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1 Introduction

We will say that a topological property P is a strong completeness property
provided any topological product of spaces each having property P will be
a Baire space. The goal of this paper is to show how some open questions
about the strong completeness properties studied by Oxtoby, Choquet, de
Groot and his Amsterdam colleagues in the 1960s and 1970s are closely
related to questions from the relatively new field of domain representability
of topological spaces.

In Section 2 we remind the reader of some classical completeness prop-
erties and questions. in Section 3, we give a brief sketch of what topologists
need to know about domain theory and in Section 4 we present the basic
topology of domain-representable spaces. In Section 5, we describe ques-
tions about domain representable spaces and show how they are linked to
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classical completeness questions from Section 2. In Section 6 we examine
domain-representability and completeness questions in the special context
of generalized ordered spaces constructed on sets of real numbers.

Throughout this paper, we will assume that all spaces are at least Haus-
dorff except where specifically noted. The symbols R, P, and Q are reserved
for the usual sets of real, irrational, and rational numbers, respectively.

2 Classical completeness properties

Baire spaces are topological spaces in which every intersection of count-
ably many dense open sets is dense. Complete metric spaces and locally
compact Hausdorff spaces are the classical examples of Baire spaces. Un-
fortunately, the Baire space property is unstable under formation of topo-
logical products and formation of certain kinds of function spaces, even in
good topological categories. For example, it is possible that X × Y can fail
to be a Baire space, even when both X and Y are metrizable Baire spaces
[14], and research has shown that it is very difficult for the space Cp(X) of
all continuous, real-valued functions on a space X to be a Baire space when
endowed with the pointwise convergence topology [16],[24].

Positive results about products of Baire spaces can be obtained by im-
posing severe restrictions on all but one factor in a product, or by imposing
certain milder, but still restrictive, hypotheses on all factors. As an example
of the first, we have the following consequence of the main result in [1]:

Theorem 2.1 If Z is compact and Y is a Baire space, then Z × Y is a
Baire space. Therefore, if {Xα : α ∈ A} is a collection of Baire spaces in
which all but one are compact, then Π{Xα : α ∈ A} is a Baire space.

As an example of the second, we have the following extension of two classical
theorems:

Theorem 2.2 Let A be any index set. If each space Xα is either a complete
metric space or a locally compact Hausdorff space, then the product space
Π{Xα : α ∈ A} is a Baire space.

Theorem 2.2 is surprising because there is no cardinality restriction on the
index set A, so that the product space is likely to be far outside of the cate-
gories of locally compact spaces and completely metrizable spaces. Theorem
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2.2 led topologists to look for structures strong enough to yield an analog of
Theorem 2.2 for more general spaces. Here are examples of what was found:

Theorem 2.3 Let A be any index set. The product space Π{Xα : α ∈ A}
will be a Baire space if any one of the following holds:

1) each Xα is pseudo-complete in the sense of Oxtoby [23];

2) each Xα is one of subcompact, base-compact, co-compact, or regularly
co-compact in the sense of deGroot and his co-authors [2];

3) each Xα is strongly complete in the sense of Choquet [10].

Because the properties in Theorem 2.3 will be important in later parts of
this paper, we reproduce their definitions here. Let X be a regular space.

a) The space X is pseudo-complete if X has a sequence 〈P(n)〉 of π-bases
with the property that

⋂
{Pn : n ≥ 1} 6= ∅ provided Pn ∈ P(n) and

cl(Pn+1) ⊆ Pn for each n [23].

b) The space X is subcompact if it has a base B of non-empty open sets
with the property that

⋂
F 6= ∅ whenever F ⊆ B has the property

that given B1, B2 ∈ F , some B3 ∈ F has cl(B3) ⊆ B1 ∩ B2. Such a
collection F is called a regular filterbase.

c) The space X is base-compact if it has a base B of open sets with the
property that

⋂
{cl(C) : C ∈ C} 6= ∅ whenever C ⊆ B is centered, i.e.,

has the finite intersection property.

d) The space X is co-compact provided X has a collection C of closed
subsets of X with the property that any centered subcollection of C
has nonempty intersection, and the property that if U is open and
x ∈ U , then some C ∈ C has x ∈ Int(C) ⊆ C ⊆ U . A stronger
property, called regular co-compactness, requires that each C ∈ C is
the closure of its interior, i.e., each C is a regularly closed set. (Clearly
any regularly co-compact space is co-compact, and the Sorgenfrey line
is an example of a co-compact space that is not regularly co-compact
[1].)

e) The strong Choquet game Ch(X) on the space X is a topological game
played as follows. Player 1 selects a pair (x1, U1) where U1 is open and
x1 ∈ U1. Player 2 responds with an open set U2 that must have
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x1 ∈ U2 ⊆ U1. Player 1 specifies a pair (x3, U3) where U3 is open
and x3 ∈ U3 ⊆ U2. Player 2 responds by specifying an open set U4

with x3 ∈ U4 ⊆ U3. This game continues and generates a sequence
(U1, x1), U2, (x3, U3), U4, · · ·. Player 2 wins if

⋂
{Un : n < ω} 6= ∅

and Player 1 wins otherwise. Because the literature is not consistent
concerning the names of the players or the numbering of the moves, we
will use the term non-empty player for the player who chooses the sets
U2, U4, · · · and whose goal is a non-empty intersection

⋂
{Un : n ≥ 1}.

A strategy for the non-empty player is a decision rule ρ that allows the
non-empty player to specify U2n given any sequence of previous moves
(x1, U1), U2, · · · , (x2n−1, U2n−1). The strategy ρ is a winning strategy
for the non-empty player if the non-empty player wins using ρ, no
matter what the other player does. A space X is strongly Choquet
complete if the non-empty player has a winning strategy in the strong
Choquet game on X.

f) We say that a strategy ρ in the strong Choquet game is stationary if
ρ depends only on knowing a pair (x,U) with x ∈ U , i.e., does not de-
pend on knowing all previous moves, and does not depend on knowing
how many moves have already been made. Because of its relationship
with things to come, we mention that in subcompact spaces, and in
Čech-complete spaces(see [25]), the nonempty player has a stationary
winning strategy in the strong Choquet game on X.

As explained in the Introduction, we will use the term strong complete-
ness property for any topological property P such that for any index set
A, if Xα has property P for each α ∈ A, then Π{Xα : α ∈ A} is a Baire
space. Theorems 2.2 and 2.3 above show that Čech completeness, Oxtoby’s
pseudo-completeness, the Amsterdam properties of subcompactness, base-
compactness, co-compactness, regular-co-compactness, and strong Choquet
completeness are each strong completeness properties. Strong completeness
properties were widely studied in the period 1965-1985, and most of the
relationships between them are now known. However, several classical ques-
tions were left open and we mention four that are related to subcompactness
because of their links to questions in Sections 3 and 4, below.

Classical Question 1: Suppose Y is a (dense) Gδ-subspace of
a subcompact space X. Must Y be subcompact? In particular,
is every Čech-complete space subcompact?

Classical Question 2: Suppose that Y 6= ∅ and X × Y is
subcompact. Does it follow that X is subcompact?
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Classical Question 3: Under what conditions is the function
space Cp(X) subcompact?

Classical Question 4: Suppose that (X, τ) is subcompact and
S ⊆ X. Form a new topology τS on X by isolating all points
of S, i.e., by using the collection τ ∪ {{x} : x ∈ S} as a base.
isolating some set of points of X. Must (X, τS) be subcompact?

Classical Question 3 has now been solved [17]; see Theorem 5.7, below. The
other Classical Questions remain open. We mention those four questions
here because, in addition to their intrinsic interest, these four classical ques-
tions have important analogues in the new field of domain representations,
as Sections 3 and 4 will show.

3 Domains and domain representation

Dana Scott introduced a way to construct mathematical models of the
foundations of computer science, in the study of the lambda calculus. Later
researchers, e.g., Edalat, Escuardo, and Martin, used Scott’s construction
in topology. They used the maximal elements of certain kinds of partially
ordered sets (posets) to represent points of a space, with those maximal ele-
ments being approximated by the sub-maximal elements of the posets. Con-
sider the following simple example. Let J be the collection of all non-empty,
closed, bounded intervals in the usual real line R, including degenerate in-
tervals of the form [a, a] = {a} where a ∈ R. Partially order J by reverse
inclusion, i.e., for J,K ∈ J , write J v K to mean that K ⊆ J . Clearly, the
maximal members of J are the singleton sets, so that, in some sense, the
set max(J ) of all maximal elements of J is a copy of R. There is a special
topology on J , called the Scott topology, and when max(J ) is topologized
as a subspace of J using the relative Scott topology, then max(J ) becomes
homeomorphic to R. We say that (J ,v) represents R.

The above example, where (J ,v) represents R, is a special case of a
more general construction. Start with a poset (P,v). A subset D ⊆ P is
directed if it is non-empty and has the property that for any a, b ∈ D, some
c ∈ D has a, b v c. To say that an element p ∈ P is the supremum of a set
S ⊆ P means p is an upper bound for S and p v q for every upper bound q
for S. To say that (P,v) is a directed complete partial order (dcpo) means
that every directed subset of P has a supremum in P . Then Zorn’s lemma

5



provides maximal elements of a dcpo, and the set of all maximal points of
a dcpo P is denoted by max(P ).

There is an auxiliary relation � defined as follows: for a, b ∈ P we say
that a � b provided that for every directed set D with b v sup(D), some
d ∈ D has a v d. The set {b ∈ P : b � a} is denoted by ⇓(a), and we say
that the poset (P,v) is continuous provided each set ⇓(a) is directed and
has a = sup(⇓(a)). A continuous dcpo is called a domain. If a domain P
has the additional property that each non-empty bounded subset of P has
a supremum in P , then we say that (P,v) is a Scott domain.

Suppose (P,v) is a domain. Then, with ⇑(a) := {c ∈ P : a � c}, the
collection of all sets ⇑(a) for a ∈ P is a basis for a topology on P called the
Scott topology. To say that a topological space (X, τ) is domain representable
means that there is a domain (P,v) such that (X, τ) is homeomorphic to
max(P ) when the latter carries the relative Scott topology. If the poset
(P,v) is actually a Scott domain, rather than just a domain, we say that
X is Scott-domain representable. For a readable survey of domain theory in
topology, see [19].

Martin’s paper [18] made it clear that domain representability is a topo-
logical completeness property. He showed, for example, that any domain rep-
resentable space is a Baire space, and more generally that domain-representable
spaces are actually Choquet complete. Consequently, any metrizable domain
representable space is completely metrizable. See below for further examples
of Martin’s results.

4 The basic topology of domain representable and
Scott-domain representable spaces

Suppose that (P,v) is a domain. The space P with the Scott topology is
not a good space in the traditional sense – for example, it is T0 but almost
never T1. However, its dense subspace max(P ) will always be T1 and might
have other nice topological properties.

The most basic topology of domain representable spaces and Scott-
domain representable spaces is now understood. A rule of thumb for formu-
lating conjectures is that domain representability seems to behave like the
Baire space property, or perhaps like subcompactness. It is not surprising
that being domain representable and being Scott-domain representable are
both open-hereditary properties. However, like the Baire space property,
neither is closed-hereditary, as can be seen from an easy example-machine.
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Take any completely regular space X that is not domain representable (there
are many such spaces, e.g., Q). The space βX is Scott-domain repre-
sentable, being compact Hausdorff, and in [3] we showed that if one forms
a new space by isolating each point of βX − X, the resulting space Y is
also Scott-domain representable. Note that X is a closed subspace of Y .
Thus, neither domain representability nor Scott-domain representability is
a closed-hereditary property.

Classical Question 1 has an analog for domain representable spaces that
asks whether Gδ-subsets inherit domain representability. In [3] we gave
an affirmative answer, showing that domain representable spaces behave
differently from Baire spaces and perhaps also differently from subcompact
spaces.

Theorem 4.1 Suppose Y is a Gδ-subset of a domain-representable space
X. Then Y is also domain-representable. (Note that we do not assume that
cl(Y ) = X.)

It is surprising that Scott-domain representability behaves still differently,
as can be seen from an example in [5]:

Example 4.2 There is a Scott-domain representable Moore space with a
(closed) Gδ-subspace that is not Scott-domain-representable.

Classical Question 2 has an analog for domain representability. It is
known that the product of two (Scott) domain-representable spaces is again
(Scott) domain representable. However, the next question is open:

Domain Question 1: Suppose the product space X × Y is
(Scott-) domain-representable, where Y 6= ∅. Is X (Scott-) do-
main representable? What if the factor Y has additional prop-
erties such as compactness or metrizability?

Classical Question 3 (about the function space Cp(X)) has an analog for
domain representability that has been solved for normal spaces (see Theorem
5.8, below). The analog of Classical Question 4 (about the effect of isolating
a set of points in a subcompact space) has been answered in [3] for domain
representable spaces:

Proposition 4.3 Suppose (X, τ) is domain representable and S ⊆ X. With
τS as in Classical Question 4, the space (X, τS) is domain representable.

7



The preservation of domain representability (respectively, Scott-domain
representability) by topological operations such as perfect mappings, open-
compact mappings, etc., remains to be clarified.

5 Domain representability and strong complete-
ness properties

K. Martin [18] answered a question about domain representability of spaces
in elementary analysis by proving that if (P,v) is a domain, then in the
subspace max(P ), the non-empty player has a winning strategy in the strong
Choquet game. Thus, any domain representable space is strongly Choquet
complete (so that, for example, Q is not domain representable), and domain
representability is what we called a “strong completeness property” because
any product of domain representable spaces is a Baire space.

Domain Question 2: What is the relationship between domain
representability and the classical strong completeness properties
mentioned above?

Some parts of the answer to Domain Question 2 are known. In [3] we proved

Proposition 5.1 Any subcompact T3 space is domain representable.

How is domain representability related to the other strong completeness
properties? Theorem 4.1 shows that any Čech-complete space is domain-
representable. The Sorgenfrey line is domain-representable but not Čech-
complete [3], showing that domain-representability is strictly weaker than
Čech-completeness. That a pseudo-complete space can fail to be domain
representable is an easy consequence of the facts that (i) a metric space is
pseudo-complete if and only if it has a dense completely metrizable sub-
space [2], while (ii) a metric space is domain representable if and only if
it is completely metrizable [18]. The following example shows that domain
representability is strictly stronger than strong Choquet completeness. It
depends on Theorems 5.8 and 5.11, below.

Example 5.2 Let X be the set [0, ω1] topologized in such a way that each
countable ordinal is isolated and so that neighborhoods of ω1 are co-countable.
Then the function space Cp(X) is pseudo-complete and strongly Choquet
complete (and the nonempty player has a stationary winning strategy in
Ch(Cp(X))), but Cp(X) is not domain representable.
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The most important part of Domain Question 2 grows out the the fact,
noted above, that every subcompact T3-space is domain representable.

Domain Question 3: Is it true that every domain representable
space is subcompact?

We expect a negative answer to Domain Question 3 and Gδ-subspaces of
the cube X = [0, 1]c (where c = 2ω) are natural potential counterexamples3.
Any counterexample to Domain Question 3 would also be a counterexample
for Classical Question 1. Indeed, the linkage between Classical Question 1
and Domain Question 3 is very strong because we have:

Proposition 5.3 If every domain representable space is subcompact, then
every Gδ-subspace of a subcompact space is subcompact.

Notice that Proposition 5.3 does not restrict its conclusion to dense Gδ-
subspaces. Therefore, if one could find any Gδ-subspace of a subcompact
space that is not subcompact, one would have a solution for both Classical
Question 1 and Domain Question 3. Whether this observation makes life
easier is not yet clear.

There are many potential approaches to finding the expected counterex-
ample in Domain Question 3 beyond the big-cube example mentioned above.
For example:

Domain Question 4: Must every domain-representable space
be pseudo-complete in the sense of Oxtoby?

A negative answer to Domain Question 4 would also give an example of a
domain-representable space that is not subcompact (because every subcom-
pact space is pseudo-complete).

Classical Question 4 asked about the effect of isolating some set of points
in a subcompact space – would the result remain subcompact? As noted in
Proposition 4.3, isolating any set of points in a domain-representable space
always produces a domain-representable space, so that a negative answer

3In an earlier version of this paper, we suggested letting D be a countable dense subset
of X = [0, 1]c and we asked whether X − D must be subcompact. After hearing a talk
on this paper at the Milwaukee Topology Conference, William Fleissner sent us a clever
proof that X −D must be subcompact. Other Gδ-subspaces of X might still provide the
expected counterexamples.
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to Classical Question 4 would also provide a negative answer to Domain
Question 3.

One particularly nice property of subcompactness (and also of Baire
spaces in general) is that “local implies global.” More precisely, if X has
an open cover by subcompact subspaces (respectively, by Baire subspaces),
then X is subcompact (respectively, a Baire space) [2].

Domain Question 5: Suppose X is T3 and has an open cover
by domain-representable subspaces. Is X domain-representable?

Domain Question 5 is interesting even when the open covers are finite. Note
that a negative answer to Domain Question 5 would give a negative answer
to Domain Question 3. (Also note that “local implies global” fails for Scott-
domain representable spaces [9].)

There is a delicate linkage between domain representability and the
strong Choquet game. K. Martin’s proof [18] that any domain representable
space is strongly Choquet complete produced an interesting bit of extra in-
formation. If X is domain representable, then the non-empty player has a
winning strategy ρ in the strong Choquet game on X where ρ depends only
on the previous two moves in the game (rather than on the entire history
of the game so far), and ρ does not need to know how far along the game is
(i.e., whether the non-empty player is responding to move 17 or move 117.)
This is unusual and raises

Domain Question 6: If X is domain representable, does the
non-empty player have a winning strategy in the strong Choquet
game that depends on knowing just one previous move? That is,
does the non-empty player have a stationary winning strategy in
the strong Choquet game on X?

Because the non-empty player is known to have a stationary winning strat-
egy in the strong Choquet game in a subcompact space, a negative answer
to Domain Question 6 would give a negative answer to Domain Question 2.

Instead of asking about the relation between domain representability and
classical completeness properties in general spaces (as in Domain Questions
2 and 3), one can restrict attention to some special class C of spaces and
show that subcompactness and domain representability are equivalent for
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members of C 4. The most spectacular result of this type focuses on the
class C of metrizable spaces. It combines classical theorems with newer
results of K. Martin [18] (who proved the equivalence of (a) and (d)) and
of Kopperman, Kunzi, and Waszkiewicz [15] (who proved that (a) implies
(e)), thereby linking domain representability with a family of properties
long-known to be mutually equivalent in metric spaces.

Theorem 5.4 For a metrizable space X, the following are equivalent:

a) X is Čech complete and hence completely metrizable;

b) X has one of the Amsterdam properties (subcompactness, base com-
pactness, regular co-compactness, co-compactness);

c) X is strongly Choquet complete;

d) X is domain representable;

e) X is Scott-domain representable.

That theorem is consistent with a rule of thumb that, among metric spaces
there is only one type of completeness. However, outside of the metrizable
category, the equivalence described in Theorem 5.4 breaks down. For exam-
ple, consider the broader class of Moore spaces5. In the following theorem,
parts (ii) and (iii) are classical, and part (i) is a combination of results from
[2] and [9].

Theorem 5.5 Let X be a Moore space.

i) The following properties of X are equivalent: subcompactness, Rudin
completeness, the nonempty player has a winning strategy in the strong
Choquet game on X, and the nonempty player has a stationary winning
strategy in the strong Choquet game on X.

ii) If X is also completely regular, the following properties X are equiva-
lent: Moore completeness, Čech completeness.

4A proposition that subcompactness and domain representability are equivalent notions
in a certain class C could have some utility, because it would follow, for example, that
Gδ-subspaces in C of subcompact spaces inherit subcompactness, and that locally domain-
representable spaces in C are domain representable.

5A regular space X is a Moore space provided there is a sequence 〈G(n)〉 of open covers
of X with the property that for each x ∈ X, the collection {St(x,G(n)) : n < ω} is a base
of neighborhoods at x.
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iii) There are completely regular Moore spaces with the properties in (i)
that are neither Moore-complete nor Čech-complete.

As it happens, most of the equivalences in part (i) of Theorem 5.5 hold
in the wider class of BCO spaces (i.e., spaces with a base of countable order
in the sense of Worrell and Wicke [26]) and coincide with the property “X
has a monotonically complete BCO.”

There appears to be another old rule of thumb that there are just two
types of completeness among Moore spaces (namely Rudin completeness
and Moore completeness), but that old rule of thumb is wrong. Tall showed
that the classical properties of base compactness and co-compactness are
not equivalent to either Rudin or Moore completeness, and Example 4.5 in
[9] is a Čech-complete Moore space that is not Scott-domain representable.

Scott-domain representability is a very interesting and delicate property
in Moore spaces and the following question remains open:

Domain Question 7: Characterize Scott-domain representabil-
ity in the category of Moore spaces.

A theorem in [15] links Scott-domain representability with de Groot’s co-
compactness [13] and shows that, among completely regular spaces, Scott-
domain representability is equivalent to co-compactness plus a bitopological
condition called “pairwise complete regularity” with respect to a certain co-
topology in the sense of de Groot. It is not clear how to apply that result
in the Moore space context, and that leads to

Domain Question 8: Is there a completely regular Moore space
that is co-compact but not Scott-domain-representable?

Mǐskin’s characterizations of base-compact and regularly-co-compact Moore
spaces [22] may be useful in studying Domain Question 8.

Spaces with a Gδ-diagonal are a generalization of both metric spaces and
Moore spaces. In [4], we proved:

Proposition 5.6 Suppose that X is a T3-space with a Gδ-diagonal. Then
X is domain-representable provided the non-empty player has a stationary
winning strategy in the strong Choquet game on X.

Recall that a strongly Choquet complete space is one in which the non-
empty player has a winning strategy in the strong Choquet game. However,
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in general, one does not know how much information that wining strategy
requires in order to choose the next step of the game. The fact that Propo-
sition 5.6 assumed the existence of a stationary winning strategy raises a
natural question:

Domain Question 9: Suppose X is a T3-space and has a
Gδ-diagonal, and suppose that the nonempty player has a not-
necessarily-stationary winning strategy in the strong Choquet
game on X. Must X be domain representable?

If that question has an affirmative answer, then domain representability is
equivalent to strong Choquet completeness among regular spaces with a
Gδ-diagonal. That would be surprising. There are variations of Domain
Question 9 that ask about regular spaces with a Gδ-diagonal in which the
nonempty player has a Markovian winning strategy, i.e., one that depends
only on the opponent’s previous move and on the number of moves already
made.

Next, recall Classical Question 3 concerning subcompactness in Cp(X),
the space of continuous real-valued functions on X, endowed with the topol-
ogy of pointwise convergence. If X has the discrete topology, then Cp(X) =
RX , which is subcompact because any topological product of subcompact
spaces is subcompact. Jan van Mill asked whether Cp(X) could be subcom-
pact in any other situation. A recent paper by Lutzer, van Mill, and Tkačuk
[17] used Tkačuk’s techniques to prove:

Theorem 5.7 Suppose X is completely regular. Then Cp(X) is subcompact
if and only if X is discrete.

Theorem 5.7 suggests looking at function spaces of the type Cp(X) to see
when they are domain representable. Either one might obtain a generaliza-
tion of the previous theorem (because subcompact spaces are domain repre-
sentable) or one might obtain a space Cp(X) that is domain representable
but not subcompact. As it happens, in [7] we proved:

Theorem 5.8 Suppose X is a normal space. Then the following are equiv-
alent:

a) X is discrete;

b) Cp(X) is subcompact;
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c) Cp(X) is domain representable;

d) Cp(X) is Scott-domain representable.

The proof in [7] uses normality in a crucial way, and this raises the question:

Domain Question 10: Can Theorem 5.8 be proved if X is
completely regular, but not necessarily normal? (If not, then
there is a counterexample to Domain Question 2.)

Certain variations of Theorem 5.8 are available. Recall that a space X
is pseudo-normal if any two disjoint closed sets have disjoint neighborhoods,
provided one of the sets is countable. Clearly, pseudo-normality is weaker
than normality, and sometimes it is enough. For example, we have:

Theorem 5.9 Suppose X is completely regular and pseudo-normal. Then
Cp(X) is Scott-domain-representable if and only if X is discrete.

Theorem 5.9 immediately raises a variation of Domain Question 9, namely

Domain Question 11: Suppose X is completely regular and
Cp(X) is Scott-domain representable. Must X be discrete?

One way to weaken the hypothesis of normality in Theorem 5.8 is to put
restrictions on the limit-point structure of X. For example, a space X is
pseudo-radial provided that whenever S is a non-closed subset of X, there is
some x ∈ X−S, some cardinal κ, and some net {x(α) : α < κ} of points of S
that converges to x. Clearly first-countable spaces and generalized ordered
spaces (see below) are examples of pseudo-radial spaces. The following is
proved in [6]:

Theorem 5.10 Suppose that X is completely regular and pseudo-radial.
Then the following are equivalent:

a) Cp(X) is domain representable;

b) X is discrete;

c) Cp(X) is Scott-domain representable.
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The previous four results have asked about domain-representability of
function spaces with the pointwise convergence topology. As it happens,
these same function spaces can be used to produce examples related to the
other strong completeness properties mentioned above, e.g., in our Example
5.2. In [6] we proved:

Proposition 5.11 Suppose the space X is completely regular and pseudo-
normal. Then the following are equivalent:

a) every countable subset of X is closed;

b) Cp(X) is strongly Choquet complete and the non-empty player has a
stationary strategy in the strong Choquet game played in Cp(X);

c) Cp(X) is strongly Choquet complete;

d) Cp(X) is pseudo-complete in the sense of Oxtoby [Ox].

Domain Question 12: Can the equivalence in Proposition 5.11
be proved without assuming that X is pseudo-normal?

6 Domain-representability and subcompactness in
GO-spaces

Recall that a generalized ordered space (GO-space) is a triple (X, <, τ) where
(X, τ) is a Hausdorff space with a base of open sets that are convex with
respect to the ordering <. Typically one constructs GO-spaces by specifying
which points of a linearly ordered set (X, <) are to be isolated, which points
x ∈ X have basic neighborhoods of the form [x, y[ with x < y, or ]w, x]
with w < x, or ]u, v[ with u < x < v, and all such GO-spaces are said to
be constructed on X. Even when X is the set of real numbers, interesting
GO spaces such as the Sorgenfrey and Michael lines can be constructed on
X.

Earlier sections surveyed known results on the relation between domain
representability and other strong completeness properties in Moore spaces
and function spaces. GO-spaces are another topological category in which
that relationship can be investigated and in this section we present a family
of results related to the following special case of Domain Question 2:
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Domain Question 13: How are the other strong completeness
properties related to domain representability among GO-spaces?
In particular, is there a GO-space that is domain-representable
but not subcompact? What about GO-spaces constructed on R
or on subsets of R?

We do not know the answer to those questions and this section presents
preliminary results. Proofs will appear in [8].

GO-spaces constructed on (subsets of) the set of real numbers have been
useful counterexamples in product theory and in the study of the Amsterdam
completeness properties, so it is natural to wonder whether they might have
a role to play in studying the relationship between subcompactness and
domain representability. All GO-spaces constructed on the entire set R are
known to be domain representable [12], and even more:

Theorem 6.1 Any GO-space constructed on the space R is domain repre-
sentable by a Scott domain.

Might there be such spaces that are not subcompact? The answer is
“No”, as our next result shows:

Proposition 6.2 Let τ be any GO-topology defined on the set R. Then
(R, τ) is subcompact.

Proposition 6.2 shows that no GO-space constructed on the entire set
R can be a counterexample to Domain Question 2, but perhaps there are
GO-spaces constructed on subsets of R that could provide the desired coun-
terexample. As a start, this requires understanding which subsets of R can
support subcompact GO-topologies, and which can support domain repre-
sentable GO-topologies.

Proposition 6.3 Let X ⊆ R and let σ be a GO-topology on X. The fol-
lowing are equivalent:

a) (X, σ) is subcompact

b) there is some GO-topology τ on R such that X is a Gδ-subset of (R, τ)
and σ = τ |X

c) for every GO-topology τ on R with σ = τ |X , X is a Gδ-subset of
(R, τ).
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As a consequence of Proposition 6.3, no GO-space constructed on a sub-
set of R can provide counterexamples to Classical Question 1 or Classical
Question 4 because we have:

Corollary 6.4 Suppose X ⊆ R and suppose that σ is a GO-topology on X
that is subcompact. Then:

a) any Gδ-subspace of (X, σ) is subcompact

b) if T ⊆ X and if σT denotes the topology on X having the collection
σ ∪ {{x} : x ∈ T} as a base, then (X, σT ) is also subcompact.

Now we return to the theme of comparing subcompactness and domain
representability in GO-spaces constructed on subsets of R. We need to un-
derstand which GO-spaces (X, σ), for X ⊆ R, will be domain representable.
The best result to date concerns GO-spaces that are dense-in-themselves,
i.e., spaces with no isolated points:

Proposition 6.5 Suppose X ⊆ R and suppose that σ is a dense-in-itself
GO-topology on X such that (X, σ) is domain representable. Then there is
a subset Y ⊆ X that is dense in (X, σ) and is a Gδ-subset of the usual space
of real numbers. Consequently, (Y, σ|Y ) is a dense subcompact subspace of
(X, σ).

The property given in Proposition 6.5 has independent interest because
we can prove:

Proposition 6.6 Suppose (X, σ) is a dense-in-itself GO-space constructed
on some subset X ⊆ R. The following are equivalent:

a) (X, σ) is pseudocomplete in the sense of Oxtoby

b) There is a Gδ-subset S of the usual real line (R, λ) that is a dense
subspace of (X, σ)

c) The space (X, σ) has a dense subcompact subspace.

Proposition 6.5 eliminates many of the more pathological subsets of
the real numbers from consideration in the search for domain representable
spaces that are not subcompact. For example, no Q-set, no set with cardi-
nality less than 2ω, no totally non-meagre subset, and no Bernstein set can
carry a dense-in-itself GO-topology that is domain representable, because
none of these spaces could contain a dense subspace that is a Gδ-subset of
the usual real line.
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Domain Question 14: (a) For which subsets X ⊆ R is there
some dense-in-itself GO-topology τ on X with the property that
(X, τ) is domain-representable? (b) For which subsets X ⊆ R
will (X, τ) be domain representable for every dense-in-itself GO-
topology τ on X?

There are other questions that might be solved using GO-spaces con-
structed on subsets of R. Recall Ch(X), the strong Choquet game described
in Section 2. K. Martin showed in [18] that if X is domain representable,
then the non-empty player has a winning strategy in Ch(X). One can clas-
sify winning strategies based on how much of the history of the game is used
by the strategy in designing its next move. Some strategies require perfect
information, i.e., knowing the entire history of the game up to now. Others
need to know only the opponent’s move and how many moves have already
been made. Still others need to know only the single preceding move of
the opponent, and these are called stationary strategies. Martin observed
that in a domain representable space X, the nonempty player has a winning
strategy in Ch(X) that depends on at most the two preceding moves. In
[4] we showed that if X is a regular space with a Gδ-diagonal and if the
nonempty player has a stationary winning strategy in Ch(X), then X is
domain representable. Any GO-topology on any subset of R will have a Gδ-
diagonal and this suggests a way to explore the difference between various
types of winning strategies in Ch(X):

Domain Question 15: Suppose σ is a GO-topology on a sub-
set X ⊆ R and suppose that the nonempty player has a winning
strategy in Ch(X, σ). Is (X, σ) domain representable? Next sup-
pose (X, σ) is domain representable. Does the nonempty player
have a stationary strategy in Ch(X, σ). What if we restrict at-
tention to dense-in-themselves GO-spaces on subsets of R?

7 Other directions

The referee pointed out that there are additional topics for investigation
that are related to the topic of this paper. Recall the definition of the �
relation in a domain P : we say that a � b if whenever D is a directed
subset of P with b v sup(D), then some d ∈ D has a v d. In a 2002
article, Coecke and Martin [11] used posets to model finite dimensional
quantum states and were forced to introduce a weaker relation �w, defined
as follows: a �w b provided if D ⊆ P is directed and b = sup(D), then
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some d ∈ D has a v d. Analogous to ⇓(q) in a domain, the set ⇓w(q) :=
{p ∈ P : p �w q} and ⇑w(p) is similarly defined. A poset P is exact if
each ⇓w(q) is directed and sup(⇓w(q)) = q for all q ∈ P . Another technical
requirement is that the relation �w must be weakly increasing (see [20]
for the technical definition), and a weak domain is a dcpo that is exact
and in which �w is weakly increasing. A topological space is weak domain
representable if there is a weak domain P such that X is homeomorphic to
max(P ) with the relativized version of the topology induced on P by the
collection {⇑w(p) : p ∈ P}. See [20] for a survey. Even though for a point
q ∈ max(P ) there is no difference between p �w q and p � q, there is
a major difference between weak domain representability and the domain
representability studied in earlier sections. Weak domain representability is
strictly weaker than domain representability as can be seen from Mashburn’s
proof that the usual space Q of rational numbers is a dense open subset of a
weakly domain representable space X (showing that X is not even a Baire
space), so that weak domain representability is not a strong completeness
property in the sense of this paper.

Many basic questions about weak domain representability remain open
– see [21] for a listing. One of Mashburn’s questions in [21], asks “If Y is a
weak domain representable Baire space, must Y be domain representable?”
We can use a result of Mashburn from [21] to answer that question in the
negative. Mashburn proved:

Proposition 7.1 Suppose X is a LOTS. Then X is homeomorphic to a
dense open subset of a weak domain representable space.

To apply Proposition 7.1, begin with a Bernstein set B ⊆ R, (i.e., neither
B nor R−B contains an uncountable compact set). Note that B is a Baire
space and that in its relative topology from R, B is a LOTS. Therefore
Proposition 7.1 shows that B is a dense open subset of a weak domain
representable space Y . Because B is a Baire space, so is Y . We claim that
Y is the required example: if Y were domain representable, then so would be
its dense open subspace B, and B cannot be domain representable because
B is metrizable but not completely metrizable (see Theorem 5.4).
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