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1 Introduction

A topological space is orderable if it is homeomorphic to some linearly ordered topological space (LOTS)
(X,<,L(<)) where < is a linear ordering of X and L(<) is the usual open interval topology of <. As the
subspace [0, 1] ∪ (2, 3) of the usual space R of real numbers shows, a subspace of a LOTS may fail to be
orderable, as may a topological sum of two LOTS (no matter what linear ordering is used).

In their paper [3], Hirata and Kemoto showed that any subspace of any space of ordinal numbers must
be orderable (under some ordering), a result that follows from an earlier paper by Purisch [4] [5]. In this
paper we give a new proof that is shorter than the proofs given by Purisch or by Hirata and Kemoto, and
we raise some questions about hereditary orderability, where we say that a space X is hereditarily orderable
if each of its subspaces is an orderable space.

Recall that a generalized ordered (GO) space is a triple (X,<, τ) where < is a linear ordering of X and
where τ is a Hausdorff topology on X that has a basis consisting of order-convex (possibly degenerate)
sets.

We want to thank the referee whose comments significantly improved this paper.

2 Ordinals are hereditarily orderable

For any linearly ordered set (X,<), the symbol (X,<)∗ denotes the set X with the reverse ordering <∗.
It is easy to see that the LOTS (X,<,L(<)) is homeomorphic to the LOTS (X,<∗,L(<∗)). For a given
linearly ordered set X, we sometimes write X∗ for (X,<∗,L(<∗)).

Suppose (X1, <) and (X2,≺) are disjoint linearly ordered sets. We use the symbol (X1, <) _ (X2,≺)
to mean the set X1 ∪ X2 with the ordering defined by a � b if either a, b ∈ X1 and a < b, or a ∈ X1

and b ∈ X2, or a, b ∈ X2 with a ≺ b. We sometimes write �=<_≺. The relation � is always a linear
ordering, but if L(<) and L(≺) are the usual open interval topologies on X1 and X2 respectively, then the
open interval topology L(�) might not be the topology of the topological sum (X1,L(<)) ⊕ (X2,L(≺)).
For an example, let X1 = [0, 1] and X2 = (2, 3) have their usual orderings. However, there are times when
the topological sum of two or more LOTS is guaranteed to be a LOTS.

Lemma 2.1 Let (X1, <) and (X2,≺) be disjoint linearly ordered sets and let � be the order <_≺.

1) If the LOTS (X1, <,L(<)) contains a right end point and (X2,≺,L(≺)) contains a left end point, then
the topological sum X1 ⊕X2 is a LOTS under the order �.

1supported by a Texas Tech University Faculty Development Leave
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2) If the LOTS (X1, <,L(<)) contains no right endpoint and if the LOTS (X2,≺,L(≺)) contains no left
end point, then the topological sum X1 ⊕X2 is a LOTS under the order �. 2

Lemma 2.2 Suppose that (X,<, τ) is a GO-space having a right endpoint b ∈ X, and suppose that b is a
τ -limit point of the set Y = X − {b}. Suppose that ≺ is a linear ordering of the set Y such that the open
interval topology L(≺) on Y coincides with τ |Y , and suppose that a subset C ⊆ Y is cofinal 2 in (Y,<) if
and only if C is cofinal in (Y,≺). Extend the linear order ≺ to a linear order / on X by making b larger
than each point of (Y,≺). Then L(/) = τ , i.e., (X, /, τ) is a LOTS.

Proof: It is enough to show that the topologies τ and L(/) agree at the point b because, by hypothesis,
they agree at each point of the open set Y . Because b is a limit point of Y , the set (Y,<) contains no right
endpoint. Hence neither does (Y,≺).

Let U be a τ -neighborhood of b. We may assume U is order convex with respect to <. Because b is a
τ -limit of Y , we may choose a′, a ∈ U ∩ Y and a′ < a < b. Then a ∈ {x ∈ X : a′ < x < b} ⊆ U . We will
show that there is some c ∈ X with c / b and {x ∈ X : c / x} ⊆ {x ∈ X : a ≤ x} ⊆ {x ∈ X : a′ < x}. If
that is not true, then for each c ∈ Y there is some d(c) ∈ Y with c / d(c) and d(c) /∈ {x ∈ X : a ≤ x}. The
set {d(c) : c ∈ Y } is cofinal in (Y,≺), and therefore it is also cofinal in (Y,<) so there is some d(c) with
a ≤ d(c), contrary to the choice of d(c). An analogous argument shows that for each a / b there is some c
with c < b and {x ∈ X : c < x} ⊆ {x ∈ X : a / x}. Consequently, the two topologies τ and L(/) agree at
b, as required. 2

The following example illustrates a key idea in the proof of our main result. Write 2ω = ω + ω and
3ω = ω + ω + ω. Form a GO-topology τ by isolating the points ω and 2ω in [0, 3ω). In the usual ordering
<, this is not a LOTS because the non-limit points ω and 2ω have no immediate predecessors in the order
<. However, in the linear ordering ≺ of

[0, ω) _
(

[ω, 2ω)∗ _ [2ω, 3ω)
)

the set {n : 0 ≤ n < ω} has no supremum, and the points ω and 2ω both have immediate predecessors
and immediate successors. Consequently ([0, 3ω),≺, τ) is a LOTS. Flipping the order on subsegments of a
GO-space is the key to our next proof.

Theorem 2.3 Let ∆ be any ordinal with ∆ ≥ ω and let T be any set of limit ordinals in [0,∆). Let
[0,∆)T denote the GO-space obtained from the usual ordinal space [0,∆) by isolating every element of T .
Then the GO-space [0,∆)T is homeomorphic to some LOTS.

Proof: In this proof, the symbol ∼= means “is homeomorphic to” and we use ≤ and < to denote the usual
well-ordering of [0,∆). Interval notation such as [α, β) will always refer to intervals in the usual ordinal
ordering. For any α < ∆, the symbol [0, α)T denotes the GO-space obtained from the usual LOTS [0, α) by
isolating all points of T ∩ [0, α). We will write S for the GO-topology of [0,∆)T and S[α,β) for the relative
topology that [α, β) inherits from [0,∆)T . We will argue by contradiction. For contradiction, suppose that

(*) [0,∆)T is not homeomorphic to any LOTS.

By an acceptable pair we mean an ordered pair ([0, α),≺α) where

1) α ≤ ∆,

2) ≺α is a linear ordering of the set [0, α),

3) 0 is the left end point of the linearly ordered set ([0, α),≺α),

4) a subset C ⊆ [0, α) is cofinal in ([0, α),≺α) if and only if C is cofinal in ([0, α), <), and

5) S[0,α) = L(≺α) where L(≺α) is the usual open interval topology of the linear order ≺α.

2A subset S of a linearly ordered set (X,<) is cofinal if for each x ∈ X there is some s ∈ S with x ≤ s.
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Let P be the set of all acceptable pairs. Then P is not empty because ([0, 2), <) is in P. Partially
order P by the rule that ([0, α),≺α) v ([0, β),≺β) if and only if the following four statements hold:

a) α ≤ β;

b) ≺β |[0,α) =≺α (so that ≺β extends ≺α);

c) if α < β, then {x ∈ [0, β) : x ≺β α} = [0, α) (so ≺β adds no points to the domain of ≺α);

d) L(≺α) ⊆ L(≺β).

Suppose C = {([0, α),≺α) : α ∈ A} is a chain in the partially ordered set (P,v). For some γ ≤ ∆, the
set
⋃
{[0, α) : α ∈ A} = [0, γ). Define ≺γ=

⋃
{≺α: α ∈ A}. We will show that ([0, γ),≺γ) is an acceptable

pair that is an upper bound for C in (P,v).

It is clear that ≺γ is a linear ordering of [0, γ) and that its left end point is 0. If γ = α for some α ∈ A,
then ([0, γ),≺γ) = ([0, α),≺α) is an acceptable pair that is an upper bound for the chain C, so assume that
α < γ for all α ∈ A. Consequently γ is a limit ordinal and the set A is cofinal in the usual ordering of
[0, γ).

We claim that ([0, γ),≺γ) satisfies part (4) in the definition of an acceptable pair. We first show that
the set A is cofinal in the ordering ≺γ . Let x ∈ [0, γ) and choose α, β ∈ A with x < α < β. In the light of
(c) we have x ∈ [0, α) = {y ∈ [0, β) : y ≺β α} so that x ≺γ α. Hence A is cofinal in the order ≺γ . Now
suppose that C is a cofinal subset of ([0, γ), <). Fix (α,≺α) ∈ C. Choose x ∈ C with α < x and then
choose β ∈ A with α < x < β. By (c) we have x 6∈ [0, α) = {y ∈ [0, β) : y ≺β α} so that α �β x. Therefore
α �γ x, showing that C is cofinal in the ordering ≺γ . Next suppose that C is cofinal in the ordering ≺γ .
If C is not cofinal in the usual ordering < of [0, γ) then there is some α ∈ A with C ⊆ [0, α). Then for
each β ∈ A with α < β we have C ⊆ [0, α) = {y ∈ [0, β) : y ≺β α} so that x ≺β α for each x ∈ C, and
therefore x ≺γ α for each x ∈ C. But that is impossible because C is cofinal in the ordering ≺γ .

We next show that ([0, γ),≺γ) satisfies S[0,γ) = L(≺γ), which is part (5) in the definition of an acceptable
pair. First note that the collection B :=

⋃
{L(≺α) : α ∈ A} is a base for the topology L(≺γ) and that

B′ :=
⋃
{S[0,α) : α ∈ A} is a base for S[0,γ). Because we know that L(≺α) = S[0,α) for each α ∈ A, we see

that B = B′ which gives L(≺γ) = S[0,γ) as required.

Now that we have ([0, γ),≺γ) ∈ P, we must show that ([0, α),≺α) v ([0, γ),≺γ) for each α ∈ A. Clearly
(a) and (b) are satisfied. For (c), note that for each α < β in the set A, we have

[0, α) = {y ∈ [0, β) : y ≺β α} ⊆ {y ∈ [0, γ) : y ≺γ α}.

To prove that {y ∈ [0, γ) : y ≺γ α} ⊆ [0, α), suppose y < γ satisfies y ≺γ α. Choose β ∈ A so large that
{α, y} ⊆ [0, β). Then y ∈ {z ∈ [0, β) : z ≺β α} = [0, α) as required. To verify (d) note that the collection⋃
{L(≺α) : α ∈ A} is a basis for the topology L(≺γ).

At this stage we know that every chain in (P,v) has an upper bound in (P,v) so that Zorn’s Lemma
gives us a maximal element ([0, δ),≺δ) of P. We have δ ≤ ∆. If δ = ∆, then we have contradicted (*)
because ([0, δ),≺δ) satisfies part (5) of the definition of acceptable pair, so we have

(**) δ < ∆.

Claim 1 We claim that δ must be a limit ordinal. Otherwise write δ = λ+ n where λ is a limit and n ≥ 1
is an integer. Then [0, δ) has a right endpoint (namely λ+ (n− 1)) in the usual ordinal ordering, so that
{λ+ (n− 1)} is a cofinal subset of [0, δ) in the usual ordering. Therefore {λ+ (n− 1)} is a cofinal subset
of [0, δ) in the linear ordering ≺δ, i.e., ([0, δ),≺δ) has λ+ (n− 1) as its right endpoint. Because δ < ∆ by
(**), we know that δ+ 1 ≤ ∆. Define a linear ordering ≺δ+1 of [0, δ+ 1) that agrees with ≺δ on [0, δ) and
has δ = λ + n as its right endpoint. Then the LOTS ([0, δ + 1),≺δ+1,L(≺δ+1)) is homeomorphic to the
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GO-space [0, δ+1)T and it is clear that ([0, δ+1),≺δ+1) belongs to P and is strictly larger than ([0, δ),≺δ)
in the ordering v, contrary to maximality of ([0, δ),≺δ). Therefore, Claim 1 is established and δ must be
a limit ordinal.

Two possibilities remain. Either δ is an isolated point of the GO-space [0,∆)T , or else δ is a limit point
of the set [0, δ) in the space [0,∆)T , i.e, either δ ∈ T or δ 6∈ T .

Claim 2 We claim that δ ∈ T is impossible. For suppose δ ∈ T . There are two subcases, depending upon
whether (δ,∆) ∩ T is, or is not, empty.

In the first subcase, we have (δ,∆) ∩ T = ∅, and then [δ,∆)T is identical to the LOTS [δ,∆) with the
usual ordering. Consider the linearly ordered set X = [δ,∆)∗ obtained by reversing the usual order of
[δ,∆), and let <∗ denote the reversal of the usual ordering <. The linearly ordered set ([δ,∆)∗, <∗) has a
final point (namely δ), and the linearly ordered set Y = ([0, δ),≺δ) has 0 as its first point by part (3) of the
definition of acceptable pair. Consequently part (1) of Lemma 2.1 guarantees that the LOTS topology of
the linear order / :=<∗_≺δ on the set X ⊕ Y is homeomorphic to the disjoint sum topology of the space
X ⊕ Y . But because δ ∈ T , we have [0, δ)T ⊕ [δ,∆)T ∼= [0,∆)T so that

X ⊕ Y ∼= Y ⊕X =
(

[0, δ),≺δ,L(≺δ)
)
⊕ [δ,∆)∗ ∼= [0, δ)T ⊕ [δ,∆) = [0, δ)T ⊕ [δ,∆)T = [0,∆)T

showing that [0,∆)T is a LOTS under the linear ordering /, contrary to (*). Therefore the first subcase
cannot occur.

In the second subcase, (δ,∆)∩T 6= ∅. Let η be the first element of (δ,∆)∩T . Then η is a limit ordinal
(because all members of T are limit ordinals) and η + 1 ≤ ∆ because η < ∆. The LOTS [δ, η) with its
usual order < and usual order topology is homeomorphic to the clopen subspace [δ, η)T of [0,∆)T and
hence so is the reversed LOTS Y = ([δ, η)∗, <∗,L(<∗)). Observe that the LOTS X = ([0, δ),≺δ,L(≺δ))
has no final point and that the LOTS Y = ([δ, η)∗, <∗,L(<∗)) has no first point. According to part (2) of
Lemma 2.1 the LOTS topology of the linear order / =≺δ_<∗ on the set [0, η) coincides with the topology
of the topological sum

([0, δ),≺δ)⊕ [δ, η)∗ ∼= [0, δ)T ⊕ [δ, η) ∼= [0, η)T .

Note that the linear order / has a right endpoint, namely δ. Now extend the linear order / on [0, η) to the
set [0, η] by making η greater than each point of ([0, η), /). The set [0, η + 1) with this extension of / is a
member of P that is strictly larger than (δ,≺δ) in the partial order v, and that is impossible. Therefore,
Claim 2 is established.

Claim 3 We claim that δ 6∈ T is also impossible. For suppose δ 6∈ T . Because δ is a limit ordinal (see
Claim 1), the point δ is a limit point of the set [0, δ) in the space [0,∆)T . Because ([0, δ),≺δ) ∈ P we know
that the orders < and ≺δ have exactly the same cofinal subsets of [0, δ), and then Lemma 2.2 allows us to
extend the order ≺δ to a linear order / of the set [0, δ + 1) by making the point δ greater than all points
of ([0, δ),≺δ) and guarantees that the LOTS topology of ([0, δ + 1), /) coincides with the GO topology
[0, δ + 1)T . It is clear that ([0, δ + 1), /) ∈ P and that is impossible by maximality of ([0, δ),≺δ) in P.
Therefore, Claim 3 holds.

In summary, assumption (*) has led us to a maximal element ([0, δ),≺δ) of P and we have proved that
both δ ∈ T and δ 6∈ T are impossible. Consequently, Theorem 2.3 is proved. 2

The hereditary orderability theorem of Purisch, Hirata and Kemoto is an immediate corollary.

Corollary 2.4 Let Z be an initial segment of the ordinals with the usual topology. Any subspace X of Z
is homeomorphic to some LOTS.

Proof: The set X inherits a well-ordering from Z and we have an order isomorphism h from X onto some
set [0,∆) of ordinals. Let S be the topology on [0,∆) that makes h a homeomorphism from X onto
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([0,∆),S). The topology S will fail to be the open interval topology of the usual ordering < of [0,∆) if
and only if there are limit ordinals λ < ∆ such that λ is not a limit of the set [0, λ) in the space ([0,∆),S).
Let T be the set of all limit ordinals λ < ∆ that are not topological limits of [0, λ) in the topology S.
Then X is homeomorphic to the GO-space [0,∆)T obtained from the usual ordinal space [0,∆) by isolating
each point of T . But from Theorem 2.3 we know that [0,∆)T is homeomorphic to some LOTS, and that
completes the proof of the corollary. 2

3 Additional comments

In this section, we use dimension theory definitions from [1]. The following result is part of the folklore.

Lemma 3.1 In any GO-space X, the following three properties are equivalent:

a) Ind(X) = 0

b) ind(X) = 0

c) a connected subset of X has at most one point (i.e., X is totally disconnected). 2

Herrlich’s theorem ([2]; see also Problem 6.3.2 in [1]) is the key to understanding hereditary orderability
in metrizable spaces.

Proposition 3.2 Let X be a metrizable space. Then the following are equivalent:

i) Ind(X) = 0;

ii) X is orderable and Ind(X) = 0;

iii) X is orderable and totally disconnected;

iv) X is hereditarily orderable.

Proof: Herrlich’s theorem is that (i)⇒ (ii), and (ii) and (iii) are equivalent in light of Lemma 3.1. Because
X is metrizable, for any subspace Y ⊆ X we have Ind(Y ) ≤ Ind(X) so that Herrlich’s theorem shows
that (ii)⇒ (iv). Finally, (iv)⇒ (iii) because if X contains a connected subset C with at least two points,
then X contains an infinite connected open interval (a, b) (containing no end points of itself) and a point
c 6∈ [a, b]. But then the subspace Y = (a, b) ∪ {c} is not linearly orderable by any ordering. 2

However, outside the class of metrizable spaces, Ind(X) = 0 is not enough to make a LOTS hereditarily
orderable.

Example 3.3 Let X be the Alexandroff double arrow, i.e., X = [0, 1] × {0, 1} with the lexicographic
ordering. Then X is a compact separable LOTS, and has Ind(X) = 0, but its subspace S := {(x, 1) : x ∈
[0, 1]} is not a LOTS under any ordering, because S has a Gδ-diagonal but is not metrizable. 2

Question 3.4 Characterize those LOTS that are hereditarily orderable.

There is an important topological characterization of orderability by van Dalen and Wattel [6]. By a
nest, van Dalen and Wattel meant a collection that is linearly ordered by set containment. A nest N is
interlocking if, whenever a member N0 ∈ N has N0 =

⋂
{N ∈ N : N 6= N0 and N0 ⊆ N}, then N0 also

satisfies N0 =
⋃
{N ∈ N : N 6= N0, N ⊆ N0}. Van Dalen and Wattel [6] proved:

Theorem 3.5 A T1 space is orderable if and only if it has a sub-base that is the union of two nests, each
of which is interlocking.

That theorem ought to play a key role in studies of hereditary orderability and should give an even shorter
proof of the the theorem of Purisch, Hirata, and Kemoto.
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