A shorter proof of a theorem on hereditarily orderable spaces

by

Harold Bennett¹, Texas Tech University, Lubbock, TX. 79409 and David Lutzer, College of William and Mary, Williamsburg, VA 23187

Abstract: We give a shorter proof a result of Purisch and Hirata and Kemoto that any subspace of any space of ordinals is a LOTS (under some linear ordering).

MathSciNet classifications Primary = 54F05, Secondary = 03E04

******draft of February 13, 2012

1 Introduction

A topological space is orderable if it is homeomorphic to some linearly ordered topological space (LOTS) $(X, <, \mathcal{L}(<))$ where < is a linear ordering of X and $\mathcal{L}(<)$ is the usual open interval topology of <. As the subspace $[0, 1] \cup (2, 3)$ of the usual space \mathbb{R} of real numbers shows, a subspace of a LOTS may fail to be orderable, as may a topological sum of two LOTS (no matter what linear ordering is used).

In their paper [3], Hirata and Kemoto showed that any subspace of any space of ordinal numbers must be orderable (under some ordering), a result that follows from an earlier paper by Purisch [4] [5]. In this paper we give a new proof that is shorter than the proofs given by Purisch or by Hirata and Kemoto, and we raise some questions about hereditary orderability, where we say that a space X is *hereditarily orderable* if each of its subspaces is an orderable space.

Recall that a generalized ordered (GO) space is a triple $(X, <, \tau)$ where < is a linear ordering of X and where τ is a Hausdorff topology on X that has a basis consisting of order-convex (possibly degenerate) sets.

We want to thank the referee whose comments significantly improved this paper.

2 Ordinals are hereditarily orderable

For any linearly ordered set (X, <), the symbol $(X, <)^*$ denotes the set X with the reverse ordering $<^*$. It is easy to see that the LOTS $(X, <, \mathcal{L}(<))$ is homeomorphic to the LOTS $(X, <^*, \mathcal{L}(<^*))$. For a given linearly ordered set X, we sometimes write X^* for $(X, <^*, \mathcal{L}(<^*))$.

Suppose $(X_1, <)$ and (X_2, \prec) are disjoint linearly ordered sets. We use the symbol $(X_1, <) \frown (X_2, \prec)$ to mean the set $X_1 \cup X_2$ with the ordering defined by $a \ll b$ if either $a, b \in X_1$ and a < b, or $a \in X_1$ and $b \in X_2$, or $a, b \in X_2$ with $a \prec b$. We sometimes write $\ll = < \frown \prec$. The relation \ll is always a linear ordering, but if $\mathcal{L}(<)$ and $\mathcal{L}(\prec)$ are the usual open interval topologies on X_1 and X_2 respectively, then the open interval topology $\mathcal{L}(\ll)$ might not be the topology of the topological sum $(X_1, \mathcal{L}(<)) \oplus (X_2, \mathcal{L}(\prec))$. For an example, let $X_1 = [0, 1]$ and $X_2 = (2, 3)$ have their usual orderings. However, there are times when the topological sum of two or more LOTS is guaranteed to be a LOTS.

Lemma 2.1 Let $(X_1, <)$ and (X_2, \prec) be disjoint linearly ordered sets and let \ll be the order $< \neg \prec$.

1) If the LOTS $(X_1, <, \mathcal{L}(<))$ contains a right end point and $(X_2, \prec, \mathcal{L}(\prec))$ contains a left end point, then the topological sum $X_1 \oplus X_2$ is a LOTS under the order \ll .

¹supported by a Texas Tech University Faculty Development Leave

2) If the LOTS $(X_1, <, \mathcal{L}(<))$ contains no right endpoint and if the LOTS $(X_2, \prec, \mathcal{L}(\prec))$ contains no left end point, then the topological sum $X_1 \oplus X_2$ is a LOTS under the order \ll . \Box

Lemma 2.2 Suppose that $(X, <, \tau)$ is a GO-space having a right endpoint $b \in X$, and suppose that b is a τ -limit point of the set $Y = X - \{b\}$. Suppose that \prec is a linear ordering of the set Y such that the open interval topology $\mathcal{L}(\prec)$ on Y coincides with $\tau|_Y$, and suppose that a subset $C \subseteq Y$ is cofinal ² in (Y, <) if and only if C is cofinal in (Y, \prec) . Extend the linear order \prec to a linear order \triangleleft on X by making b larger than each point of (Y, \prec) . Then $\mathcal{L}(\triangleleft) = \tau$, i.e., (X, \triangleleft, τ) is a LOTS.

Proof: It is enough to show that the topologies τ and $\mathcal{L}(\triangleleft)$ agree at the point *b* because, by hypothesis, they agree at each point of the open set *Y*. Because *b* is a limit point of *Y*, the set (Y, \prec) contains no right endpoint. Hence neither does (Y, \prec) .

Let U be a τ -neighborhood of b. We may assume U is order convex with respect to <. Because b is a τ -limit of Y, we may choose $a', a \in U \cap Y$ and a' < a < b. Then $a \in \{x \in X : a' < x < b\} \subseteq U$. We will show that there is some $c \in X$ with $c \triangleleft b$ and $\{x \in X : c \triangleleft x\} \subseteq \{x \in X : a \leq x\} \subseteq \{x \in X : a' < x\}$. If that is not true, then for each $c \in Y$ there is some $d(c) \in Y$ with $c \triangleleft d(c)$ and $d(c) \notin \{x \in X : a \leq x\}$. The set $\{d(c) : c \in Y\}$ is cofinal in (Y, \prec) , and therefore it is also cofinal in (Y, \prec) so there is some d(c) with $a \leq d(c)$, contrary to the choice of d(c). An analogous argument shows that for each $a \triangleleft b$ there is some $c \in X$ and $\{x \in X : c < x\} \subseteq \{x \in X : a \triangleleft x\}$. Consequently, the two topologies τ and $\mathcal{L}(\triangleleft)$ agree at b, as required. \Box

The following example illustrates a key idea in the proof of our main result. Write $2\omega = \omega + \omega$ and $3\omega = \omega + \omega + \omega$. Form a GO-topology τ by isolating the points ω and 2ω in $[0, 3\omega)$. In the usual ordering <, this is not a LOTS because the non-limit points ω and 2ω have no immediate predecessors in the order <. However, in the linear ordering \prec of

$$[0,\omega) \frown \left([\omega, 2\omega)^* \frown [2\omega, 3\omega) \right)$$

the set $\{n : 0 \le n < \omega\}$ has no supremum, and the points ω and 2ω both have immediate predecessors and immediate successors. Consequently $([0, 3\omega), \prec, \tau)$ is a LOTS. Flipping the order on subsegments of a GO-space is the key to our next proof.

Theorem 2.3 Let Δ be any ordinal with $\Delta \geq \omega$ and let T be any set of limit ordinals in $[0, \Delta)$. Let $[0, \Delta)_T$ denote the GO-space obtained from the usual ordinal space $[0, \Delta)$ by isolating every element of T. Then the GO-space $[0, \Delta)_T$ is homeomorphic to some LOTS.

Proof: In this proof, the symbol \cong means "is homeomorphic to" and we use \leq and < to denote the usual well-ordering of $[0, \Delta)$. Interval notation such as $[\alpha, \beta)$ will always refer to intervals in the usual ordinal ordering. For any $\alpha < \Delta$, the symbol $[0, \alpha)_T$ denotes the GO-space obtained from the usual LOTS $[0, \alpha)$ by isolating all points of $T \cap [0, \alpha)$. We will write S for the GO-topology of $[0, \Delta)_T$ and $S_{[\alpha, \beta)}$ for the relative topology that $[\alpha, \beta)$ inherits from $[0, \Delta)_T$. We will argue by contradiction. For contradiction, suppose that

(*) $[0, \Delta)_T$ is not homeomorphic to any LOTS.

By an *acceptable pair* we mean an ordered pair $([0, \alpha), \prec_{\alpha})$ where

- 1) $\alpha \leq \Delta$,
- 2) \prec_{α} is a linear ordering of the set $[0, \alpha)$,
- 3) 0 is the left end point of the linearly ordered set $([0, \alpha), \prec_{\alpha})$,
- 4) a subset $C \subseteq [0, \alpha)$ is cofinal in $([0, \alpha), \prec_{\alpha})$ if and only if C is cofinal in $([0, \alpha), <)$, and
- 5) $\mathcal{S}_{[0,\alpha)} = \mathcal{L}(\prec_{\alpha})$ where $\mathcal{L}(\prec_{\alpha})$ is the usual open interval topology of the linear order \prec_{α} .

²A subset S of a linearly ordered set (X, <) is *cofinal* if for each $x \in X$ there is some $s \in S$ with $x \leq s$.

Let \mathcal{P} be the set of all acceptable pairs. Then \mathcal{P} is not empty because ([0,2),<) is in \mathcal{P} . Partially order \mathcal{P} by the rule that $([0,\alpha),\prec_{\alpha}) \sqsubseteq ([0,\beta),\prec_{\beta})$ if and only if the following four statements hold:

- a) $\alpha \leq \beta$;
- b) $\prec_{\beta} \mid_{[0,\alpha)} = \prec_{\alpha}$ (so that \prec_{β} extends \prec_{α});
- c) if $\alpha < \beta$, then $\{x \in [0, \beta) : x \prec_{\beta} \alpha\} = [0, \alpha)$ (so \prec_{β} adds no points to the domain of \prec_{α});
- d) $\mathcal{L}(\prec_{\alpha}) \subseteq \mathcal{L}(\prec_{\beta}).$

Suppose $C = \{([0, \alpha), \prec_{\alpha}) : \alpha \in A\}$ is a chain in the partially ordered set $(\mathcal{P}, \sqsubseteq)$. For some $\gamma \leq \Delta$, the set $\bigcup \{[0, \alpha) : \alpha \in A\} = [0, \gamma)$. Define $\prec_{\gamma} = \bigcup \{\prec_{\alpha} : \alpha \in A\}$. We will show that $([0, \gamma), \prec_{\gamma})$ is an acceptable pair that is an upper bound for C in $(\mathcal{P}, \sqsubseteq)$.

It is clear that \prec_{γ} is a linear ordering of $[0, \gamma)$ and that its left end point is 0. If $\gamma = \alpha$ for some $\alpha \in A$, then $([0, \gamma), \prec_{\gamma}) = ([0, \alpha), \prec_{\alpha})$ is an acceptable pair that is an upper bound for the chain \mathcal{C} , so assume that $\alpha < \gamma$ for all $\alpha \in A$. Consequently γ is a limit ordinal and the set A is cofinal in the usual ordering of $[0, \gamma)$.

We claim that $([0, \gamma), \prec_{\gamma})$ satisfies part (4) in the definition of an acceptable pair. We first show that the set A is cofinal in the ordering \prec_{γ} . Let $x \in [0, \gamma)$ and choose $\alpha, \beta \in A$ with $x < \alpha < \beta$. In the light of (c) we have $x \in [0, \alpha) = \{y \in [0, \beta) : y \prec_{\beta} \alpha\}$ so that $x \prec_{\gamma} \alpha$. Hence A is cofinal in the order \prec_{γ} . Now suppose that C is a cofinal subset of $([0, \gamma), <)$. Fix $(\alpha, \prec_{\alpha}) \in C$. Choose $x \in C$ with $\alpha < x$ and then choose $\beta \in A$ with $\alpha < x < \beta$. By (c) we have $x \notin [0, \alpha) = \{y \in [0, \beta) : y \prec_{\beta} \alpha\}$ so that $\alpha \preceq_{\beta} x$. Therefore $\alpha \preceq_{\gamma} x$, showing that C is cofinal in the ordering \prec_{γ} . Next suppose that C is cofinal in the ordering \prec_{γ} . If C is not cofinal in the usual ordering < of $[0, \gamma)$ then there is some $\alpha \in A$ with $C \subseteq [0, \alpha)$. Then for each $\beta \in A$ with $\alpha < \beta$ we have $C \subseteq [0, \alpha) = \{y \in [0, \beta) : y \prec_{\beta} \alpha\}$ so that $x \prec_{\beta} \alpha$ for each $x \in C$, and therefore $x \prec_{\gamma} \alpha$ for each $x \in C$. But that is impossible because C is cofinal in the ordering \prec_{γ} .

We next show that $([0,\gamma), \prec_{\gamma})$ satisfies $\mathcal{S}_{[0,\gamma)} = \mathcal{L}(\prec_{\gamma})$, which is part (5) in the definition of an acceptable pair. First note that the collection $\mathcal{B} := \bigcup \{\mathcal{L}(\prec_{\alpha}) : \alpha \in A\}$ is a base for the topology $\mathcal{L}(\prec_{\gamma})$ and that $\mathcal{B}' := \bigcup \{\mathcal{S}_{[0,\alpha)} : \alpha \in A\}$ is a base for $\mathcal{S}_{[0,\gamma)}$. Because we know that $\mathcal{L}(\prec_{\alpha}) = \mathcal{S}_{[0,\alpha)}$ for each $\alpha \in A$, we see that $\mathcal{B} = \mathcal{B}'$ which gives $\mathcal{L}(\prec_{\gamma}) = \mathcal{S}_{[0,\gamma)}$ as required.

Now that we have $([0, \gamma), \prec_{\gamma}) \in \mathcal{P}$, we must show that $([0, \alpha), \prec_{\alpha}) \sqsubseteq ([0, \gamma), \prec_{\gamma})$ for each $\alpha \in A$. Clearly (a) and (b) are satisfied. For (c), note that for each $\alpha < \beta$ in the set A, we have

$$[0,\alpha) = \{ y \in [0,\beta) : y \prec_{\beta} \alpha \} \subseteq \{ y \in [0,\gamma) : y \prec_{\gamma} \alpha \}.$$

To prove that $\{y \in [0,\gamma) : y \prec_{\gamma} \alpha\} \subseteq [0,\alpha)$, suppose $y < \gamma$ satisfies $y \prec_{\gamma} \alpha$. Choose $\beta \in A$ so large that $\{\alpha, y\} \subseteq [0,\beta)$. Then $y \in \{z \in [0,\beta) : z \prec_{\beta} \alpha\} = [0,\alpha)$ as required. To verify (d) note that the collection $\bigcup \{\mathcal{L}(\prec_{\alpha}) : \alpha \in A\}$ is a basis for the topology $\mathcal{L}(\prec_{\gamma})$.

At this stage we know that every chain in $(\mathcal{P}, \sqsubseteq)$ has an upper bound in $(\mathcal{P}, \sqsubseteq)$ so that Zorn's Lemma gives us a maximal element $([0, \delta), \prec_{\delta})$ of \mathcal{P} . We have $\delta \leq \Delta$. If $\delta = \Delta$, then we have contradicted (*) because $([0, \delta), \prec_{\delta})$ satisfies part (5) of the definition of acceptable pair, so we have

(**)
$$\delta < \Delta$$
.

<u>Claim 1</u> We claim that δ must be a limit ordinal. Otherwise write $\delta = \lambda + n$ where λ is a limit and $n \ge 1$ is an integer. Then $[0, \delta)$ has a right endpoint (namely $\lambda + (n - 1)$) in the usual ordinal ordering, so that $\{\lambda + (n - 1)\}$ is a cofinal subset of $[0, \delta)$ in the usual ordering. Therefore $\{\lambda + (n - 1)\}$ is a cofinal subset of $[0, \delta)$ in the linear ordering \prec_{δ} , i.e., $([0, \delta), \prec_{\delta})$ has $\lambda + (n - 1)$ as its right endpoint. Because $\delta < \Delta$ by (**), we know that $\delta + 1 \le \Delta$. Define a linear ordering $\prec_{\delta+1}$ of $[0, \delta + 1)$ that agrees with \prec_{δ} on $[0, \delta)$ and has $\delta = \lambda + n$ as its right endpoint. Then the LOTS $([0, \delta + 1), \prec_{\delta+1}, \mathcal{L}(\prec_{\delta+1}))$ is homeomorphic to the GO-space $[0, \delta+1)_T$ and it is clear that $([0, \delta+1), \prec_{\delta+1})$ belongs to \mathcal{P} and is strictly larger than $([0, \delta), \prec_{\delta})$ in the ordering \sqsubseteq , contrary to maximality of $([0, \delta), \prec_{\delta})$. Therefore, Claim 1 is established and δ must be a limit ordinal.

Two possibilities remain. Either δ is an isolated point of the GO-space $[0, \Delta)_T$, or else δ is a limit point of the set $[0, \delta)$ in the space $[0, \Delta)_T$, i.e., either $\delta \in T$ or $\delta \notin T$.

<u>Claim 2</u> We claim that $\delta \in T$ is impossible. For suppose $\delta \in T$. There are two subcases, depending upon whether $(\delta, \Delta) \cap T$ is, or is not, empty.

In the first subcase, we have $(\delta, \Delta) \cap T = \emptyset$, and then $[\delta, \Delta)_T$ is identical to the LOTS $[\delta, \Delta)$ with the usual ordering. Consider the linearly ordered set $X = [\delta, \Delta)^*$ obtained by reversing the usual order of $[\delta, \Delta)$, and let $<^*$ denote the reversal of the usual ordering <. The linearly ordered set $([\delta, \Delta)^*, <^*)$ has a final point (namely δ), and the linearly ordered set $Y = ([0, \delta), \prec_{\delta})$ has 0 as its first point by part (3) of the definition of acceptable pair. Consequently part (1) of Lemma 2.1 guarantees that the LOTS topology of the linear order $\triangleleft := <^* \frown \prec_{\delta}$ on the set $X \oplus Y$ is homeomorphic to the disjoint sum topology of the space $X \oplus Y$. But because $\delta \in T$, we have $[0, \delta)_T \oplus [\delta, \Delta)_T \cong [0, \Delta)_T$ so that

$$X \oplus Y \cong Y \oplus X = \left([0,\delta), \prec_{\delta}, \mathcal{L}(\prec_{\delta}) \right) \oplus [\delta,\Delta)^* \cong [0,\delta)_T \oplus [\delta,\Delta) = [0,\delta)_T \oplus [\delta,\Delta)_T \oplus [\delta,\Delta)_T = [0,\Delta)_T$$

showing that $[0, \Delta)_T$ is a LOTS under the linear ordering \triangleleft , contrary to (*). Therefore the first subcase cannot occur.

In the second subcase, $(\delta, \Delta) \cap T \neq \emptyset$. Let η be the first element of $(\delta, \Delta) \cap T$. Then η is a limit ordinal (because all members of T are limit ordinals) and $\eta + 1 \leq \Delta$ because $\eta < \Delta$. The LOTS $[\delta, \eta)$ with its usual order < and usual order topology is homeomorphic to the clopen subspace $[\delta, \eta)_T$ of $[0, \Delta)_T$ and hence so is the reversed LOTS $Y = ([\delta, \eta)^*, <^*, \mathcal{L}(<^*))$. Observe that the LOTS $X = ([0, \delta), \prec_{\delta}, \mathcal{L}(\prec_{\delta}))$ has no final point and that the LOTS $Y = ([\delta, \eta)^*, <^*, \mathcal{L}(<^*))$ has no first point. According to part (2) of Lemma 2.1 the LOTS topology of the linear order $\triangleleft = \prec_{\delta} \frown <^*$ on the set $[0, \eta)$ coincides with the topology of the topological sum

$$([0,\delta),\prec_{\delta}) \oplus [\delta,\eta)^* \cong [0,\delta)_T \oplus [\delta,\eta) \cong [0,\eta)_T.$$

Note that the linear order \triangleleft has a right endpoint, namely δ . Now extend the linear order \triangleleft on $[0, \eta)$ to the set $[0, \eta]$ by making η greater than each point of $([0, \eta), \triangleleft)$. The set $[0, \eta + 1)$ with this extension of \triangleleft is a member of \mathcal{P} that is strictly larger than (δ, \prec_{δ}) in the partial order \sqsubseteq , and that is impossible. Therefore, Claim 2 is established.

<u>Claim 3</u> We claim that $\delta \notin T$ is also impossible. For suppose $\delta \notin T$. Because δ is a limit ordinal (see Claim 1), the point δ is a limit point of the set $[0, \delta)$ in the space $[0, \Delta)_T$. Because $([0, \delta), \prec_{\delta}) \in \mathcal{P}$ we know that the orders < and \prec_{δ} have exactly the same cofinal subsets of $[0, \delta)$, and then Lemma 2.2 allows us to extend the order \prec_{δ} to a linear order \triangleleft of the set $[0, \delta + 1)$ by making the point δ greater than all points of $([0, \delta), \prec_{\delta})$ and guarantees that the LOTS topology of $([0, \delta + 1), \triangleleft)$ coincides with the GO topology $[0, \delta + 1)_T$. It is clear that $([0, \delta + 1), \triangleleft) \in \mathcal{P}$ and that is impossible by maximality of $([0, \delta), \prec_{\delta})$ in \mathcal{P} . Therefore, Claim 3 holds.

In summary, assumption (*) has led us to a maximal element $([0, \delta), \prec_{\delta})$ of \mathcal{P} and we have proved that both $\delta \in T$ and $\delta \notin T$ are impossible. Consequently, Theorem 2.3 is proved. \Box

The hereditary orderability theorem of Purisch, Hirata and Kemoto is an immediate corollary.

Corollary 2.4 Let Z be an initial segment of the ordinals with the usual topology. Any subspace X of Z is homeomorphic to some LOTS.

Proof: The set X inherits a well-ordering from Z and we have an order isomorphism h from X onto some set $[0, \Delta)$ of ordinals. Let S be the topology on $[0, \Delta)$ that makes h a homeomorphism from X onto

 $([0, \Delta), S)$. The topology S will fail to be the open interval topology of the usual ordering $\langle of [0, \Delta) if$ and only if there are limit ordinals $\lambda \langle \Delta$ such that λ is not a limit of the set $[0, \lambda)$ in the space $([0, \Delta), S)$. Let T be the set of all limit ordinals $\lambda \langle \Delta$ that are not topological limits of $[0, \lambda)$ in the topology S. Then X is homeomorphic to the GO-space $[0, \Delta)_T$ obtained from the usual ordinal space $[0, \Delta)$ by isolating each point of T. But from Theorem 2.3 we know that $[0, \Delta)_T$ is homeomorphic to some LOTS, and that completes the proof of the corollary. \Box

3 Additional comments

In this section, we use dimension theory definitions from [1]. The following result is part of the folklore.

Lemma 3.1 In any GO-space X, the following three properties are equivalent:

- a) Ind(X) = 0
- b) ind(X) = 0
- c) a connected subset of X has at most one point (i.e., X is totally disconnected). \Box

Herrlich's theorem ([2]; see also Problem 6.3.2 in [1]) is the key to understanding hereditary orderability in metrizable spaces.

Proposition 3.2 Let X be a metrizable space. Then the following are equivalent:

- *i*) Ind(X) = 0;
- ii) X is orderable and Ind(X) = 0;
- *iii)* X *is orderable and totally disconnected;*
- iv) X is hereditarily orderable.

Proof: Herrlich's theorem is that $(i) \Rightarrow (ii)$, and (ii) and (iii) are equivalent in light of Lemma 3.1. Because X is metrizable, for any subspace $Y \subseteq X$ we have $Ind(Y) \leq Ind(X)$ so that Herrlich's theorem shows that $(ii) \Rightarrow (iv)$. Finally, $(iv) \Rightarrow (iii)$ because if X contains a connected subset C with at least two points, then X contains an infinite connected open interval (a, b) (containing no end points of itself) and a point $c \notin [a, b]$. But then the subspace $Y = (a, b) \cup \{c\}$ is not linearly orderable by any ordering. \Box

However, outside the class of metrizable spaces, Ind(X) = 0 is not enough to make a LOTS hereditarily orderable.

Example 3.3 Let X be the Alexandroff double arrow, i.e., $X = [0,1] \times \{0,1\}$ with the lexicographic ordering. Then X is a compact separable LOTS, and has Ind(X) = 0, but its subspace $S := \{(x,1) : x \in [0,1]\}$ is not a LOTS under any ordering, because S has a G_{δ} -diagonal but is not metrizable. \Box

Question 3.4 Characterize those LOTS that are hereditarily orderable.

There is an important topological characterization of orderability by van Dalen and Wattel [6]. By a *nest*, van Dalen and Wattel meant a collection that is linearly ordered by set containment. A nest \mathcal{N} is *interlocking* if, whenever a member $N_0 \in \mathcal{N}$ has $N_0 = \bigcap \{N \in \mathcal{N} : N \neq N_0 \text{ and } N_0 \subseteq N\}$, then N_0 also satisfies $N_0 = \bigcup \{N \in \mathcal{N} : N \neq N_0, N \subseteq N_0\}$. Van Dalen and Wattel [6] proved:

Theorem 3.5 A T_1 space is orderable if and only if it has a sub-base that is the union of two nests, each of which is interlocking.

That theorem ought to play a key role in studies of hereditary orderability and should give an even shorter proof of the theorem of Purisch, Hirata, and Kemoto.

References

- [1] Engelking, R., General Topology Heldermann Verlag, Berlin, 1989.
- [2] Herrlich, H., Ordnungsfhigkeit total-discontinuierlich Raume, Math. Ann. 159 (1965), 77-80.
- [3] Hirata, Y., and Kemoto, N., Orderability of subspaces of well-orderable topological spaces, *Topology* and its Applications 157(2010), 127-135.
- [4] Purisch, S., The orderability and suborderability of metrizable spaces, Transactions Amer. Math. Soc. 226(1977), 59-76.
- [5] Purisch, S., Scattered compactifications and the orderability of scattered spaces, II, Proceedings Amer. Math. Soc. 95(1985), 636-640.
- [6] van Dalen, J., and Wattel, E., A topological characterization of ordered spaces, General Topology and its Applications 3(1973), 347-354.