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Abstract

In this paper we study spaces in which each compact subseGjssat and compare them to
H. W. Martin’s c-semi-stratifiable (CSS) spaces, i.e. spaces in which compact sé&g-sets in a
uniform way. We prove that a (countably) compact subset of a Hausdorff 3pacenetrizable and
a Gs-subset ofX providedX has ad6-base, or a point-countabl&;-point-separating open cover, or
a quasiGs-diagonal. We also show that any compact subset of a Hausdorff 3paeging a base
of countable order must be @s-subset ofX and note that this result does not hold for countably
compact subsets of BCO-spaces. We characterize CSS spaces in terms of certain fgfrctipasd
prove a “local implies global” theorem for submetacompact spaces that are locally CSS. In addition,
we give examples showing that even though every compact subset of a space with a point-countable
base (respectively, of a space with a base of countable order) musked, there are examples of
such spaces that are not CSS. In the paper’s final section, we examine the role of the CSS property
in the class of generalized ordered (GO) spaces. We use a stationary set argument to show that any
monotonically normal CSS space is hereditarily paracompact. We show that, among GO-spaces with
o-closed-discrete dense subsets, being CSS and ha@gglegonal are equivalent properties, and we
use a Souslin space example due to Heath to show that (consistently) the CSS property is not equivalent
to the existence of &s-diagonal in the more general class of perfect GO-spaces.

MR Classifications Primary 54F05, 54E99; Secondary 54E18, 54E20, 54E30, 54E35

1 Introduction

Let C be a collection of subsets of a topological spXceWe say that members @f are uniformly
Gs-setsif for eachC e ( there are open se@(n,C) in X such that:

i) N{G(n,C):n>1}=C;
i) G(n+1,C) C G(n,C) for eachn > 1; and
i) if CC D are members of’, thenG(n,C) C G(n,D) for eachn.
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In case( is the collection of all closed subsets Xf one obtains the well-known class sémi-
stratifiable spaces introduced by Creede [13]. In c@sés the collection of all compact subsets of
X, one has the class of aisemi-stratifiabldCSS) spaces introduced by H. Martin [25].

In Sections 2 and 3 of this paper, we examine the class of CSS-spaces, comparing the CSS property
with the weaker property “every compact subsekok aGs-set.” For example, in Propositions 2.1,
2.2, and 2.3 we show that any (countably) compact subs¥t will be compact, metrizable, and a
Gs-subset ofX providedX is a Hausdorff space with &-base, with a point-countabl&;-point-
separating open cover, or with a qu&g-diagonal. In Proposition 2.6 we note that “local implies
global” for the property “every compact set iS3,” a result that is not true for the CSS-property in
general(see Example 4.2). However, Proposition 3.5 shows that for submetacomfaefi(mable)
spaces, locally CS8oesimply globally CSS. The CSS property also has a role to play in metrization
theory: it is essentially a result of Martin that a spXcis metrizable if and only if it is paracompact, a
p-space in the sense of Arhangel’skii, and is CSS.

In Section 4, we study the role of the CSS property among generalized ordered spaces. Recall
that ageneralized ordered spa@O-space) is a tripl¢X, .S, <) where(X,S) is a Hausdorff space
that has a base of order-convex sets lis the usual open-interval topology of the ordey then
X is alinearly ordered topological spa¢eOTS). We show that any GO-space that is CSS must be
hereditarily paracompact and that any GO-space with a dagsilagonal is CSS. In Theorem 4.10 we
show that among GO-spaces witloaclosed-discrete dense subset, the CSS property is equivalent to
having aGs-diagonal, and we provide examples of GO-spaces that are or are not CSS.

Throughout this paper, all spaces are assumed to be at least Hausdorff (so that compact sets are
always closed). It will be important to distinguish between subsets of a sp#tat are closed and
discrete (to be called closed-discrete sets) and those that are merely discrete-in-themselves (to be called
relatively discrete sets). We will need to distinguish between sets thabarlesed-discrete” and those
that are ‘6-relatively-discrete.” Of course, among perfect spaces (= spaces in which closed &s are
sets), the last two notions are equivalent. We reserve the syRbd}s P, andZ for the usual sets of
real, rational, and irrational numbers, and for the set of all integers, respectively.

We want to thank Dennis Burke, Sheldon Davis, Gary Gruenhage, Richard Hodel, Joseph Mash-
burn, Peter Nyikos, and Jerry Vaughan, for comments that substantially improved an earlier version of
our paper. In addition we want to express our thanks to the referee whose comments improved results
contained in an earlier draft of this paper.

2 Spaces in which compact sets ai@;-sets

Some of the results in this section must be known, but neither the authors nor the referee know refer-
ences for them. They probably have some independent interest, but we record them here to stand in
contrast with the behavior of the CSS property, to be studied in the third section.

Ouir first three results show that (countably) compact sets wilbfsubsets oX providedX has
certain base, covering, or diagonal conditions.

Recall that 86-basefor a spaceX is a baseB = | J{B(n) : n > 1} with the additional property that
if U is open anck € U, then there is some= n(x,U) with the properties that

a) someB € B(n) hasxe BC U, and
b) ordx,B(n)) < w, i.e.,x belongs to only countably many memberg&ih).

2



This is a natural generalization of the notion af-point-finite base and was introduced by Aull [2]. We
thank the referee for pointing out how to generalize a result on quasi-developable spaces that appeared
in an earlier draft of this paper.

Proposition 2.1 Suppose X is a Hausdorff space witbékbase. Then any countably compact subset
of X is a compact, metrizable s&ubset of X

Proof: LetB = J{B(n) : n > 1} be adB-base forX and letH, = {x € X : 1 < ord(x, B(n)) < w}.

First consider the case whefds a compact subset &f. ThenK must be metrizable (see Corollary
8.3(ii) of [17]) and therefore hereditarily separable. I&h) = {B € B(n) : BNH,NK # 0}. Then
the setk NH, has a countable dense subset so that the collectioh must be countable. Hence so
is the collectionC = J{C(n) : n > 1}, and we know that” contains a base of neighborhoods for each
point of K. Let ® be the collection of all finite subcollections gfthat coverK. Then® is countable
and non-empty, an C N{U2D : D € ®}. Now suppose thap € X — K. For eachx € K there is
ann=n(x, p) such that som&(x, p) € B(n) hasx € B(x, p) C X —{p} and ordx, B(n)) < w. Then
B(x,p) € C(n) C C. Becaus« is compact, there is some finikeand points € K for 1 <i <k such
thatD(p) = {B(x, p) : 1L <i <k} coversK. ThenD(p) € ® and we have

KU :peo} | JD(p) € X—{p}
Because was an arbitrary element &f — K, we see thak = N{UD: D € ®}.

Next consider the case wheleis countably compact. We know that, in its relative topolagy,
inherits ad6-base, namelfK N B : B € B}. Then, given any covet’ of K by relatively open sets,
let W ={BNK:Be Bandforsom& € V,BNK CV}. According to Theorem 3.2.8 of [11], some
finite subcollection ofi coversk. HenceK is compact so that the proof’s first paragraph applies.

Proposition 2.2 Let X be a Hausdorff space that has a point-countabjepdint-separating open
cover, i.e., an open covetl such that if x£ y are points of X, then some membertbtontains x but
not y. Then each countably compact subset of X is a compact, metrizagksdap&et of X.

Proof: LetC be a countably compact subsetXf According to Theorem 7.6 in [17]; must be
compact. According to Mtenko’s lemma (see page 242 of [14] or Theorem 7.4 of [17]), there are only
a countable number of minimal finite open oversCdly members ofu. List them as{¥/(n) : n > 1}

and letW(n) = J%(n). ThenC C N{W(n): n> 1}. Supposep € X —C. For eachq € C, there

is a membelJ (q) € U with g€ U(q) € X —{p}. Then some sub-collection ¢tJ(q) : g€ C} is a
finite minimal cover ofC by members ofi and we thereby obtain one of the collectioi$n) with
CCW(n)=U%(n) C X—{p}, as requiredd

Recall that the spacé has aquasi-Gs-diagonalprovided there is a sequentg(n)) of collections
of open sets with the property that, given distinct poitse X, there is some with x € St(x, G(n)) C
X —{y}. (If eachG(n) is also a cover oK, thenX has aGs-diagonal.)

Proposition 2.3 Suppose that the Hausdorff space X has a qugsi@gonal. Then any countably
compact subset of X is a compact metrizabjes@Gbset of X.

Proof: First, consider the case whevkis a compact, metrizable subspaceXof Let (G(n)) be a

quasiGs-diagonal sequence fof. We may assume thaj(1) = {X}. Being a compact, metrizable
subset ofX, M is hereditarily Lindedf so that there is a countable sub-collecti#fhin) C G(n) that
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coversMN (UG (n)). Let H =U{#(n):n>1}. BecauseH is countable, we may index it as
H ={H:i>1}. Foreachxe M andn>1, letW(x,n) =N{Hi:i <nandxe H;}. LetV(n) =
U{W(x,n) : xe M}. ThenM C N{V(n) : n > 1}. For contradiction, suppose that there is some point
ze N{V(n) :n> 1} — M. Choose points; € M with z<€ W(x;,i). Becauses € M, there is a cluster
point p of (x;) in M. Becausep # z, we may find arN > 1 such thatp € St(p, G(N)) C X —{z}.
Becauspe MN(UG(N)) CMN(U#H(N)), someH € H(N) hasp € H. ThenH appears somewhere
in the listing of H given above, sall = Hx. Because is a cluster point ofx;) andp € H = Hy, there

is somej > k with x; € Hy. But then we have € W(x;, j) C Hx C St(p, G(N)) C X — {z} and that is
impossible. Henc# is aGs-set inX.

Next, consider the case wheteis a countably compact subsetXf Chaber (Corollary 3.A.1 of
[12]) has proved that any countably compact space with a degsiiagonal is compact, and Hodel
(Corollary 3.6 in [21]) proved that any paracompact wd-space with a dbgdiagonal (and hence
any compact Hausdorff space with a qu@gtdiagonal) must be metrizable. Consequently, theCset
is a compact metrizable subspaceXofand now the first paragraph of the proof applies to showGhat
is aGs-subset ofX. O

We next show that any compact subset of a space with a base of countable order (BCO) must be a
Gs-set. We will need a characterization of BCO-spaces given by Worrell and Wicke [28]:

Proposition 2.4 A regular space X has a BCO if there is a sequefién)) of bases for the topology
of X such that if pg By1 C B, € B(n) for each n> 1, then{B,,: n > 1} is a local base at pO

Proposition 2.5 If X is regular and has a BCO, then any compact subset of X ig-aubset of X.

Proof: LetB(n) be a the sequence of bases ¥ogiven by Proposition 2.4, and suppdseC X is
compact. Thel inherits a BCO (Theorem 6.4 in [17]), and any compact Hausdorff space with a BCO
is metrizable. We recursively define open cov®(®) of K as follows. LetD(1) be any finite minimal
(=irreducible) cover oK by members of8(1). If D(n) is defined, let

C(n+1)={Be B(n+1):cl(B) CCforsomeC € D(n)}.

Let D(n—+ 1) be any finite minimal cover dk by members oC(n+1). LetW(n) =JD(n). Then
K C N{W(n) : n> 1}. For contradiction, suppose there is a pgr& N{W(n) : n > 1} — K. Let
E(n) ={Be€ D(n): peB}. ThenE(n) # 0 for eachn, and ifC € E(n+ 1) then we may choose
someTt,;1(C) € D(n) with cl(C) C 1,,1(C) for somet,1(C) € D(n). Note thatp € C C 1,,1(C)
means thatt,1(C) € E(n). Consequently, if we use the bonding mapsi : £(n+ 1) — E(n),
we have an inverse system of non-empty compact Hausdorff spaces (namely tigrgetsth the
discrete topology) so that Theorem 3.2.13 of [14] allows us to choose a sedLignee(n) with the
property thatt, 1(C(n+1)) =C(n), i.e., cC(n+ 1)) C C(n). Because eac#’(n) is a minimal cover
of K, C(n)NK # 0 for eachn. Choosex, € C(n)NK. Because& is compact, the sequen¢s,) has
some cluster poing € K. Because ¢C,1) C C, for eachn we see that the cluster poigtbelongs to
eachC,. But then the collectio)C, : n > 1} is forced to be a base at bophZ K and atg € K, and that
is impossible D

Unlike the situation in Propositions 2.1, 2.2 and 2.3, Proposition 2.5 cannot be proved for countably
compact sets. For examplké,= [0, ) with its usual topology has a BCO, and its subspaee {A €
X :Ais alimit ordinal} is a countably compact subset that is not metrizable and is Ggtsubset of
X.

Our next two results provide easy ways to recognize that a given §g§a@e has compact set;.
The first is a “local implies global” proposition.



Proposition 2.6 Supposel is an open cover of the Hausdorff space X such that for evesy U,
each compact subset of U is g-8ubset of U. Then each compact subset of X ig-aubset of X.

Proof: Suppos€ is a compact subset &f. Choose finitely many set$(i) € U such thaC C (J{U(i):

i <n}. Then{U(i)NC:i < n} is a finite relatively open cover of the compact Hausdorff sfg2ice
that there are closed subsét§) C C such thaD(i) CU(i) andC = J{D(i) : i < n}. Each seD(i) is

compact and(i) C U (i) so thatD(i) is known to be &5-subset otJ (i) and therefore &s-subset of
X. HenceC = [J{D(i) :i < n} is also aGs-subset oX. O

In applications of the next proposition, it often happens that the weaker topgloggntioned in
the proposition is metrizable.

Proposition 2.7 Supposes C T are topologies on X with the property that each compact subset of
(X,S)isaGyin (X,S). Then each compact subset&f 7') is a Gs-set in(X, 7).

Proof: Any compact subset 0K, T) is also compact itiX,.5). O

3 The CSS-property in general spaces

The next lemma shows that large classes of topological spaces are CSS. It was proved by H. W. Martin
in his dissertation [24] and announced in [25].

Lemma 3.1 The Hausdorff spacgX,7) is CSS provided any one of the following holds:

a) X is ao”-space, i.e., X has a-closure-preserving collectiod of closed sets with the property
that if X y are points of X, then some€ has xe C and y¢ C;

b) X has a G-diagonal, i.e., there is a sequen¢g(n)) of open covers of X such that for each
xe X, N{cl(Stx,G(n)) :n=>1} = {x};
¢) X has atopology C 7 such that(X,.S) is CSSO

To what extent do properties (a) or (b) in Lemma 3.1 characterize CSS-spaces? As the next example
shows, (b) does not.

Example 3.2 The space KMof Example 4.5 is CSS but does not havesed{agonal.
Question 3.3 Is there a regular CSS space that is nataspace?

Question 3.3 was posed by H. Matrtin in his thesis [24]. It will follow from Proposition 4.6 that there
cannot be a LOTS counterexample, but there might be a GO-space example of the desired type.

The definition of CSS-spaces refers to arbitrary compact subsets of a space. As our next lemma
shows, there is a characterization of CSS-spaces that refers only to convergent sequences.

Lemma 3.4 A topological space is CSS if and only if for eack X there is a sequencg(n,x)) of
open sets such that

a) g(n+1,x) C g(n,x) for each n> 1,



b) N{g(n,x) :n=>1} = {x};
c) if a sequenceéx,) of distinct points of X converges to some X, thenN\{g(n,x,) : n> 1} C {y}.

Proof: Suppos& is CSS with CSS functios(n,K), defined for each compact subsétof X as

in the Introduction. For anyx € X, let g(n,x) = G(n,{x}). Then both a) and b) of this lemma are
satisfied. We verify assertion c). Suppdsg) is a sequence of distinct points Xfthat converges to
a pointy € X. Letge N{9(n,x,) : n>1}. With K = {x, : n > 1} U {y} we haveq € N{g(n,xn) :
n> 1} CN{G(n,K) :n> 1} = K so that eitheq =y as required, or elsg = xy for someM. If

g = xu definez = xu+i. Then(z) converges toy. Writing L = {z :i > 1} U{y}, we know that
ge N{a(n,x) :n>1} CN{g(n,x,) :n>M} =N{g(i,z) :i > 1} CN{G(i,L) :i > 1} =L so that

g # Xwu, a contradiction. Thereforg=y, as required.

Conversely, suppos¥ has a functiorg(n,x) with properties (a), (b), and (c). For any compact
setK, let G(n,K) = U{g(n,x) : x € K}. Clearly parts (ii) and (iii) of the definition of a CSS space
(see the Introduction) are satisfied. We verify (i). Supppse\{G(n,K):n>1}. If g £ K, then for
eachn, choosex, € K with g € g(x,,n). Because, # q for eachn, by passing to a subsequence if
necessary, we may assume that the pointare pairwise distinct. Note that becalsés compact and
each point oK is aGz-set, the subspadeis first countable. Hence there is a subsequérgg) that
converges to some poiat: K. Consequentlyy € N{g(n(k),X\x)) : k> 1} € {z} €K, soq e K. That
contradiction establishes part (i) of the definition of a CSS structure and completes theJproof.

As noted in the previous section, “local implies global” for the property “every compact set is a
Gs-set.” Example 4.2 shows that the CSS property does not satisfy a “local implies global” theorem.
However, in the presence of a suitable covering condition, locally @&Simply CSS, as our next
result shows. (We thank the referee for showing us how a result of Gruenhage and Yajima can be used
to remove the assumption of normality from an earlier version of the theorem.)

Proposition 3.5 Suppose X is submetacompact@=efinable). If X is locally CSS. then X is CSS.

Proof: LetW = {W(a) : a € A} be a cover oK by open subspaces, each of which is CSS in its relative
topology, and lefgq(n,x) : n> 1, x € W(a)} be a CSS function for the subspatka) as described
in Lemma 3.4.

BecauseX is submetacompact, Theorem 2.1 of [19] shows that there is a filtef subsets of
w and a sequencél(n)) of open covers oK, each refining with the property that for every
xe X, {n<w: ord(x,U(n)) < w} € F. (In fact, the same filtefF works for all open covers of all
submetacompact spaces.) For each fixetioose a functiori,, : U(n) — A such thaty CW(f,(U))
whenevelJ € U(n). For eacto € AdefineV (n,a) =J{U € U(n): f,(U) = a}. Then the collection
Y(n) ={V(n,a) : a € A} is an open cover oK that hasV(n,a) C W(a). Furthermore, for any
x € X, if ord(x, U(n)) < w, then ordx, ¥(n)) < w so that{m < w: ord(x, U(m)) < w} C {m<
w: ord(x, ”(m)) < w}. Because the first of those two sets belongs to the fiiteso does the second.
In summary, we now have open covergn) = {V(n,a) : a € A} such that:

a) V(n,a) CW(a) for eacha € A;
b) for eachx € X there is som& > 1 such that the s€io € A: xe V(n,a)} is finite;
c) for eachx € X, the set{n < w: ord(x, (n)) < w} € F; and therefore

d) whenevek,y € X, the sef{n < w: ord(x, ”(n)) < w}N{n<w: ord(y, (n)) < w} isa member
of F and is therefore nonempty, so that for some w, both ordx, 7/(n)) and ordy, %/(n)) are
finite.



For eachx € X andn > 1, letA(x,n) be defined as follows. If ofd, 7/(n)) is finite, letA(x,n) =
{a e A:xeV(na)}, and if ordx, V(n)) is infinite, choose anyt € A with x € V(n,a) and let
A(x,n) = {a}. Now define

g (nx) = {gu(nx)NV(n,a) :a € [ J{AXi) i <n}}.

Eachd/(n,x) is open becausgl{A(x,i) :i < n} is finite. LetH(n,m) ={y € X : ord(y, ¥(n)) < m}.
EachH (n,m) is closed inX so that the set(n,x) = X —J{H(i,m) :i;m<nandx¢ H(i,m)} is open
and containg. Now letg(n,x) = g'(n,x) Nh(n,x).

We will show that the functiomy(x, n) has the properties described in Lemma 3.4. Property (a) is
clear. To verify (b), fixx € X anda(x) € A(x,1). Theng(n,x) € g'(n,X) € gu(x)(n,X) for eachn > 1 so
thatx € N{g(n.x) : n > 1} € N{Qu(x)(n,x) : n> 1} = {x}

To verify (c), supposeéxn) is a sequence of distinct points Xfthat converges to a poigte X. For
contradiction, suppose there is some X — {y} with z € g(n,x,) for eachn > 1. According to (d)
above, there is some integesuch that the collectiof’ (k) has finite order at bothandz

Let mp = ord(z, (k)). Supposen > maxmp, k). We claim that the cove?’(k) has finite order at
Xn. If not, thenx, ¢ H(k,mp) while z< H(k,mp) so that

ze g(n,%n) € h(n,Xn) gX—U{H(i,m) im<nX, H(i,m} CX—-H(kmy) CX—{z}

and that is impossible.

Fix anyV (k,a) € 7 (k) with y € V(k,a). Because€x,) converges tg, there is som&\ such that
Xn € V(k,a) for eachn > N. From the previous paragraph, for all> maxk,my), ord(x,, ¥ (k)) is
finite. Then for eacim > max(k, mp, N) we havea € A(xqy, k) so thatze g(n,X,) € g'(n, %) C ga (N, Xn).

Recall that the functiogy, satisfies the conditions described in Proposition 3.4 for the subspace
W(a). Because the sequen : n > max(k,mp,N)) consists of points o¥ (k,a) C W(a) and con-
verges toy € V(k,a) CW(a) we know that{ga (N, X,) : N> max(k,mg,N)} C {y}. But we have #y
andz e N{g(n,%,) : n > max(k,my,N)} € N{gua(n,%n) : N> max(k,mo,N)} = {y} and that contradic-
tion completes the proofl

In the previous section, we showed that any compact subsétioh Gs-subset ofX providedX
has adB-base, or has a point-countablg;point-separating open cover, or has a BCO. None of these
properties is enough to guarantee tkas CSS, as shown by Example 4.7 (a paracompact, monotoni-
cally normal space with a point-countable base that is not CSS) and by Example 4.2 (a monotonically
normal space with a BCO that is not CSS).

In Proposition 2.3 we showed that every compact subs¥tisfaGs-subset ofX providedX has a
guasiGs-diagonal. Given certain additional covering conditions, we can prove that such a space must
be CSS:

Proposition 3.6 Suppose X is a Hausdorff space and has quaséi@gonal (G(n)) such thai\ C is
open whenevef C G(n). Then X is CSS.

Proof: We may assume thgt(1) = {X}. For eacm > 1 and eack € X, let
C(n,x) =(){Ge G(i):i <nandx e G}.

EachC(n,x) is open andC(n+ 1,x) C C(n,x). For any compact sé& C X letV(n,K) = J{C(n,X) :
x € K}. ClearlyV(n,K) is monotonic in botin andK, andK C N0;_,;V(n,K). Letze Ny_;V(n,K)
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and suppose ¢ K. There are pointg, € K with ze C(n,x,). Because is compact, the sequence
(Xn) has a cluster poinp € K. Thenp # z so there is somewith p € St(p, G(n)) C X —{z}. There is
somem > nwith Xy € St(p, G(n)). ChooseGg € G(n) with p,Xm € Go. But then we have

2 C(M,%m) € C(N,Xm) € Go C SUp, G(N) € X — {2}

and that is impossible. Heneeis CSS.O

What kinds of spaces satisfy the hypothesis of Proposition 3.6? Proposition 3.6 applies to any space
that has a quasbs-diagonal and is hereditarily metacompact or (more generally) has the property that
any open collectiortl in X has ao-Q refinementl/ that covers the sét 7. 1 For example, any space
with a o-point-finite base has this property.

Any quasi-developable space had8base, so that Proposition 2.1 shows that any compact subset
of a quasi-developable space iSgset. The proof requires so many arbitrary choices that we cannot
see how to prove that any quasi-developable space is CSS. It was announced in [26] that Tat any
guasi-developable space is CSS, but the details of some steps in the proof are not completely clear.
Therefore we ask:

Question 3.7 Is it true that each quasi-developablg-3pace is CSS?

As noted in [26], an affirmative answer to Question 3.7 would yield an affirmative answer to an old
problem posed by Fletcher and Lindgren in [16], namislgvery quasi-developablespace devel-
opable?

We close this section with a result on the role of the CSS property in metrization theory. Itis clear
that a compact Hausdorff space that is CSS must be semi-stratifiable and hence must be metrizable. As
with many other metrization theorems for compact Hausdorff spaces, that result holds for countably
compact spaces and extends to the much larger class of paracompact p-spaces, as the next result shows.
(The result is essentially due to Martin [25], although he did not state or prove it in exactly the following
way.)

Proposition 3.8 Let X be a completely regular space. Then:

a) X is developable if and only if X is submetacompacb{refinable), a p-space in the sense of
Arhangel’'skii, and CSS;

b) X is metrizable if and only if X is a paracompact p-space and is CSS.

c) if X is a countably compact CSS-space, then X is compact and metrizable,

Proof: Clearly (a) implies (b). To prove the harder half of (a), we recall that any submetacompact
p-space is §-space (Theorem 7.8 in [17]) and that any B&pace is semi-stratifiable (Theorem 3 of

[25]). Hence any CSS submetacompact p-space is a semi-stratifiable p-space and is, therefore, a Moore
space (Corollary 5.12 in [17]). To prove (c), recall that any countably compact spa@espace and
combine Martin’s theorem [25] that a CgEspace is semistratifiable with Creede’s theorem that a
semistratifiable countably compact space is compact and metrizable.

1The collection?’ is a o-Q-collection if ¥ = (Jx_; ¥(n) where( C is open for eachC C ¥/(n). For example, every
o-point-finite open collection is-Q, and any open collection in a GO-space has@-refinement.



4 The CSS property in ordered spaces

Proposition 4.1 Let S be a stationary subset of a regular uncountable cardindlhen, in its relative
topology, S is not CSS. Hence any monotonically normal CSS space is hereditarily paracompact. In
particular, any CSS GO-space is hereditarily paracompact.

Proof: Theorem 4.1 of [15] shows that no stationary set in a regular uncountable cardinal can be CSS
and deduces hereditary paracompactness for GO-spaces that are CSS. The more general result about
monotonically normal spaces follows from that stationary set argument in the light of a theorem of
Balogh and Rudin [3]80

Example 4.2 There is a LOTS with a BCO that is locally CSS but not CSS.

Proof: Proposition 4.1 shows that the usual spdce [0,w;) of all countable ordinals is not CSS.
However every point oK has a compact, metrizable neighborhood, soXhiatlocally CSS. (Contrast

this behavior with Proposition 2.6.) Also note that because “local implies global” for the BCO property
(see [28]) X has a BCOD

It was announced in [15] that a result @Souslin diagonals could be used to prove that any
GO-space with a quasks-diagonal must be CSS. Our next proposition provides a direct proof of that
result. We begin with a lemma that may be of use in its own right.

Lemma 4.3 SupposéX,T,<) is a GO space. Then X has a quasj-@agonal if and only if there is
a GO-topologyo on (X, <) that is quasi-developable and hasC 1.

Proof: Any quasi-developable space has a q@siliagonal, so that if there is a quasi-developable
topologyo C 1 on X, then(X,1) has a quaszs-diagonal.

To prove the harder implication, suppose that the GO-sp@ace <) has a quastss-diagonal struc-
ture (G(n)) as defined above. A stationary set argument (see [15]) showX tisdtereditarily para-
compact so for eachthere is ao-disjoint collection that refineg (n) and covergJ G(n). Therefore,
we may assume that eact(n) is a pairwise disjoint collection of convex sets. The collecti®aof all
finite intersections of sets frog = J{G(n) : n > 1} is o-disjoint and is the base for some topology
o on X havingo C 1. If we can show thatX, o) is Hausdorff, then, members @& being convex in
(X, <), we will have the required GO-topology.

To showo is a Hausdorff topology, suppogeandq are distinct points oK. We may suppose
p < g. If the open interva(p, q) is the empty set, choose memb@&is Gy € G with pe G, € X —{q}
andq e Gq C X — {p}. Then convexity force§p C (+,q) andGq C (p,—) so thatGpN Gy C («—
,q)N(p,—) =0. If (p,q) # 0, choose any € (p,q) and findGp, Gy € G with pe G, C X — {z} and
g€ Gq C X —{z}. Convexity forcesG, C (+,z) andGq C (z,—) so thatGp, N Gq = 0, as requiredd

Proposition 4.4 Let X be a GO space. If X has a quasi-@iagonal, then X is CSS.

Proof: In the light of Lemma 4.3, it is enough to prove that a quasi-developable GO-space is KSS. If
is a quasi-developable GO-space, thehas ac-disjoint base (see [5] or [23]) so that Proposition 3.6
completes the proofa

The space&" in the next example shows that in the category of GO-spaces, the CSS property is not
characterized by the existence of a quagidiagonal.
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Example 4.5 Each of the following linearly ordered topological spaces is CSS anaisspace.

LOTS Additional Properties
M* CSS, quasi-developable, @3-diagonal, not perfect,
and contains the Michael line as a closed subspace
S CSS, not quasi-developable, not perfect, no q@sdiagonal,
and contains the Sorgenfrey line as a closed subspace
the Big Bush CSS, point-countable base, not perfect,
no quasics-diagonal, not quasi-developable

In the above tableyl* = (R x {0}) U(P x Z) andS* =R x {n € Z : n < 0}, both with the lexicographic

order and the associated open-interval topology. It is easy to check (using Lemma 3.4) that each
of these spaces is CSS. See [23] for the additional properti®$*aind S. The Big Bush is the
lexicographically ordered s& = |J{B) : A < wy is a limit} whereB, is the set of all functiond :

[0,A] — R with the property thaf (a) € P for eacha < A while f(A) € Q. The additional properties

of B are verified in [6]. To see th&is CSS, letf € B, and let

g(n, f) = {heB:[0,A] Cdom(h) andh(a) = f(a) foralla < A and|f(A) —h(A)| < %}.

Suppose thaf, is a sequence iB that converges td and thatk € g(n, f,) for eachn > 1. Write
dom(f) = [O,A] and donif,) = [0,As]. We may assume thdt, € g(n, f) for all n. HenceA <
An, fa(a) = f(a) for all a < A, and the real-number sequenf;g\) converges tof (A). If A < Ay
occurs for infinitely many values of, then for all sucm we havek(a) = f,(a) so that the real se-
quence(fy(A)) has a subsequence with a constant irrational value, showind,iAgtcannot converge
to the rational numbef (A). Therefore, we may assume that= A for all n. If k(A) # f(A) find a
positive integemwith 2 < |f(A) —k())|. Becausefs(A) converges td (A) there is an integen > m
with | f,(A) — f(A)| < 2. Because € g(n, fn) we have

[FA) =k <TFA) = faA)|+ [fa(A) —k(A)| < % < [k(A) = f(A)]

and that is impossible. Hen&e\) = f(A) € Q so thatk = f, as required to prove th&tis CSS.

To see that neither the Big Bush n8r has a quastss-diagonal, note that in any LOTS, the ex-
istence of a quagbs-diagonal is equivalent to quasi-developability. But the Big Bush is not quasi-
developable (see [4], [6]) arf8f is not quasi-developable because it contains a copy of the Sorgenfrey
line (a perfect, non-metrizable GO-space). To see that each of the three spacéssjzaae, we may
apply Proposition 4.6, because each space is a LOTS (and not merely a GO-8pace).

Proposition 4.6 For any LOTS X, the following are equivalent:
a) X isCSS;
b) X is ay-space;
¢) the topology of X can be generated by a non-Archimedean quasi-metric;
d) the topology of X can be generated by a quasi-metric;
e) X is ao*-space.
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Proof: The equivalence of (b), (c), and (d) in any GO-space was proved by Kofner in [22]. The
equivalence of (e) and (c) is easy to prove in any LOTS, and was announced in [15], as was the
equivalence of (a) and (b) in any LOTS.

Example 4.7 There is a LOTS with a point-countable base that is not CSS.

Proof: In [18], Gruenhage constructed a LOTS with a point-countable base that is not quasi-metrizable.
In the light of Proposition 4.6, that space cannot be @$S.

Question 4.8 Is there a GO-space that is CSS but nat“aspace?

Note that Question 4.8 is a special case of Question 3.3. Also note that such a space could not be a
LOTS, in the light of Proposition 4.6. Finally, as can be seen from Example 4.12, the stafidard
construction for a GO-space may fail to preserve the CSS property.

None of the three spaces in Example 4.5 are perfect and none Hayaliagonal. This is no
accident because for a very large class of perfect GO-spaces, being CSS is equivalent to having a
Gs-diagonal, as our next theorem shows. Recall that any GO-space hawietpaed-discrete dense
subset is perfect [7] and that there is ho known ZFC example of a perfect GO-space that does not have
ao-closed-discrete dense set. (See [27] and [10] for related material. More recent work [9] has pointed
out that there cannot be any ZFC example of a perfect GO-space that has local @deasitydoes not
have ao-closed-discrete dense subset.) We begin with a lemma.

Lemma 4.9 Suppose X is a GO-space.

a) If X has ac-closed-discrete dense subset, then there is a seqéf(ce) of convex open covers
of X with the property that for each @ X, N{St(p, ¥(n)) : n > 1} is a convex set with at most
two points.

b) If (7(n)) is any sequence of open covers of X as described in (a) and if the set K of all points
such thaf N{St(p, ”(n)) : n > 1}| = 2is o-closed-discrete in X, then X has g-@iagonal.

c) If X is a perfect GO-space and if the set K in (b)diselatively-discrete, then X has asz&
diagonal.

Proof: Assertion (a) is part of Theorem 2.1 of [7]. Assertion (c) follows directly from assertion (b) in
any perfect GO-space. To prove (b), wike= [ J{Kn : n > 1} where eaclK, is closed and discrete in

X. We may assumk, C K1 for all n. Use the fact thaX is collectionwise normal to find a discrete
collection ¢(n) = {U(n,x) : x € Ky} of open sets withxk € U (n,x). Define W (n) ={V —K,:V €
Y(n)}u{U(n,x):xeKq}. ThenW(n) is aGs-diagonal sequence of open coversofis requiredd

Theorem 4.10 SupposéX, .S, <) is a GO-space with a-closed-discrete dense subset. Then X is CSS
if and only is X has a @diagonal.

Proof: Half of the proof follows from Proposition 4.4. For the converse, supgaseCSS. Having a
o-closed-discrete dense subsgtis perfect and paracompact. We will begin by reducing the problem
to a special case. L& = |J{U € § : U has aGs-diagonal in its relative topology. BecauseX is
hereditarily paracompact, the subsp&&déas aGs-diagonal for its relative topology. BecauXeis
perfect,G is a union of countably many closd8s-subsets, each with @s-diagonal in its relative
topology. LetY = X — G. If we can show tha¥ has aGs-diagonal for its relative topology, theXiis
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seen to be a countable union of closég;subspaces, each withG-diagonal in its subspace topology,
and that would be enough to guarantee aias aGs-diagonal.

Note that the subspaté= X — G is CSS, has @-closed-discrete dense subspace (see [8]) and
(most important) has no isolated points. To see Yhhas no isolated points, suppose there is a point
p €Y and an open s&t C X such thav NY = {p}. ThenV — {p} C G so thatV — {p} has aG;-
diagonal for its relative topology. Becau§p} is aGs-subset ofX, it follows that the entire s&f has
a Gg-diagonal for its relative topology, whenseC G andV NY = 0. ThereforeY has no isolated
points. Henceforth, we consider only the GO-spéasith its topology and ordering inherited frok
(Alternatively, the reader could assume tiat X so thatX itself has no isolated points.)

LetJ={peY:3qeY —{p} with con{p,q} = {p,q}}, where conyp,q} denotes the order-
convex hull of the se{p,q} in Y. ThusJ is the set of jump-points ilY. Apply Lemma 4.9 to find
convex open cover®(n) of Y with the property that whenevere Y has|N{St(p, ¥(n)) :n>1}| > 1
thenp € J. In the light of Lemma 4.9 it will be enough to show that the k&t o-relatively discrete in
Y. For contradiction, suppose thais not o-relatively-discrete iry.

LetJo={peJ:3q> pwith [p,q = {p,q}} and letd; = J— Jo. Eachp € Jp has an immediate
successor that we will capp* in J — Jy = J; becausér has no isolated points. Becausés noto-
relatively-discrete, at least one & andJ; must fail to beo-relatively discrete. We will need more,
namely that]y is noto-relatively-discrete, and that follows from the stronger assertion (to be needed
later) in the next claim.

Claim L LetC C Jyand letD = {p™ : p € C}. Then both of the sets andD arec-relatively-discrete
if and only if one ofC andD is o-relatively-discrete. Half of Claim 1 is trivial. To prove the non-
trivial half, suppose€ is o-relatively-discrete. Becaudgis perfect, it follows thaC can be written as
C = U{C,: n > 1} where eaclC, is a closed and discrete subsetvofLet D, = {p* : p€ C,}. We
claim thatDy is relatively discrete. If not, then there is a sequeggce D, that converges to a point
d € Dn. We may assume that the poiifsare distinct. For eack, find px € C, with gx = p; . Note that
[g,—) is an open set ilY so we may assume that< g for all k. But then we must have < px < gk
so that the sequenga must also converge tq. But that is impossible because the poipiswere
chosen from the closed, discrete sulsetThusD,, is relatively discrete. Hend® = (J{Dn:n> 1} is
o-relatively-discrete, as claimed. An analogous argument shows thasib-relatively-discrete, then
so isC.

Next we collapse the jumps of. Fora,b €Y, definea~ b to mean that eithea = b of else
con{a,b} = {a,b} (i.e.,aandb are the endpoints of a jump ¥f. Becausé&’ has no isolated points,
~ is an equivalence relation 0h LetZ =Y/ ~ and let7 be the quotient topology and the induced
ordering ofZ. Then by Proposition 1.2.3 of [29¥F,7,<) is a GO-space and the natural projection
mapTi: Y — Z has the property that <y, inY impliesti(y;) < 11(y2) in Z. Consequently, the GO-
spaceZ has ao-closed-discrete dense set and it is easy to verify that there are no jumps in the set
(Z,<). Applying Lemma 4.9, we see that the GO-sp&£e7’) has aGs-diagonal. It follows from a
theorem of Przymusinski (quoted in [1]) that there is a metrizable topaldgyn Z such thatM C T
and such thatZ, M, <) is a GO-space. Let be a metric orZ that is compatible witti\/ .

The subspacgY, Sy) is CSS because the CSS property is hereditary. Therefore we can find a CSS
functiong(n,y) for Y and we may assume that eagiim,y) is convex, that ify, —) € Sy (respectively
if («,y] € S) theng(n,y) C [y,—) (respectivelyg(n,y) C (+,y]), and that{g(n,y) : n> 1} is a
neighborhood base gt

Claim 2 It cannot happen that for sonyec Jp there are points, € g(n,y) with the property that
g(n,xn) € («<,y]. For suppose that the poinysand x, exist. Then(x,) converges tg/. Also the
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convexity ofg(n, x,) combines withg(n,x,) Z («,Yy] to show that ", the immediate successoryin
Y, belongs to each(n,x,). That contradict$){g(n,xn) : n> 1} C {y} (see Lemma 3.4). Therefore
Claim 2 is established and we conclude

(xx) for eachy € Jp, Im=m(y) such that ifx € g(m,y) theng(m,x) C («<,y].

For each positive integer defineC(r) = {y € Jo: m(y) =r}. Because) is noto-relatively-discrete
there is some( such thatC(rg) is not o-relatively-discrete. For future reference, let us record that
y € C(rp) if and only if

(xxx)  xe€g(ro,y) = d(ro,x) € (< yl-

Supposey € Jp andu € Y hasu <y. Then in the quotient spac2 we haveti(u) < 11(y) So
that (1(u), —) is an open set in the metric GO-topolog¥. Hence there is am > 0 such that, if
Ba(T1(y),€) denotes the-ball with respect to the metrid that was chosen to be compatible with
M, thenBqy(11(y),€) N («—, 11(y)] has the property that if € Y hasv <y andm(v) € Bqy(T(y),€) then
v € (u,y]. In particular, ify € C(rp) there is some positive integer= n(y) such that ifv <y has
(V) € By(T(y), £) thenv € g(ro,y).

For each integes > 1 letC(rg,s) = {y € C(rg) : n(y) = s}. Because(rg) is the union of all the
setsC(ro,s) and becaus€(rp) is noto-relatively-discrete, there must exist an integesuch that the
setC(ro,%) is not o-relatively-discrete. For future reference we record the key property of the set
C(ro,s0), namely

1

(xxxx) if ye C(ro,S) andv <y hast(v) € By(1(y), 5) thenv e g(ro,y).

LetD(ro,s0) ={p": p€C(ro,%)}. In the light of Claim 1D(ro,s) cannot be relatively discrete,
so there must be a sequence of distinct paipts D(ro,S) that converges to the poingte D(ro, S).
Because the sétj, —) is open inY, we may assume thaf< g; for eachi > 1. Because no point
of Y is isolated inY, each sefq,q;) must be infinite. Consequently, the fact tigpt= p;" for some
pi € C(ro, %) yieldsq < p; < q; for eachi and therefore the sequeng®) converges t@inY.

Projecting into the quotient spa¢g, 7)) we see thatm(p;)) converges tat(q). BecauseM C T
we know that(mi(p;)) converges tat(q) in the metric spacéZ, M). Therefore we may assume that
d(m(q),m(pi)) < % for eachi > 1. Becausey; € C(rg,S) C C(rg) andqg < p; in'Y, it now follows
from (****) that q € g(ro, pi) for eachi > 1. But thenp; € C(ro) forcesg(ro,q) C (<, pi] for each
i > 1 so thaty(ro,q) C («+,q] because = inf{p; : i > 1}. But that is impossible becaugéry,q) is a
neighborhood ofy while (<, q] is not (because Y has no isolated points). That contradiction completes
the proof that the subséatof jump points ofY must beo-relatively-discrete and, in the light of Lemma
4.9, that is enough to show théthas aGs-diagonal.O

Example 4.11 If there is a Souslin line, then there is a perfect GO space that is CSS but does not have
a quasi-G-diagonal, showing that the existence af&losed-discrete dense subset is a necessary part
of the proof of Theorem 4.10.

Proof: In [20], R. W. Heath showed that if there is a Souslin line (something that is undecidable in
ZFC) then there is a quasi-metrizable Souslin line. In the light of Proposition 4.6, Heath's space is CSS.
Because Heath’s space is a Souslin line, it cannot h&gdiagonal, or even a qua§is-diagonal.C

It is known that any GO-spacé embeds as a closed subspace of a L&T3n a canonical way,
and that for many topological propertiBsif X hasP then so doeX* [23]. Our next example shows
that being a CSS space, and beingfsspace, are not properties of that type.
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Example 4.12 There is a GO space X that is both CSS amf-@pace, and yet the LOTS ¥ neither.

Proof: LetX be the GO-space constructedty making[x, —) open for eactx € P and(«,qg] open
for eachg € Q. ThenX is a separable GO space with a weaker metrizable topology, s tisdioth
CSS and @”-space. The LOTS extension Xfis

X'=Px{neZ:n<0})u(@Q@x{neZ:n>0})

with the lexicographic ordering. For contradiction, supp®$es CSS and thag(n, (x,i)) is a CSS
function forX* as in Lemma 3.4. We may assume that eg(eh(x,i)) is convex. If there is somec P
such that for alh > 1 someg, € [x,x+ %) hasg(n, (4s,0)) N ((x,0),—) # 0, then(x, 1) € X* because
x € P so that convexity o§(n, (gn,0)) gives

(x,1) € ({g(n, (an,0)) :n > 1} C {(x,0)}
and that contradicts Lemma 3.4 becaugg0) converges t@x, 0).

Therefore, for each € P there is soma = n(x) such that ifg € QN [x,x+ %) theng(n,(g,0)) C
[(x,0),—). LetP(k) = {x € P: n(x) = k}. Baire Category theory yields an open interfalb) C R and
an integeky such thaP(kp) is dense ir(a,b). Choose ang € QN (a,b) and, fori > ko, choose a point
X € (q— 1,9) NP(ko). Then we havey(ko, (g,0)) C [(%,0),—) for eachi > ko so thatg(ko, (q,0)) C
[(9,0),—). But that is impossible because the latter set is not a neighborhoa@g®fin X*. Hence
X* is not CSS. Because any-space is CSS (see 3.1), it follows thétis not ac”-space.

We remark that there is a Lind#lexample of this type: leB andC be complementary Bernstein
sets inR, and make a GO-spadeby requiring that(«—, x] open for eactx € B, and[x,—) open for
eachx € C. The resulting GO-spacéis Lindelf, CSS, and ar#—space, and the LOTS extensighis
Lindeldf but neither CSS nor a@*-space D
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