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1 Introduction
Experience has shown that domain representability of a topological space, an idea borrowed from theoret-
ical computer science, is a very strong completeness property in the sense of the Baire Category Theorem.
For example, de Groot’s subcompactness property [3] implies domain representability [1], and domain
representability implies strong Choquet completeness, i.e., the existence of a winning strategy for the non-
empty player in the strong Choquet game [6], a property that is much stronger than the familiar Baire space
property “the intersection of countably many dense open sets is dense.” Scott-domain representability is
an even stronger completeness property. (Definitions appear in Section 2.)

Experience has also shown that it is difficult for the space Cp(X), the space of continuous real-valued
functions on X with the topology of pointwise convergence, to have strong completeness properties. While
Cp(X) can be a Baire space [4], it rarely has the stronger completeness properties mentioned above. For
example, Tkachuk recently proved that for completely regular X ,Cp(X) is subcompact if and only if X
is discrete, thereby answering an old question posed by Lutzer and van Mill [5]. Knowing that every
subcompact regular space is domain representable, and inspired by Tkachuk’s results and methods, we
began to ask whether Cp(X) could be domain representable, except in the trivial case where X is discrete.
In this paper, we settle that question and generalize Tkachuk’s result for normal spaces, by proving:

Main Theorem: The following properties of a normal space are equivalent:

a) Cp(X) is Scott-domain representable;

b) Cp(X) is domain representable;

c) X is discrete.
1Mathematics Department, Texas Tech University, Lubbock, TX 79409; e-mail = harold.bennett@ttu.edu
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That theorem is proved in Section 3, below. Normality plays a key role in some of the lemmas used to
prove that theorem and we do not know whether our result holds without normality. However, as we prove
in the paper’s final section, parts (a) and (c) of our Main Theorem are equivalent in any pseudo-normal,
completely regular space.

Throughout this paper, all spaces are at least Hausdorff. We reserve the symbol R for the usual space
of real numbers. Cardinals are initial ordinals and for any ordinal β, |β| is the first cardinal that is less than
or equal to β.

2 Definitions and preliminary results

A particularly good introduction to the use of domain theory is given by Martin, Mislove, and Reed in [7]
and we generally follow their terminology and notation. The supremum of a subset S of a partially ordered
set (P,v) is an upper bound u for S in P that has u v v for each upper bound v for S. A nonempty subset
D ⊆ P is directed provided for each pair d1,d2 ∈ D, some d3 ∈ D has d1,d2 v d3. A partially ordered set
is a directed complete partial order (dcpo) if each nonempty directed subset of P has a supremum in P. In
a dcpo, Zorn’s lemma shows that for each x ∈ P, there is a maximal member of p ∈ P with x v p, and the
set of all maximal members of P is denoted by max(P).

Given two elements p,q, of a poset (P,v), we define p � q to mean that for any directed set D with
q v sup(D), some d ∈ D has p v d. For p,q ∈ P we use the notations ⇓(q) = {x ∈ P : x � q} and
⇑(p) = {x ∈ P : p� x}, and the notations ↑(p) = {x ∈ P : pv x} and ↓(q) = {x ∈ P : x v q}.

To say that a poset P is continuous means that for each p ∈ P, the set ⇓(p) is directed and has p =
sup(⇓(p)). A domain is a continuous dcpo, and a Scott domain is a domain with the additional property
that if p,q ∈ P and ↑(p)∩↑(q) 6= /0, then sup(p,q) ∈ P. The following Interpolation Lemma is a key tool
in domain theory [7].

Lemma 2.1 Suppose (P,v) is a domain and a,c∈P with a� c. Then there is some b∈P with a� b� c.
2

Lemma 2.2 Suppose (P,v) is a domain and p,q,r ∈ P with p ∈ ⇑(q)∩⇑(r). Then there is an s ∈ P with
p ∈ ⇑(s)⊆ ⇑(q)∩⇑(r) and s� q and s� r.

Proof: We have that q and r belong to the directed set ⇓(p) so there is some s′ ∈ ⇓(p) with q,r v s′� p.
Apply the Interpolation Lemma 2.1 to find some s ∈ P with s′� s� p. 2

Given a domain P, the collection {⇑(p) : p ∈ P} is the basis for a topology on P that is called the
Scott topology. To say that a topological space X is (Scott) domain representable means that there is a
(Scott) domain (P,v) with the property that max(P), topologized using the relative Scott topology of P, is
homeomorphic to X .

Basic open neighborhoods of a function f in the topology of Cp(X) have the form O( f ,S,ε) = {g ∈
Cp(X) : |g(x)− f (x)|< ε for all x∈ S}where ε > 0, and S is a finite subset of X . Basic open neighborhoods
of f ∈max(P) = Cp(X) have the form ⇑(p)∩max(P) where p ∈ P and p� f . The interplay of these two
kinds of sets will be crucial in the proof of our main theorem.
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Suppose we have a completely regular space X and a continuous f : X → R. It is possible to find
a continuous function that agrees with f on S and has pre-assigned values at finitely many other points.
More precisely, given any closed set S ⊆ X , any finite subset S = {y1, · · · ,yn} ⊆ X −S, and any sequence
r1, · · · ,rn ∈ R, there is a continuous g : X → R with g(x) = f (x) for each x ∈ S and g(yk) = rk. In some
of the lemmas to be proved in Section 4, below, we need even more. We will have a continuous function
f : X → R and a closed set S, and we will want to modify f on a countable, closed, discrete set of points
{zn : n < ω} ⊆ X − S. As the Tychonoff plank and the space of Problem (5I) in [2] show, complete
regularity of X is not enough to allow us to do that. Therefore, our lemmas will deal with completely
regular pseudo-normal spaces, i.e., spaces with the property that given two disjoint closed sets C,D, one
of which is countable, there are disjoint open sets U,V with C ⊆U and D⊆V . For such spaces we have:

Lemma 2.3 Suppose X is completely regular and pseudo-normal. Suppose S is a closed subset of X and
that u ∈Cp(X). If {zn : n < ω} ⊆ X −S is a closed, discrete subset of X and if {rn : n < ω} is any set of
real numbers, then there is a function u1 ∈Cp(X) with u1(x) = u(x) for each x ∈ S and u1(zn) = rn.

Proof: Because X is regular and pseudo-normal, there is a discrete collection {Wn : n < ω} of open subsets
of X with zn ∈Wn ⊆ X−S. Using complete regularity, for each n find a function hn ∈Cp(X) with hn(x) = 0
for each x ∈ X −Wn and hn(zn) = rn−u(zn). Because the collection {Wn : n < ω} is discrete, the function
h = Σ{hn : n < ω} belongs to Cp(X). Hence so does the function u1 = u + h and we see that u1 has the
required properties. 2

3 Proof of the main theorem
As announced in Section 1, the main theorem of our paper asserts that for any normal space, the fol-
lowing three properties are equivalent: (a) Cp(X) is Scott-domain representable; (b) Cp(X) is domain
representable; (c) X is discrete. Clearly (a) implies (b). Also, (c) implies (a) because if X is discrete, then
Cp(X) is the full topological product space RX which is known to be Scott-domain representable. There-
fore it suffices to prove that (b) implies (c). Our proof will quote a sequence of lemmas whose proofs
appear in the next Section of the paper.

For contradiction, suppose X is not discrete and yet Cp(X) is domain representable using a domain
(P,v). Because X is not discrete, there are non-closed subsets of X . Let κ be the least cardinal of a
non-closed subset of X . Then any subset of X with cardinality < κ is closed and discrete, and Lemma 4.1
shows that κ > ω. Fix a subset Y ⊆ X that has cardinality κ and is not closed in X . Fix z ∈ cl(Y )−Y . Well
order Y as Y = {yα : α < κ}.

Because (P,v) is a domain that represents Cp(X), we know that when max(P) is endowed with the
relative Scott topology, max(P) is homeomorphic to Cp(X). We will abuse notation and write max(P) =
Cp(X).

We will say that a 4-tuple (β,D,E,S) is acceptable if

A1) β is an ordinal with β < κ, D∪E ⊂ P, and {z}∪{yα : α < β} ⊆ S ⊆ X ;

A2) |D∪E ∪S| ≤max(|β|,ω);

A3) D and E are both bounded subsets of P;
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A4) if d ∈ D (respectively e ∈ E) then some d̂ ∈ D has d � d̂ (resp., some ê ∈ E has e� ê);

A5) if u1,u2 ∈ max(P) = Cp(X) with D ⊆ ↓(u1)∩ ↓(u2) (respectively, with E ⊆ ↓(u1)∩ ↓(u2)), then
u1(x) = u2(x) for each x ∈ S;

A6) if u1,u2 ∈max(P) with D⊆ ↓(u1) (respectively, with E ⊆ ↓(u1)) and if u2(x) = u1(x) for each x∈ S,
then D⊆ ↓(u2) (resp., E ⊆ ↓(u2));

A7) if u,v ∈ max(P) have D ⊆ ↓(u) and E ⊆ ↓(v), then u(z)+ v(z) = 1 (where z is the limit point of Y
chosen above) and if x ∈ S−{z}, then u(x)+ v(x) = 0.

We will say that an acceptable 4-tuple (β,D,E,S) is fully acceptable provided the sets D and E are directed
subsets of P. Recall that any directed subset of a domain P is a bounded subset of P. Consequently, as the
names suggest, any fully acceptable 4-tuple is also an acceptable 4-tuple. Because constructing directed
sets, rather than just bounded sets, is a challenge, we will need both of these ideas in our paper.

Let Ψ denote the collection of all fully acceptable 4-tuples and partially order Ψ by the rule that
(β1,D1,E1,S1)� (β2,D2,E2,S2) if and only if either (β1,D1,E1,S1) = (β2,D2,E2,S2) or else β1 < β2 and
D1 ⊆D2, E1 ⊆ E2, and S1 ⊆ S2. Corollary 4.6 shows that there is a fully acceptable 4-tuple (1,D∗,E∗,S∗).
Hence Ψ 6= /0. The Hausdorff Maximal Principle then yields a maximal chain Φ⊆Ψ.

Let I = π1[Φ], and write Φ = {(β,Dβ,Eβ,Sβ) : β ∈ I}. Then by Lemma 4.7 we know that I is cofinal
in κ. Let D̂ =

S
{Dβ : β ∈ I}, Ê =

S
{Eβ : β ∈ I} and Ŝ =

S
{Sβ : β ∈ I}. Then D̂ and Ê are directed subsets

of P, because each is the union of a chain of directed subsets of P. Therefore sup(D̂) and sup(Ê) exist in
P, so there are elements u,v ∈max(P) = Cp(X) with D̂⊆ ↓(u) and Ê ⊆ ↓(v).

Consider any yα ∈Y . Because I is cofinal in κ we may choose β∈ I with α < β. Then yα ∈ Sβ. Because
Dβ ⊆ D̂⊆ ↓(u) and Eβ ⊂ Ê ⊆ ↓(v), property (A7) of the fully acceptable 4-tuple (β,Dβ,Eβ,Sβ) guarantees
that u(yα)+ v(yα) = 0 because α < κ. At the same time, we have u(z)+ v(z) = 1 and that is impossible
because u+ v is continuous and z is a limit point of the set Y = {yα : α < κ}. Therefore, modulo proving
the lemmas used above, our main theorem is established. 2

4 Lemmas for the main theorem
This section is devoted to a series of results that combine to give the lemmas used in the proof of our main
theorem in the previous section. Some of the lemmas are proved under the hypothesis that X is completely
regular and pseudo-normal (see Section 2) and the lemmas proved under this weaker hypothesis will be
used in our paper’s final section. Several of our lemmas, however, seems to require the full power of
normality, which accounts for the hypothesis of normality in the main theorem stated in Section 1.

All lemmas in this section use the notation developed in Sections 2 and 3, above. Our first lemma is a
baby version of the arguments used later in this section, and it might be helpful for the reader to see what
happens without all of the general machinery to be developed later.

Lemma 4.1 If X is completely regular and Cp(X) is domain representable, then every countable subset
of X is closed. Hence κ > ω.
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Proof: Let (P,v) be a domain that represents Cp(X). Suppose there is a countable subset Y = {yn : n < ω}
of X that is not closed. Let z ∈ cl(Y )−Y. Because X is completely regular, there is a function u0 ∈Cp(X)
with u0(y0) = 0 and u0(z) = 1. The set O(u0,{y0,z},1) is a neighborhood of u0 in Cp(X) = max(P). Then
there is a point p0 ∈ P with u0 ∈ ⇑(p0)∩max(P) ⊆ O(u0,{y0,z},1). There is a finite set S0 ⊆ X and a
number ε0 ∈ (0,1) with u0 ∈ O(u0,S0,ε0) ⊆ ⇑(p0) ⊆ O(u0,{y0,z},1). Then {y0,z} ⊆ S0. Because X is
completely regular, there is a function v0 ∈Cp(X) with v0(z) = 0 and v0(x) =−u0(x) for all x ∈ S0−{z}.
Then O(v0,S0,ε0) is a neighborhood of v0 in Cp(X) = max(P) so there is a q0 ∈ P with v0 ∈ ⇑(q0)∩
max(P) ⊆ O(v0,S0,ε0). Find a finite set T0 and a positive η0 with O(v0,T0,η0) ⊆ ⇑(q0)∩max(P) ⊆
O(v0,S0,ε0). Then S0 ⊆ T0 and η0 ≤ ε0.

Because X is completely regular and T0 is finite, there is a function u1 ∈Cp(X) with u1(x) = u0(x) for
each x ∈ S0 and u1(x) =−v0(x) for each x ∈ T0−S0. Because S0 ⊆ T0 and η0 ≤ ε0 we have

O(u1,T0,η0)⊆ O(u1,S0,ε0) = O(u0,S0,ε0)⊆ ⇑(p0)

so that we can find some p1 ∈ P with u1 ∈ ⇑(p1)∩max(P) ⊆ O(u1,T0,η0) ⊆ ⇑(p0). Lemma 2.2 allows
us to assume that p0 � p1. Next we find a finite set S1 and a number ε1 ∈ (0,2−1) with O(u1,S1,ε1) ⊆
⇑(p1)∩max(P) ⊆ O(u1,T0,η0). Then T0 ⊆ S1 and ε1 ≤ η0. In addition, we may expand the set S1 if
necessary to insure that y1 ∈ S1.

Because X is completely regular, there is a function v2 ∈ Cp(X) such that v2(x) = v1(x) if x ∈ T0
and with v2(x) = −u1(x) for each x ∈ S1−T0. Then there is some q1 ∈ P with v1 ∈ ⇑(q1)∩max(P) ⊆
O(v1,S1,ε1)⊆ O(v0,T0,η0)⊆ ⇑(q0). Lemma 2.2 allows us to assume that q0 � q1. Then there is a finite
set T1 and a positive η1 with O(v1,T1,η1)⊆ ⇑(q1)∩max(P)⊆ O(v1,S1,ε1) so that S1 ⊆ T1 and η1 ≤ ε1.
Note that if x ∈ S1 with x 6= z, then u1(x)+ v1(x) = 0, while u1(z)+ v1(z) = 1.

This recursion continues, producing a sequence of finite sets {y0,z} ⊆ S0 ⊆ T0 ⊆ S1 ⊆ T1 ⊆ ·· · with
yk ∈ Sk, functions uk,vk ∈ Cp(X), elements p0 � p1 � ··· and q0 � q1 � ··· of the domain P, and
positive numbers ηk ≤ εk < 2−k with O(uk,Sk,εk)⊆ ⇑(pk)∩max(P) and O(vk,Tk,ηk)⊆ ⇑(qk). The sets
{pk : k < ω} and {qk : k < ω} are directed subsets of P and therefore have suprema in P. Therefore
there exist u∗,v∗ ∈ max(P) = Cp(X) with pk � pk+1 v u∗ and qk � qk+1 v v∗ for each k. Hence u∗ ∈
⇑(pk) ⊆ O(uk,Sk,εk) for each k so that if j ≥ k and x ∈ Sk, then |u∗(x)− uk(x)| = |u∗(x)− u j(x)| <
2− j. Consequently u∗(x) = uk(x) whenever x ∈ Sk. Similarly, v∗(x) = vk(x) whenever x ∈ Sk. Therefore,
u∗(z)+v∗(z) = 1 while u∗(x)+v∗(x) = 0 whenever x∈ Sk−{z}. But then yk ∈ Sk gives u∗(yk)+v∗(yk) = 0
for every k while u∗(z)+ v∗(z) = 1. That is impossible because u∗+ v∗ ∈Cp(X) and z ∈ cl({yk : k < ω}).
2

Our next three lemmas show how to extend an acceptable 4-tuple in various ways. In combination,
they show how to extend any fully acceptable 4-tuple to a larger fully acceptable 4-tuple.

Lemma 4.2 Suppose X is completely regular and pseudo-normal and that (β,D,E,S) is an acceptable
4-tuple. Then there is an acceptable 4-tuple (β+1,D+,E+,S+) with D⊆ D+, E ⊆ E+, and S ⊆ S+.

Proof: We know that β < κ so that |β| ≤ β < κ = |κ|, and that yα ∈ S whenever α < β. If yβ ∈ S, then
(β+1,D,E,S) is the required acceptable 4-tuple, so assume yβ 6∈ S. Because D and E are bounded subsets
of P, we fix any u0,v0 ∈ max(P) with D ⊆ ↓(u0) and E ⊆ ↓(v0). Let f0 = u0. Then O( f0,{z,yβ},1)
is a neighborhood of f0 in Cp(X) = max(P) so there is some p0 ∈ P with f0 ∈ ⇑(p0) ∩max(P) ⊆
O( f0,{yβ,z},1). There is a finite set S0 ⊆ X and some ε0 < 20 with O( f0,S0,ε0) ⊆ ⇑(p0)∩max(P) ⊆

5



O( f0,{yβ,z},1). Then {yβ,z} ⊆ S0 and ε0 ≤ 1. Next we use complete regularity of X to modify v0 on
the finite set S0− S. Because |S0∪ S| < κ,S0∪ S is closed discrete. Then there is a function g0 ∈Cp(X)
with g0(x) = v0(x) whenever x ∈ S and g0(x) =− f0(x) if x ∈ S0−S. Then O(g0,S0,ε0) is a neighborhood
of g0 so there is a q0 ∈ P with g0 ∈ ⇑(q0)∩max(P) ⊆ O(g0,S0,ε0). Find a finite set T0 and a positive
η0 with O(g0,T0,η0)⊆ ⇑(q0)∩max(P)⊆ O(g0,S0,ε0). It follows that S0 ⊆ T0 and η0 ≤ ε0. Note that if
x ∈ (S∪S0)−{z} then u0(x)+ v0(x) = 0 while u0(z)+ v0(z) = 1.

We will use a recursive construction. Suppose k > 0 and for 0 ≤ i < k we have finite sets Si and Ti,
positive numbers εi and ηi, and elements pi,qi ∈ P that satisfy:

R1) {yβ,z} ⊆ S0 ⊆ T0 ⊆ ·· · ⊆ Sk−1 ⊆ Tk−1;

R2) pi � p j and qi � q j whenever 0≤ i < j < k;

R3) ηi ≤ εi < 2−i whenever 0≤ i < k;

R4) if 0≤ i < j < k then f j(x) = fi(x) for all x ∈ Si and g j(x) = gi(x) for all x ∈ Ti;

R5) O( fi,Si,εi) ⊆ ⇑(pi)∩max(P) ⊆ O( fi,Ti−1,ηi−1) and O(gi,Ti,ηi) ⊆ ⇑(qi)∩max(P) ⊆ O(gi,Si,εi)
whenever 0≤ i < k;

R6) if x ∈ Si−{z} then fi(x)+gi(x) = 0, and fi(z)+gi(z) = 1;

R7) if i < j < k and x ∈ Sk, then fi(x) = f j(x) and gi(x) = g j(x).

Using complete regularity of X , we define fk by modifying fk−1 on the set Tk−1− (S∪ Sk−1). Because
|Tk−1∪S|< κ, the set Tk−1∪S is closed discrete. Therefore there is some fk ∈Cp(X) with fk(x) = fk−1(x)
if x ∈ S∪Sk−1, and fk(x) =−gk−1(x) if x is in the finite set Tk−1− (S∪Sk−1). Then

O( fk,Tk−1,ηk−1)⊆ O( fk,Sk−1,εk−1) = O( fk−1,Sk−1,εk−1)⊆ ⇑(pk−1)

because Sk−1 ⊆ Tk−1 and ηk−1 ≤ εk−1. Therefore we can find some pk ∈ P with

fk ∈ ⇑(pk)∩max(P)⊆ O( fk,Tk−1,ηk−1)⊆ ⇑(pk−1).

Lemma 2.2 allows us to choose pk with pk−1 � pk. Then there is a finite set Sk ⊆ X and a number
εk ∈ (0,2−k) with O( fk,Sk,εk)⊆ ⇑(pk). Note that Tk−1 ⊆ Sk and εk ≤ ηk−1.

We use complete regularity of X to find some gk ∈Cp(X) with the property that for x∈ S∪Tk−1, gk(x)=
gk−1(x) and if x is in the finite set Sk − (S∪ Tk−1) then gk(x) = − fk(x). Then gk(z) + fk(z) = 1 and
gk(x)+ fk(x) = 0 for each x ∈ (S∪Sk)−{z}. Because Tk−1 ⊆ Sk and εk ≤ ηk−1,

O(gk,Sk,εk)⊆ O(gk,Tk−1,ηk−1) = O(gk−1,Tk−1,ηk−1)⊆ ⇑(qk−1)

so that we can find some qk ∈ P with

gk ∈ ⇑(qk)∩max(P)⊆ O(gk,Sk,εk)⊆ ⇑(qk−1).

Lemma 2.2 allows us to choose qk with qk−1 � qk. Then there is a finite subset Tk ⊆ X and a positive ηk
with

O(gk,Tk,ηk)⊆ ⇑(qk)∩max(P)⊆ O(gk,Sk,εk)
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from which it follows that Sk ⊆ Tk and ηk ≤ εk.

This recursion produces Sk,Tk, fk,gk,εk,ηk, pk, and qk for each k < ω. Note that
S
{Sk : k < ω} =S

{Tk : k < ω}. Define D+ = D∪ {pk : k < ω},E+ = E ∪ {qk : k < ω}, and S+ = S∪
S
{Sk : k < ω}.

Note that S+ is a closed, discrete subspace of X because its cardinality is less than κ. We claim that
(β+1,D+,E+,S+) is an acceptable 4-tuple. We will show that (A1) through (A7) are satisfied by the new
4-tuple.

Conditions (A1) and (A2) are clear because ω < κ by Lemma 4.1. To verify (A3) we will show that
D+ is a bounded subset of P, and the analogous assertion for E+ is proved similarly. If x ∈ S, then
fi(x) = f j(x) for all i, j. If x ∈ Sk and if j > k, then f j(x) = fk(x). Therefore, for each x ∈

S
{Sk : k < ω},

the real number rk = lim{ fk(x) : k→ω} exists. We now invoke the hypothesis that X is completely regular
and pseudo-normal. Lemma 2.3 gives us some function u1 ∈Cp(X) = max(P) with u1(x) = lim{ fk(x) :
k → ω} for each x ∈ S+. Because (β,D,E,S) is an acceptable 4-tuple and u1(x) = u0(x) for all x ∈ S,
we know that D ⊆ ↓(u1). Consider any pk ∈ D+. Because u1(x) = fk(x) for each x ∈ Sk we know that
u1 ∈O( fk,Sk,εk)⊆⇑(pk) so that pk � u1. Hence D+ ⊆ ↓(u1), showing that D+ is a bounded subset of P,
as required in (A3).

Because (β,D,E,S) is given as an acceptable 4-tuple, Condition (A4) holds for the set D, and because
pk � pk+1 it also holds for all points of D+−D. To verify (A5) we will use the function u1 defined above,
and any other u2 ∈Cp(X) = max(P) with D+ ⊆ ↓(u2). Because D ⊆ D+ condition (A5) for (β,D,E,S)
shows that u2(x) = u1(x) for all x ∈ S. We also know that u1(x) = fk(x) for each x ∈ Sk, because of
the way that u1 was defined. Fix some x ∈ Sk and consider any j > k. We know that f j(x) = fk(x).
Also, p j � p j+1 � p j+2 v u2 so that u2 ∈ ⇑(p j+1)∩max(P) ⊆ O( f j+1,Tj,η j) ⊆ O( f j,S j,ε j). Hence
|u2(x)− fk(x)|= |u2(x)− f j(x)|< ε j < 2− j for each j > k, so that u2(x) = fk(x) = u1(x) as claimed.

To verify (A6), consider the function u1 defined above and any other function u2 ∈Cp(X) with u2(x) =
u1(x) for all x ∈ S+. Because (β,D,E,S) is an acceptable 4-tuple we know that D ⊆ ↓(u2). It remains to
show that pk v u2. We note that if x ∈ Sk then u2(x) = u1(x) = fk(x) so that u2 ∈ O( fk,Sk,εk) ⊆ ⇑(pk) ,
giving pk � u2 so that pk v u2 as required.

To verify (A7), suppose u,v ∈Cp(X) with D+ ⊆ ↓(u) and E+ ⊆ ↓(v). Then D⊆ ↓(u) and E ⊆ ↓(v) so
that u(z)+v(z) = 1 while u(x)+v(x) = 0 for each x ∈ S−{z}. Consider any x ∈ S+−S and choose k with
x ∈ Sk. Then u(x) = fk(x) and v(x) = gk(x) so that recursion condition (R6) gives the desired conclusion.
2

Corollary 4.3 Suppose X is completely regular. Then there is an acceptable 4-tuple (1,D,E,S).

Proof: Part (A1) of the definition of acceptable 4-tuple requires that z ∈ S. Consequently, the 4-tuple
(β,D,E,S) = (0, /0, /0, /0) is not acceptable. However, the proof of Lemma 4.2 still applies and is designed
in such a way that it could start with (β,D,E,S) = (0, /0, /0, /0) and produce an acceptable 4-tuple (1,{pk :
k < ω},{qk : k < ω},

S
{Sk : k < ω}) because the construction forces z,y0 ∈ S0. Notice that we do not

need the pseudo-normality hypothesis to get the continuous function that bounds {pk : k < ω}, because
{pk : k < ω} is a directed set in the domain P.2

Lemma 4.4 Suppose X is completely regular and pseudo-normal, and that (β,D,E,S) is a acceptable
4-tuple. Fix p,q ∈ D and r,s ∈ E. Then there is an acceptable 4-tuple (β,D′,E ′,S′) with D ⊆ D′, E ⊆ E ′

and S ⊆ S′ with the property that some d ∈ D′ and some e ∈ E ′ have p,q� d and r,s� e.
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Proof: Because the given 4-tuple is acceptable, we may choose u∗,v∗ ∈Cp(X) = max(P) with D ⊆ ↓(u∗)
and E ⊆ ↓(v∗). Note that any functions u,v ∈Cp(X) that agree with u∗ and v∗ respectively on the closed
discrete set S will also be upper bounds for D and E, respectively, in P.

Let u0 = u∗. Because d ∈D, condition (A4) gives p′ ∈D with p� p′v u0 so that u0 ∈⇑(p). Similarly
u0 ∈ ⇑(q) and v∗ ∈ ⇑(r)∩⇑(s). Choose d0 ∈ P with u0 ∈ ⇑(d0) ⊆ ⇑(p)∩⇑(q). In the light of Lemma
2.2 we may assume that p,q� d0. Choose a finite set S0 and ε0 ∈ (0,20) with u0 ∈O(u0,S0,ε0)⊂ ⇑(d0).
Because X is completely regular and S is closed in X , there is a function v0 ∈Cp(X) with v0(x) = v∗(x)
for each x ∈ S and v0(x) =−u0(x) for each x in the finite set S0−S. Then v0 ∈ ⇑(r)∩⇑(s)∩O(v0,S0,ε0)
so there is some e0 ∈ P with

v0 ∈ ⇑(e0)∩max(P)⊆ ⇑(r)∩⇑(s)∩O(v0,S0,ε0)

and then some finite set T0 and a positive η0 with v0 ∈ O(v0,T0,η0) ⊆ ⇑(e0)∩max(P) ⊆ O(v0,S0,ε0). It
follows that S0 ⊆ T0 and η0 ≤ ε0.

The set S∪S0 is closed and T0− (S∪S0) is finite. Because X is completely regular there is a function
u1 ∈Cp(X) with u1(x) = u0(x) for each x ∈ S∪ S0 and u1(x) = −v0(x) for each x ∈ T0− (S∪ S0). Then
O(u1,T0,η0)⊆ O(u1,S0,ε0) = O(u0,S0,ε0)⊆ ⇑(d0) so there is some d1 ∈ P with u1 ∈ ⇑(d1)∩max(P)⊆
O(u1,T0,η0). Lemma 2.2 allows us to choose d1 with d0 � d1. Then we have a finite set S1 and a number
ε1 ∈ (0,2−1) with O(u1,S1,ε1)⊆ ⇑(d1)∩max(P)⊆ O(u1,T0,η0) so that T0 ⊆ S1 and ε1 ≤ η0.

Because the set S1−(S∪T0) is finite, there is a function v1 ∈Cp(X) with v1(x) = v0(x) for all x∈ S∪T0
and v1(x) = −u1(x) for all x ∈ S1− (S∪T0). Then O(v1,S1,ε1) ⊆ O(v1,T0,η0) = O(v0,T0,η0) ⊆ ⇑(e0).
This allows us to find e1 ∈ P with v1 ∈ ⇑(e1)∩max(P) ⊆ O(v1,S1,ε1) ⊆ ⇑(e0) and with e0 � e1. We
find a finite T1 and a positive η1 with O(v1,T1,η1) ⊆ ⇑(e1)∩max(P) ⊆ O(v1,S1,ε1). Then S1 ⊆ T1 and
η1 ≤ ε1.

This recursion produces uk,vk,Sk,Tk,εk and ηk just as in Lemma 4.2, and just as in that lemma, if we
let D′ = D∪{dk : k < ω}, E ′ = E∪{ek : k < ω}, and S = S∪

S
{Sk : k < ω}we obtain an acceptable 4-tuple

(β,D′,E ′,S′). The hypothesis of pseudo-normality is used when we invoke Lemma 2.3 in the proof that
the sets D′ and E ′ are bounded subsets of P. Because p,q � d0 ∈ D′ and r,s � e0 ∈ E ′, the lemma is
proved.2

Recall that an acceptable 4-tuple (β,D,E,S) is fully acceptable provided the sets D and E are directed
subsets of P, rather than just bounded in P. The next lemma is the first in this section that seems to require
the full force of normality of X .

Lemma 4.5 Suppose X is normal and that (β,D,E,S) is an acceptable 4-tuple. Then there is a fully
acceptable 4-tuple (β,D∗,E∗,S∗) with the property that D⊆ D∗, E ⊆ E∗, and S ⊆ S∗.

Proof: Using a transfinite induction, we will show that there is an acceptable 4-tuple (β,D(1),E(1),S(1))
with D ⊆ D(1),E ⊆ E(1), and S ⊆ S(1), and with the property that for any p,q ∈ D and any r,s ∈ E, some
d ∈ D(1) has p,q � d and some e ∈ E(1) has r,s � e. Once that part of the proof is completed, we will
apply it recursively to obtain acceptable 4-tuples (β,D(k),E(k),S(k)) with D(k)⊆D(k+1), E(k)⊆E(k+1), and
S(k) ⊆ S(k+1) so that each pair p,q ∈ D(k) has some d ∈ D(k+1) with p,q � d and such that an analogous
statement holds for E(k) and E(k+1). Then we let D∗ =

S
{D(k) : k < ω}, E∗ =

S
{E(k) : k < ω}, and S∗ =S

{S(k) : k < ω}. Then the sets D∗ and E∗ are directed subsets of P so that resulting 4-tuple (β,D∗,E∗,S∗)
is fully acceptable, as required.
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To construct D(1) and E(1), we well order the sets D×D and E ×E as {(pα,qα) : α < max(|β|,ω)}
and {(rα,sα) : α < max(|β|,ω)} respectively. Repetitions are allowed, if necessary. Let D0 = D,E0 = E,
and S0 = S.

We use Lemma 4.4 to extend (β,D0,E0,S0) to an acceptable 4-tuple (β,D1,E1,S1) such that some
d ∈ D1 and some e ∈ E1 have p0,q0 � d and r0,s0 � e.

Suppose γ < max(|β|,ω) and that for each α < γ we have an acceptable 4-tuple (β,Dα,Eα,Sα) with
the properties that

aγ) if δ < η < γ then Dδ ⊆ Dη, Eδ ⊆ Eη, and Sδ ⊆ Sη;

bγ ) if δ < η < γ then some d ∈ Dη and e ∈ Eη have pδ,qδ � d and rδ,sδ � e.

In case γ = η + 1, use Lemma 4.4 to extend (β,Dη,Eη,Sη) to (β,Dη+1,Eη+1,Sη+1). The remaining
case is where γ is a limit ordinal. Define Dγ =

S
{Dη : η < γ}, Eγ =

S
{Eη : η < γ} and Sγ =

S
{Sη : η < γ}.

We claim that (β,Dγ,Eγ,Sγ) is an acceptable 4-tuple. There are several things to verify. (A1) clearly holds.
Consider (A2). Each Dη has cardinality less than or equal to max(|β|,ω) and there are at most |γ| many of
them, where |γ| ≤ γ < max(|β|,ω), so that |Dγ| ≤ max(|β|,ω). Similarly, Eγ and Sγ have cardinality less
than or equal to max(|β|,ω).

Next we show that Dγ is a bounded subset of P. Because Sγ has cardinality less than κ, Sγ is closed
an discrete in X . For each α < γ choose some uα ∈Cp(X) with Dα ⊆ ↓(uα). Note that if δ < η < γ, then
Dδ ⊆Dη ⊆ ↓(uη). Property (A5) applied to uδ and uη shows that uη(x) = uδ(x) for each x ∈ Sδ. Therefore
for each x ∈ Sγ, lim{uα(x) : α → γ} is a real number so that the rule x → lim{uα(x) : α → γ} gives a
function from the closed discrete subspace Sγ into the space of real numbers. Normality of X provides a
function uγ ∈Cp(X) that has uγ(x) = lim{uη(x) : η→ γ}, and this uγ ∈max(P) is an upper bound for each
set Dη with η < γ. Therefore uγ is also an upper bound for Dγ. Similarly, Eγ is a bounded subset of P.

Properties (A4), (A5), (A6), and (A7) hold for Dγ and Eγ because they hold for each Dη and Eη with
η < γ.

The above transfinite recursion gives us acceptable 4-tuples (β,Dγ,Eγ,Sγ) for each γ < max(|β|,ω) with
the properties (aγ) and (bγ) for each γ < max(|β|,ω). Because max(|β|,ω) is a limit ordinal less than κ, we
obtain the desired extension (β,D(1),E(1),S(1)) by letting D(1) =

S
{Dγ : γ < max(|β|,ω)},E(1) =

S
{Eγ :

γ < max(|β|,ω)} and S(1) =
S
{Sγ : γ < max(|β|,ω)}. Then, as explained in the proof’s first paragraph, we

obtain the desired fully acceptable 4-tuple. 2

Corollary 4.6 If X is normal, there is a fully acceptable 4-tuple (1,D∗,E∗,S∗).

Proof: By Corollary 4.3, there is an acceptable 4-tuple (1,D,E,S). Now apply Lemma 4.5 to that accept-
able 4-tuple to produce the required fully acceptable (1,D∗,E∗,S∗). 2

Lemma 4.7 Suppose X is normal. Let Φ be a maximal chain in the nonempty poset (Ψ,�). For any
4-tuple in Φ, let π1 be first-coordinate projection. Then the set π1[Φ] = {π1(β,D,E,S) : (β,D,E,S) ∈ Φ}
is cofinal in κ.
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Proof: Write I = π1[Φ] and λ = sup(I). Then λ≤ κ. If λ = κ there is nothing to prove. For contradiction,
suppose λ < κ. If λ ∈ I then choose (λ,D,E,S) ∈ Φ. Because X is completely regular and pseudo-
normal we may apply Lemma 4.2 to (λ,D,E,S) to produce an acceptable 4-tuple (λ + 1,D′,E ′,S′) with
D ⊆ D′,E ⊆ E ′, and S ⊆ S′. Then, because X is normal, we may apply Lemma 4.5 to (λ+1,D′,E ′,S′) to
produce a fully acceptable 4-tuple (λ+1,D∗,E∗,S∗) with D⊆D′⊆D∗,E ⊆ E ′⊆ E∗ and S⊆ S′⊆ E∗. But
then Φ∪{(λ + 1,D∗,E∗,S∗)} is a chain in Ψ that is strictly larger than Φ, and that is impossible. Hence
λ 6∈ I. Therefore λ is an infinite limit ordinal.

Because Φ is a chain in (Ψ,�), we may index the elements of Φ in a monotonic way using their first
coordinates. This allows us to write Φ = {(β,Dβ,Eβ,Sβ) : β ∈ I} with Dβ ⊆ Dγ,Eβ ⊆ Eγ, and Sβ ⊆ Sγ

whenever β < γ are in I. Let D∗∗ =
S
{Dβ : β ∈ I},E∗∗ =

S
{Eβ : β ∈ I} and S∗∗ =

S
{Sβ : β ∈ I}. We

claim that (λ,D∗∗,E∗∗,S∗∗) is a fully acceptable 4-tuple.

Because λ < κ, property (A1) is immediate. To prove (A2) consider D∗∗. This set is a union of at most
|λ|-many sets, each of cardinality less than or equal to max(|γ|,ω) where γ < λ < κ. Hence each of the sets
Dβ used to construct D∗∗ has cardinality less than |λ| and there are at most |λ| many of them so that D∗∗

has cardinality less than or equal to |λ|= max(|λ|,ω). The same statement holds for E∗∗ and S∗∗. Property
(A3) holds because because D∗∗ and E∗∗ are unions of chains of directed subsets of P, and therefore both
D∗∗ and E∗∗ are directed subsets of P.

Properties (A4), (A5), (A6), and (A7) follow directly from the definitions of D∗∗,E∗∗ and S∗∗ as unions
of chains of acceptable 4-tuples. But now we contradict maximality of Φ because (λ,D∗∗,E∗∗,S∗∗) ∈ Ψ

is strictly above every member of Φ. 2

At this point the reader will see that all of the lemmas needed in this section have been established.

5 What to do without normality
In the lemmas of the previous section, only Lemma 4.5, Corollary 4.6, and Lemma 4.7 used the normality
hypothesis. In those three cases, normality was the key to extending a certain function defined on a
possibly uncountable closed discrete subset of X to be a continuous function on all of X . We do not know
how to get around this problem, so we ask

Question 5.1 Suppose X is completely regular and pseudo-normal. If Cp(X) is domain representable,
must X be discrete? Suppose X is completely regular but not discrete. Can Cp(X) be domain repre-
sentable?

As a partial answer to that question, we can prove:

Proposition 5.2 Suppose X is completely regular and pseudo-normal. Then Cp(X) is Scott-domain rep-
resentable if and only if X is discrete.

Proof: As before, it is enough to prove that if Cp(X) is Scott-domain representable, the X is discrete.
Suppose X is not discrete and yet Cp(X) is represented by the Scott domain (P,v). Let κ be the smallest
cardinal such that some subset Y ⊆ X has cardinality κ and is not closed. Well order Y = {yα : α < κ}.
Fix a limit point z ∈ cl(Y )−Y . Define an acceptable 4-tuple as before and let Ψ′ be the collection of all
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acceptable 4-tuples. Then Lemma 4.3 shows that Ψ′ 6= /0. Let � be the partial order used in the previous
section and let Φ′ be a maximal chain in Ψ′. Write I′ = π1[Φ′] and write Φ′ = {(β,D,E,S) : β ∈ I′}. We
claim that I′ is cofinal in κ. If not, then the ordinal λ′ = sup(I′) has λ′ < κ. If λ′ ∈ I′, choose (λ′,D,E,S) ∈
Φ′ and use Lemma 4.2 to extend (λ′,D,E,S) by one step to an acceptable 4-tuple (λ′+ 1,D′.E ′,S′). But
that is impossible because Φ′ is a maximal chain in Ψ′, so λ′ 6∈ I′. Then λ′ is an infinite limit ordinal.
Let D′ =

S
{Dβ : β ∈ I′}, E ′ =

S
{Eβ : β ∈ I′}, and S′ =

S
{Sβ : β ∈ I′}. We claim that D′ is a bounded

subset of P. For each β ∈ I′ we know that Dβ is a bounded subset of P so that, P being a Scott-domain,
sup(Dβ) ∈ P. Note that if β < γ both belong to I′ then Dβ ⊆ Dγ so that sup(Dβ) v sup(Dγ). Hence the
set {sup(Dβ) : β ∈ I′} is a directed subset of P (indeed, a chain in P) so that because P is a domain,
sup({sup(Dβ) : β ∈ I′}) ∈ P, and that element of P is an upper bound in P for the set D′. Similarly E ′ is a
bounded subset of P. (Note that we avoided the use of normality.) Because λ′ is a limit ordinal, the other
properties of an acceptable 4-tuple hold for (λ′,D′,E ′,S′) precisely because they hold for the members
of Φ′ out of which (λ′,D′,E ′,S′) was constructed. But then Φ′∪{(λ′,D′,E ′,S′)} is a chain in Ψ′ that is
strictly larger than Φ′, and that is impossible. Therefore the set I′ is cofinal in κ.

For each β ∈ I′, sup(Dβ) ∈ P because Dβ is a bounded subset of the Scott domain P, and the set
{sup(Dβ) : β ∈ I′} is a directed subset (in fact, a chain) in the domain P. Hence there is some element
u∗ ∈max(P) =Cp(X) that is an upper bound for {sup(Dβ) : β∈ I′}. Similarly there is some v∗ ∈max(P) =
Cp(X) that is an upper bound for the directed set {sup(Eβ) : β ∈ I′}.

Consider any yα ∈ Y . Because I′ is cofinal in κ, some β ∈ I′ has α < β. Because sup(Dβ)v u∗, Dβ ⊆
↓(u∗), Similarly Eβ ⊆ ↓(v∗). Therefore u∗(yα)+ v∗(yα) = 0 while u∗(z)+ v∗(z) = 1. As before, that is
impossible because u∗+ v∗ is continuous and z ∈ cl(Y )−Y . 2
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General Topology II, ed. by J. Hušek and J. van Mill, Elsevier, Amsterdam, 2002.

11


