) Compactness in images of [0, ω1)

Proposition 3.1 allows us to understand the structure of compact, sequential spaces that are
continuous images of [0, ω1).

Proposition 3.3 Suppose f : [0, ω1) → Y is continuous and onto, and that Y is compact and T2.
If Y is sequential, then either Y is countable, compact, and metrizable, or else Y is the one-point
compactification of a locally compact metric space. Therefore there is at most one point of Y at
which Y is not first-countable.

Proof: Because Y is sequential, Proposition 3.1 shows that the mapping f is closed. If each fiber of
f is countable, then each fiber is compact, so that f is a perfect mapping. Then [0, ω1) = f−1[Y ]
is also compact (because perfect mappings inversely preserve compactness (Theorem 3.7.2 in [10])
and that is false. Therefore for some y0 ∈ Y the fiber f−1[y0] is uncountable and therefore is a CUB
set.

Let Z = Y − {y0} and let W = f−1[Z]. Because W is a complete inverse set, the restriction of
the mapping f to W is a closed mapping. In addition, for each z ∈ Z, the fiber f−1[z] is countable
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because otherwise the CUB sets f−1[z] and f−1[y0] would intersect. Therefore the fiber f−1[z] is
compact . Consequently, the restriction mapping f |W : W → Z is a perfect mapping (Proposition
3.7.6 in [10]). Now consider W . Because W is the complement of a CUB set in [0, ω1), W is the
disjoint union of open, metrizable subintervals of [0, ω1), so that W is metrizable. But then so is
its perfect image Z (Theorem 4.4.15 in [10]).

There are two remaining possibilities. In the first, the metrizable subspace Z ⊆ Y is not compact.
But then Y = Z∪{y0} is its one-point-compactification, and Z, being open in Y , is locally compact.
In the second, the metrizable subspace Z is compact. But then the point y0 is an isolated point of
Y so that f−1[y0] is both a CUB set and an open set in [0, ω1). The Pressing Down Lemma gives us
some α < ω1 with the property that [α, ω1) ⊆ f−1[y0]. But then Y ⊆ {f(β) : 0 ≤ β ≤ α}, showing
that Y is countable. Because Y is given as being compact and Hausdorff, it follows that, in this
second case, Y is metrizable, as claimed. 2

Example 3.4 Here are two examples illustrating the previous proposition. In the first, let L be
the set of all limit ordinals in ω1 and let Y be the quotient space of [0, ω1) in which L is collapsed
to a single point by the quotient map f . Then Y is uncountable and compact (because L is an
uncountable fiber of f), and is the one-point compactification of the uncountable discrete subspace
{f(α) : α ∈ [0, ω1) − L}. We note that by Proposition 3.3, the space Y is Frechet. In the second,
consider the quotient space obtained from [0, ω1) by collapsing [ω, ω1) to a single point. 2

Example 2.6 shows that a continuous image of [0, ω1) can fail to be sequential, so the classification
of compact images of [0, ω1) is not complete. The paper [23] contains characterizations of various
kinds of images of various ordinal spaces.

3-b) Paracompactness in images of [0, ω1)

We already know that any continuous image Y of [0, ω1) is countably compact so that if Y is
paracompact, then Y must be compact. That allows us to re-write Proposition 3.3 as follows:

Proposition 3.5 Suppose f : [0, ω1)→ Y is continuous and onto, and that Y is paracompact and
T2. If Y is sequential, then either Y is countable, compact, and metrizable, or else Y is the one-
point compactification of a locally compact metric space. Therefore there is at most one point of Y
at which Y is not first-countable.

Which continuous images of [0, ω1) are paracompact? The famous Balogh-Rudin characteriza-
tion of paracompactness in monotonically normal spaces [1] is the key.

Theorem 3.6 (Balogh-Rudin Theorem) A monotonically normal space Y is paracompact if and
only if no closed subspace of Y is homeomorphic to a stationary subset of a uncountable regular
cardinal6

As a corollary we characterize paracompactness in regular, continuous images of [0, ω1). Except
for the D-space property, the covering conditions in our next result are, in general spaces, strictly
weaker than paracompactness and assert that every open cover has a refinement of a certain special
type. Reproducing all of the definitions would consume too much space; see [8] for details.

6An ordinal number λ is a regular cardinal if µ < λ implies that |µ| < |λ|. For example, ω1 is a regular uncountable
cardinal.
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Proposition 3.7 Suppose f : [0, ω1) → Y is continuous and onto, where Y is T3. Then Y is
compact if and only if Y is paracompact. Furthermore, Y is paracompact if and only if any of the
following hold:

a) Y is metacompact;

b) Y θ-refinable (= submetacompact), weakly θ-refinable, weakly δθ-refinable;

c) Y is metaLindelöf;

d) Y is subparacompact;

e) Y is a D-space7.

Proof: We know that Y is countably compact. Therefore, in Y, compactness and paracompactness
are equivalent.

Each of properties a), b), c), and d) is a well-known consequence of paracompactness. For the
converses, note that no stationary subset of a regular uncountable cardinal can have one of these
covering properties (a) - (d) so that the Balogh-Rudin theorem shows that each of (a) through (d)
implies that Y is paracompact.

Now suppose Y has the D-space property. Suppose U is an open cover of Y . For each y ∈ Y
choose some U(y) ∈ U having y ∈ U(y). (Repetitions are allowed). The D-space property gives a
closed, discrete subset S ⊆ Y for which

⋃
{U(y) : y ∈ S} = Y . Because Y is countably compact,

the closed discrete set S must be finite, so we see that Y is compact (and hence paracompact). To
prove the converse, note that if Y is paracompact, then as noted above, Y is compact, and recall
that any compact space is a D-space. 2

Remark 3.8 There is an alternate approach to Proposition 3.7. As noted above, van Douwen has
proved that if Y is a regular continuous image of [0, ω1) then Y is either compact (and therefore
paracompact) or else Y is orderable. In the latter case, known theorems about paracompactness in
ordered spaces [20] show that each of the properties listed in Proposition 3.7 make Y paracompact.

In general spaces, there is no relation between compactness, separability, and countable cel-
lularity. However, for regular spaces that are continuous images of [0, ω1) we have the following
consequence of Proposition 3.12 below.

Proposition 3.9 Suppose Y is T3 and is a continuous image of [0, ω1). If Y is separable or if Y
has countable cellularity, then Y is compact and hence paracompact.

The next proposition lists many components of metrizability that have been studied by re-
searchers, and as we will see in Proposition 3.13, with the exception of c)8, each is equivalent to
metrizability in spaces that are regular continuous images of [0, ω1). Once again, reproducing all of
the definitions would consume too much space; see the survey by Gruenhage [12] for details.

7Y is a D-space if for each y ∈ Y if U(y) is an open set containing y, then there is a closed, discrete set S ⊆ Y
for which Y =

⋃
{U(y) : y ∈ S}.

8See Example 3.15
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Proposition 3.10 Suppose f : [0, ω1) → Y is continuous and onto, where Y is T3. Then Y is
compact if and only if Y is paracompact. Furthermore, Y is paracompact if any one of the following
holds:

a) Y has a Gδ-diagonal, or a G-Souslin diagonal [11], [6], or a quasi-Gδ-diagonal;

b) Y is perfect (i.e., closed sets are Gδ-sets);

c) every subspace of Y is a p-space in the sense of Arhangelskii, or an M-space in the
sense of Morita, or a β-space in the sense of Hodel [12];

d) Y has a point-countable base or is a member of the class MOBI;

e) Y is quasi-developable;

f) Y has a small diagonal in the sense of Hušek [12];

g) Y has a σ-minimal base.

Proof: Proposition 2.5 shows that any T3 image of [0, ω1) is monotonically normal so that if P is a
closed-hereditary topological property that no stationary subset of [0, ω1) can have, then standard
proofs give that if Y is a regular, continuous image of [0, ω1) that has property P , then Y is
paracompact. See [20] for an extensive list of such properties. Each of the properties listed in this
theorem is of that type. A proof that f) implies paracompactness of our space Y appears in Corollary
4.4 in the next section and the proof that g) implies paracompactness appears in Proposition 5.1.
2

Remark 3.11 The properties listed in Proposition 3.10 are sufficient, but not necessary, conditions
for paracompactness in a space Y that is a continuous image of [0, ω1), as can be seen from the space
of Example 2.6 which is paracompact but has none of properties (a)-(f). In fact, using Proposition
3.10, we show in Proposition 3.13 that each of a), b), d), e), f) and g) is equivalent to metrizability
for any regular continuous image of [0, ω1).

3-c) Metrizability in images of [0, ω1)

If Y is a continuous image of [0, ω1) and happens to be metrizable, then because Y is countably
compact, it must be separable and must have countable cellularity. We begin by showing that the
converse is true for regular continuous images of [0, ω1).

Proposition 3.12 Suppose f : [0, ω1) → Y is a continuous onto function, where Y is T3. Then
the following are equivalent:

a) Y is a compact metric space;

b) Y is metrizable;

c) Y is separable;

d) Y has countable cellularity

10



Proof: Obviously a) implies b) and the converse holds because Y is known to be countably compact.
In general a)⇒ c)⇒ d) so it only remains to prove that d)⇒ a).

Suppose d) holds. We will show that |Y | = ℵ0, which gives a) because Y is known to be
countably compact. For contradiction, suppose |Y | > ℵ0. We have the mapping f : [0, ω1) → Y
and therefore, as in Proposition 2.5, we have a mapping β(f) : [0, ω1] → β(Y ). Because Y has
countable cellularity, so does β(Y ).

The function β(f) is a perfect mapping and consequently there is a closed subspace C ⊆ [0, ω1]
such that the restricted mapping g = β(f)|C is a perfect irreducible mapping from C onto β(Y ). Be-
cause Y is uncountable, so is β(Y ) and therefore so is the set C. Then, because C is an uncountable
closed subset of [0, ω1], there are uncountably many relatively isolated points of C.

Consider any relatively isolated point α ∈ C and let y = g(α). Then α ∈ g−1[y] so that if
{α} 6= g−1[y] then the mapping g would not be irreducible (because C − {α} would be a proper
closed subset of C that is mapped onto β(Y )). Therefore g−1[y] = {α}, showing that g−1[y] is a
relatively open subset of C. Because g is a closed mapping, it follows that y is an isolated point of
β(Y ).

Note that if β 6= α is also a relatively isolated point of C, then β 6∈ g−1[y] so that g(β) 6= g(α).
Consequently, {g(γ) : γ is a relatively isolated point of C} is an uncountable set of isolated points of
β(Y ) and that is impossible because Y , and therefore also β(Y ), has countable cellularity. Therefore,
the space Y is countable and consequently metrizable, so that d) implies a). 2

As mentioned above, with one exception (see Example 3.15 below), each of the properties listed
in Proposition 3.10 as a sufficient condition for paracompactness in a continuous regular image of
[0, ω1) actually gives metrizability in such a space.

Proposition 3.13 Suppose f : [0, ω1)→ Y is continuous and onto, and suppose Y is T3. Then the
following are equivalent:

a) Y is a countable, compact metric space, and f has an uncountable fiber;

b) Y is metrizable;

c) Y has a Gδ-diagonal;

d) Y has a G-Souslin diagonal in the sense of Braude [6];

e) Y has a point-countable base or is a member of the class MOBI;

f) Y is quasi-developable;

g) Y is perfect;

h) Y is symmetrizable;

i) Y has a small diagonal;

j) Y has a σ-minimal base.

Proof: Clearly a) implies b). Now suppose b) holds. Because Y is countably compact, it follows
that Y is compact. In addition, because Y is Frechet, the mapping f : [0, ω1) → Y is a closed
mapping. If each fiber of f were countable, then f would be a perfect mapping, so that [0, ω1)
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would be a perfect pre-image of a compact metric space, making [0, ω1) compact and that is not
the case. Therefore, some fiber of f , say f−1[y0], is uncountable. Given that Y is metrizable, the
set {y0} is a Gδ-set in Y , so that the fiber f−1[y0] is a Gδ-set in [0, ω1). Then the Pressing Down
Lemma gives some α < ω1 such that [α, ω1) ⊆ f−1[y0]. Therefore, Y = {f(β) : β ≤ α} showing
that Y is countable. Thus b) implies a).

Clearly b) implies each of the properties in c) through f). In addition, by Proposition 3.7, each
of the properties in c) through f) is enough to make Y paracompact and therefore compact, and
each is sufficient to give metrizability for any compact subset of Y [12]. Hence each of the properties
c) through f) implies b).

Certainly b) implies g). To show that g) implies b), note that g) makes Y paracompact by
Proposition 3.10 and therefore the countably compact space Y is compact. Because Y is compact
and perfect, Y is first-countable and therefore Frechet. But then the mapping f : [0, ω1)→ Y is a
closed mapping (see Proposition 3.1). The mapping f cannot be a perfect mapping because Y is
compact but [0, ω1) is not. Therefore, some fiber, say C = f−1[y0], is not compact. Consequently
C must be a CUB-set. Because {y0} is a Gδ-set in Y , C is a Gδ-set in [0, ω1). Then the Pressing
Down Lemma gives some β < ω1 with [β, ω1) ⊆ f−1[y0] so that Y = {f(α) : α ≤ β} is countable.
Because Y is compact and countable, Y is metrizable, as required by b).

Clearly b) implies h). To show that h) implies b), recall that any symmetrizable countably
compact space is metrizable [12]. Alternatively, note that if Y is symmetrizable, then Y is sequential
and hence (by Proposition 3.1) is Frechet. But a Frechet symmetrizable space is semi-metrizable
and hence perfect, and we now invoke part g).

Finally, it is clear that b) implies i) and j). That i) implies b) for our space Y is the subject of
the next section and the equivalence of b) and j) is the subject of Section 5. 2

Remark 3.14 There are proofs of parts of Proposition 3.13 based on general metrization theory
for countably compact spaces (e.g., that any symmetrizable countably compact space is metrizable
[12] and Chaber’s theorem that any regular countably compact space with a Gδ-diagonal must be
metrizable [10]). Relying on those proofs is not consistent with our simple-proofs-goal and it would
be interesting to give an elementary proof that h) implies b) .

In an earlier paper we asked the following general question (see Problem 3 in [3]): Suppose
P is a topological property and that any GO-space with property P must be metrizable. Is it
true that any space X that has property P and has a monotonically normal compactification must
be metrizable? One such property P is the Fpp property, namely that each subspace of X is a
paracompact p-space in the sense of Arhangelskii. It is known that any generalized ordered space
with property Fpp must be metrizable [2], and we can now show that for this property P = Fpp, the
answer to our Problem 3 is negative.

Example 3.15 There is a compact monotonically normal space Y that is a continuous image of
[0, ω1) and is not metrizable, and yet every subspace of Y is a paracompact p-space in the sense of
Arhangelskii.

Proof: As in Example 2.2, let L be the set of all limit ordinals in [0, ω1) and let Y be the quotient
space obtained from [0, ω1) by identifying L to a single point. The space Y is monotonically normal
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and compact, and every subspace of Y is either compact or metrizable, depending upon whether
the subspace contains the unique limit point of Y , so that every subspace of Y is a paracompact
p-space, i.e., Y has property Fpp. However, Y is not metrizable. 2

4 Small diagonals

In this section, we discuss the small-diagonal property mentioned in Propositions 3.10 and 3.13
and prove a general theorem that might be of interest in other contexts.

The diagonal of a space Y is the set ∆ = {(y, y) : y ∈ Y }. Recall that a space Y has a small
diagonal if whenever S is an uncountable subset of Y 2−∆, there is an open set W ⊆ Y 2 with ∆ ⊆ W
for which the set S−W is uncountable. This is a generalization of the Gδ-diagonal property because
if ∆ =

⋂
{Wn : n < ω} where each Wn is open, then S = S − ∆ =

⋃
{S −Wn : n < ω} so that

one of the sets S −Wn must be uncountable. Juhasz and Szentmiklossy [15] proved the following
theorem:

Theorem 4.1 Suppose the Continuum Hypothesis holds. Then any compact Hausdorff space with
a small diagonal is metrizable.

In an early draft of this paper, we proved that any compact Hausdorff space having cardinality
≤ ℵ1 and having a small diagonal must be metrizable by combining Theorem 4.1 with a separate
proof that covered the situation where the Continuum Hypothesis is false. The key step in our
argument was to prove that (assuming ℵ1 < 2ℵ0) any compact scattered space of cardinality ≤ ℵ1
must be first-countable, which is equivalent to metrizability for compact scattered spaces. Then
Gary Gruenhage [13] sent us a more straightforward and more general proof that any compact
scattered space (without cardinality restrictions) with a small diagonal must be metrizable. At the
same time we discovered that Gruenhage’s result follows from older work of Mrowka, Rajagopalan,
and Soundararajan [21], as we explain below.

Theorem 4.2 (Gruenhage) Suppose X is a scattered compact Hausdorff space with a small diago-
nal. Then X is metrizable.

Proof: Theorem 4 of [21] includes a proof that if X is any scattered compact Hausdorff space
and if {x(α) : α ∈ [0, κ)} is any net in X indexed by an ordinal, then there is a cofinal subset
S ⊆ [0, κ) such that the subnet {x(α) : α ∈ S} converges to some point of X.9 If the space X
of Gruenhage’s theorem is uncountable, then for each α ∈ [0, ω1) we can choose points x(α) ∈ X
without repetition. Using Theorem 4 from [21], we can find a cofinal subset S ⊆ [0, ω1) such that the
subnet {x(α) : α ∈ S} converges to some point p ∈ X. For each α ∈ S. let α+ be the first point of S
that is greater than α. Then we see that the uncountable set U = {(x(α), x(α+)) : α ∈ S} ⊆ X2−∆
violates the small diagonal condition. Therefore X must be countable. But any compact countable
Hausdorff space is metrizable. 2

9Because [21] is somewhat difficult to find, here is an outline of the proof: For each α < κ, let Z(α) be the closure
of {x(β) : β ≥ α}. Because X is compact, the set Z =

⋂
{Z(α) : α < κ} is nonempty. Because X is scattered,

there is a relatively isolated point z0 ∈ Z, so there is an open set U0 with z0 ∈ U0 and cl(U0) ∩ Z = {z0}. Let
S = {α < κ : x(α) ∈ U0}. Then the cofinal subset {x(α) : α ∈ S} converges to z0.
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Theorem 4.3 Suppose Y is a compact Hausdorff space with cardinality ℵ1 and that Y has a small
diagonal. Then Y is metrizable.

Proof: We show that our theorem is true in any model of ZFC. In a model where the Continuum
Hypothesis holds, the Juhasz-Szentmiklossy Theorem 4.1 shows that Y is metrizable. Therefore, it
remains to consider what happens if the Continuum Hypothesis is false, i.e., if ℵ1 is less than 2ℵ0 .

We begin by showing that because |Y | ≤ ℵ1 < 2ℵ0 , the space Y must be scattered, i.e., every
subspace S of Y has an isolated point. Let T = clY (S). If T has an isolated point, then so does
S, so we focus on the compact subspace T . If T is finite, there is nothing to prove, so assume T
is infinite. If T has no isolated points, then we can choose infinite open sets U(0) and U(1) with
cl(U(0)) ∩ cl(U(1)) = ∅. Using the assumption that T has no isolated points over and over, we use
induction to find a collection {U(i0, i1, · · · , in) : n < ω, ij ∈ {0, 1}} with the property that for each
(i0, · · · , in) ∈ {0, 1}n

a) U(i0, · · · , in, 0) ∩ U(i0, · · · , in, 1) = ∅ and

b) cl(U(i0, · · · , in, j)) ⊆ U(i0, · · · , in) for j = 0, 1.

Each infinite sequence (i0, i1, · · ·) ∈ {0, 1}ω gies a nonempty set V (i0, i1, · · ·) =
⋂
{cl(U(i0, ii, · · · , in)) :

n < ω} and if (i0, i1, · · ·) 6= (j0, j1, · · ·) then V (i0, i1, · · ·) ∩ V (j0, j1, · · ·) = ∅. Therefore, |Y | ≥ 2ℵ0

and that is impossible because, by assumption in this case, |Y | ≤ ℵ1 < 2ℵ0 .

Therefore, if the Continuum Hypothesis fails, then Y is scattered so that by Theorem 4.2, Y is
metrizable. 2

Corollary 4.4 Suppose f : [0, ω1)→ Y is continuous and that Y is T3. If Y has a small diagonal,
then Y is metrizable.

Proof: First we show that Y is paracompact by using the Balogh-Rudin theorem; this is part of
Proposition 3.10 above whose proof was that was deferred until now. Because |Y | ≤ ℵ1, it is enough
to show that no stationary subset S of [0, ω1) can have a small diagonal. Let T be the set of all
limit points of S. Then T is stationary. For each σ ∈ S, let σ+ be the first member of S that is
larger than σ. Then {(σ, σ+) : σ ∈ S} is an uncountable subset of S2 − ∆. Assuming that S has
a small diagonal, there is an open subset U ⊆ [0, ω1)

2 such that if we consider the relatively open
subset U ∩ S2 of S2, we have uncountably many points (σ, σ+) 6∈ U . Because ∆ ⊆ U , for each
limit ordinal λ ∈ T ⊆ S we have some g(λ) < λ with (g(λ), λ]2 ⊆ U . The Pressing Down Lemma
gives an ordinal β with the property that g(λ) = β for each λ in some stationary subset of T . But
then (β, λ]2 ⊆ U for cofinally many λ, and therefore (β, ω1)

2 ⊆ U . Now choose any σ ∈ S with
β < σ. Then (σ, σ+) ∈ (β, ω1)

2 ⊆ U . This contradicts the fact that there are uncountably many
(σ, σ+) 6∈ U . Therefore, no stationary subset of ω1 can have a small diagonal. The Balogh-Rudin
theorem shows that the space Y is paracompact. Because Y is countably compact and paracompact,
Y is compact. Now we invoke Theorem 4.3 to conclude that Y is metrizable. 2

5 Images of [0, ω1) with a σ-minimal base

Recall that a collection B of subsets of a set Y is minimal if each B ∈ B contains a point (which
we will call a “minimality point”) that is not in any other member of B, and that a collection is
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σ-minimal if it is the union of countably many minimal collections. It is known that an general-
ized ordered space with a σ-minimal base for its topology must be paracompact [4] and that the
lexicographic square has a σ-minimal base but its subspace [0, 1] × {0, 1} does not. It is an open
problem whether a space with a monotonically normal compactification must be paracompact if it
has a σ-minimal base [3]. In this section we characterize regular continuous images of [0, ω1) that
have a σ-minimal base by proving:

Proposition 5.1 Suppose f : [0, ω1) → Y is continuous and onto, and that Y is T3. Then Y has
a σ-minimal base if and only if Y is metrizable.

Proof: Any metric space as a σ-discrete (and hence σ-minimal) base. To prove the converse for a
space Y = f [[0, ω1)] that has a σ-minimal base B =

⋃
{B(n) : n ≥ 1}, observe that either f has an

uncountable fiber, or every fiber of f is countable and compact.

Consider the case where f has an uncountable fiber, say C0 = f−1[z0], and consider any n for
which some Bn ∈ B(n) has z0 ∈ Bn. Then f−1[Bn] is an open set that contains the CUB set C0.
The Pressing Down Lemma gives some βn such that [βn, ω1) ⊆ f−1[Bn]. Any other B′ ∈ B(n)
that contains z0 must contain a minimality point y(B′) which is not in Bn. Then f−1[y(B′)] is a
subset of [0, ω1) that cannot meet f−1[Bn] so that f−1[y(B′)] is a subset of the countable set [0, βn].
Therefore, at most countably many members of B(n) can contain z0. Therefore, the space Y is
first-countable at z0. As a result, the CUB set C0 = f−1[z0] is a Gδ-set in [0, ω1) so that there is
some γ < ω1 with [γ, ω1) ⊆ C0. Therefore the set Y − {z0} must be countable. But then Y is
countable and countably compact, so that Y is metrizable.

Now consider the case where every fiber of the mapping f is countable. Under the assumptions
that Y has a σ-minimal base, we will obtain a contradiction, so that this second case cannot occur.

There is at most one point y1 ∈ Y for which every neighborhood is uncountable. For suppose
y1, y2 are two such points. Because Y is regular, we may find neighborhoods Ui of yi having
cl(U1) ∩ cl(U2) = ∅. If both Ui are uncountable, then f−1[cl(Ui)] for i = 1, 2 are two uncountable
disjoint closed sets in [0, ω1) and that is impossible.

Consider the case where one such point y1 exists. Let Y0 = Y − {y1}. Then Y0 is a dense open
subset of Y and S = f−1[Y0] is a subset of [0, ω1) whose complement is the compact set f−1[y1].
Therefore S is a stationary subset of [0, ω1).

If Y has a σ-minimal base, then its open subspace Y0 also has a σ-minimal base B′ =
⋃
{B′(n) :

n < ω} where each member of B′ is a countable open set (use B′ = {B ∈ B : B ⊆ Y0}). Let
Zn =

⋃
B(n) ⊆ Y0. Then S =

⋃
{f−1[Zn] : n < ω} so that one of the sets, say S(N) = f−1[ZN ] is

stationary in [0, ω1). Then the set Sd(N) consisting of all limit points of S(N) is also stationary.

For each λ ∈ Sd(N) fix some B(λ) ∈ B(N) with λ ∈ f−1[B(λ)]. Then because λ is in the
open set f−1[B(λ)] there is some α(λ) < λ having [α(λ), λ] ⊆ f−1[B(λ)]. Because α is a regressive
function on the stationary set Sd(N), there is some β and some stationary set T ⊆ Sd(N) with the
property that α(λ) = β for each λ ∈ T . Consequently, [β, λ] ⊆ f−1[B(λ)] for each λ ∈ T .

Let λ0 be the first element of T . Suppose α < ω1 and suppose λβ is defined for all β < α Note
that the set

⋃
{f−1[B(λβ)] : β < α} is countable, so there is some λα ∈ T with

⋃
{f−1[B(λβ)] : β <

α} ⊆ [0, λα).
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Fix any λα from the points found above. The set B(λα) has a minimality point p(α) ∈ B(λα),
i.e., a point not in any other member of the collection B(N). Choose any q(α) ∈ f−1[p(α)]. Then
q(α) ∈ f−1[B(λα] but q(α) is not in any other set f−1[B(λγ)].

We claim that q(α) < β. For contradiction, suppose β ≤ q(α). Choose γ > α. Then λγ is larger
than every point of f−1[B(λα)] and, because q(α) ∈ f−1[B(λα)] we have q(α) ∈ [β, λγ] ⊆ f−1[B(λγ)]
so that q(α) belongs to at least two of the sets f−1[B(λδ)] and that is impossible. Therefore each
α, q(α) ∈ [0, β). But that is impossible because there are uncountably many points q(α) and the
set [0, β) is countable.

At this point, we have completed the case where there is a point y1 ∈ Y whose every neighbor-
hood is uncountable. In case no such y1 exists, repeat the above proof with Y0 = Y , and now the
proof is complete. 2
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