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Abstract

In this paper we study spaces in which each compact subset is aGδ-set and compare them to
H. W. Martin’s c-semi-stratifiable (CSS) spaces, i.e. spaces in which compact sets areGδ-sets in a
uniform way. We prove that a (countably) compact subset of a Hausdorff spaceX is metrizable and
a Gδ-subset ofX providedX has aδθ-base, or a point-countable,T1-point-separating open cover, or
a quasi-Gδ-diagonal. We also show that any compact subset of a Hausdorff spaceX having a base
of countable order must be aGδ-subset ofX and note that this result does not hold for countably
compact subsets of BCO-spaces. We characterize CSS spaces in terms of certain functionsg(n,x) and
prove a “local implies global” theorem for submetacompact spaces that are locally CSS. In addition,
we give examples showing that even though every compact subset of a space with a point-countable
base (respectively, of a space with a base of countable order) must be aGδ-set, there are examples of
such spaces that are not CSS. In the paper’s final section, we examine the role of the CSS property
in the class of generalized ordered (GO) spaces. We use a stationary set argument to show that any
monotonically normal CSS space is hereditarily paracompact. We show that, among GO-spaces with
σ-closed-discrete dense subsets, being CSS and having aGδ-diagonal are equivalent properties, and we
use a Souslin space example due to Heath to show that (consistently) the CSS property is not equivalent
to the existence of aGδ-diagonal in the more general class of perfect GO-spaces.

MR Classifications: Primary 54F05, 54E99; Secondary 54E18, 54E20, 54E30, 54E35

1 Introduction

Let C be a collection of subsets of a topological spaceX. We say that members ofC areuniformly
Gδ-setsif for eachC∈ C there are open setsG(n,C) in X such that:

i)
⋂
{G(n,C) : n≥ 1}= C;

ii) G(n+1,C)⊆G(n,C) for eachn≥ 1; and

iii) if C⊆ D are members ofC , thenG(n,C)⊆G(n,D) for eachn.
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In caseC is the collection of all closed subsets ofX, one obtains the well-known class ofsemi-
stratifiablespaces introduced by Creede [13]. In caseC is the collection of all compact subsets of
X, one has the class of allc-semi-stratifiable(CSS) spaces introduced by H. Martin [25].

In Sections 2 and 3 of this paper, we examine the class of CSS-spaces, comparing the CSS property
with the weaker property “every compact subset ofX is aGδ-set.” For example, in Propositions 2.1,
2.2, and 2.3 we show that any (countably) compact subset ofX will be compact, metrizable, and a
Gδ-subset ofX providedX is a Hausdorff space with aδθ-base, with a point-countable,T1-point-
separating open cover, or with a quasi-Gδ-diagonal. In Proposition 2.6 we note that “local implies
global” for the property “every compact set is aGδ,” a result that is not true for the CSS-property in
general(see Example 4.2). However, Proposition 3.5 shows that for submetacompact (=θ-refinable)
spaces, locally CSSdoesimply globally CSS. The CSS property also has a role to play in metrization
theory: it is essentially a result of Martin that a spaceX is metrizable if and only if it is paracompact, a
p-space in the sense of Arhangel’skii, and is CSS.

In Section 4, we study the role of the CSS property among generalized ordered spaces. Recall
that ageneralized ordered space(GO-space) is a triple(X,S ,<) where(X,S) is a Hausdorff space
that has a base of order-convex sets. IfS is the usual open-interval topology of the order<, then
X is a linearly ordered topological space(LOTS). We show that any GO-space that is CSS must be
hereditarily paracompact and that any GO-space with a quasi-Gδ-diagonal is CSS. In Theorem 4.10 we
show that among GO-spaces with aσ-closed-discrete dense subset, the CSS property is equivalent to
having aGδ-diagonal, and we provide examples of GO-spaces that are or are not CSS.

Throughout this paper, all spaces are assumed to be at least Hausdorff (so that compact sets are
always closed). It will be important to distinguish between subsets of a spaceX that are closed and
discrete (to be called closed-discrete sets) and those that are merely discrete-in-themselves (to be called
relatively discrete sets). We will need to distinguish between sets that are ”σ-closed-discrete” and those
that are “σ-relatively-discrete.” Of course, among perfect spaces (= spaces in which closed sets areGδ-
sets), the last two notions are equivalent. We reserve the symbolsR, Q, P, andZ for the usual sets of
real, rational, and irrational numbers, and for the set of all integers, respectively.

We want to thank Dennis Burke, Sheldon Davis, Gary Gruenhage, Richard Hodel, Joseph Mash-
burn, Peter Nyikos, and Jerry Vaughan, for comments that substantially improved an earlier version of
our paper. In addition we want to express our thanks to the referee whose comments improved results
contained in an earlier draft of this paper.

2 Spaces in which compact sets areGδ-sets

Some of the results in this section must be known, but neither the authors nor the referee know refer-
ences for them. They probably have some independent interest, but we record them here to stand in
contrast with the behavior of the CSS property, to be studied in the third section.

Our first three results show that (countably) compact sets will beGδ-subsets ofX providedX has
certain base, covering, or diagonal conditions.

Recall that aδθ-basefor a spaceX is a baseB =
⋃
{B(n) : n≥ 1} with the additional property that

if U is open andx∈U , then there is somen = n(x,U) with the properties that

a) someB∈ B(n) hasx∈ B⊆U , and

b) ord(x,B(n))≤ ω, i.e.,x belongs to only countably many members ofB(n).
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This is a natural generalization of the notion of aσ-point-finite base and was introduced by Aull [2]. We
thank the referee for pointing out how to generalize a result on quasi-developable spaces that appeared
in an earlier draft of this paper.

Proposition 2.1 Suppose X is a Hausdorff space with aδθ-base. Then any countably compact subset
of X is a compact, metrizable, Gδ-subset of X

Proof: LetB =
⋃
{B(n) : n≥ 1} be aδθ-base forX and letHn = {x∈ X : 1≤ ord(x,B(n))≤ ω}.

First consider the case whereK is a compact subset ofX. ThenK must be metrizable (see Corollary
8.3(ii) of [17]) and therefore hereditarily separable. LetC (n) = {B∈ B(n) : B∩Hn∩K 6= /0}. Then
the setK ∩Hn has a countable dense subset so that the collectionC (n) must be countable. Hence so
is the collectionC =

⋃
{C (n) : n≥ 1}, and we know thatC contains a base of neighborhoods for each

point of K. Let Φ be the collection of all finite subcollections ofC that coverK. ThenΦ is countable
and non-empty, andK ⊆

⋂
{
⋃

D : D ∈ Φ}. Now suppose thatp ∈ X−K. For eachx ∈ K there is
ann = n(x, p) such that someB(x, p) ∈ B(n) hasx∈ B(x, p) ⊆ X−{p} and ord(x,B(n)) ≤ ω. Then
B(x, p) ∈ C (n)⊆ C . BecauseK is compact, there is some finitek and pointsxi ∈ K for 1≤ i ≤ k such
thatD(p) = {B(xi , p) : 1≤ i ≤ k} coversK. ThenD(p) ∈Φ and we have

K ⊆
⋂
{
⋃

D : D ∈Φ} ⊆
⋃

D(p)⊆ X−{p}.

Becausep was an arbitrary element ofX−K, we see thatK =
⋂
{
⋃

D : D ∈Φ}.

Next consider the case whereK is countably compact. We know that, in its relative topology,K
inherits aδθ-base, namely{K ∩B : B ∈ B}. Then, given any coverV of K by relatively open sets,
let W = {B∩K : B∈ B and for someV ∈ V ,B∩K ⊆V}. According to Theorem 3.2.8 of [11], some
finite subcollection ofW coversK. HenceK is compact so that the proof’s first paragraph applies.2

Proposition 2.2 Let X be a Hausdorff space that has a point-countable, T1-point-separating open
cover, i.e., an open coverU such that if x6= y are points of X, then some member ofU contains x but
not y. Then each countably compact subset of X is a compact, metrizable, Gδ-subset of X.

Proof: LetC be a countably compact subset ofX. According to Theorem 7.6 in [17],C must be
compact. According to Miščenko’s lemma (see page 242 of [14] or Theorem 7.4 of [17]), there are only
a countable number of minimal finite open overs ofC by members ofU. List them as{V (n) : n≥ 1}
and letW(n) =

⋃
V (n). ThenC ⊆

⋂
{W(n) : n≥ 1}. Supposep ∈ X−C. For eachq ∈ C, there

is a memberU(q) ∈ U with q ∈U(q) ⊆ X−{p}. Then some sub-collection of{U(q) : q ∈C} is a
finite minimal cover ofC by members ofU and we thereby obtain one of the collectionsV (n) with
C⊆W(n) =

⋃
V (n)⊆ X−{p}, as required.2

Recall that the spaceX has aquasi-Gδ-diagonalprovided there is a sequence〈G(n)〉 of collections
of open sets with the property that, given distinct pointsx,y∈X, there is somen with x∈St(x,G(n))⊆
X−{y}. (If eachG(n) is also a cover ofX, thenX has aGδ-diagonal.)

Proposition 2.3 Suppose that the Hausdorff space X has a quasi-Gδ-diagonal. Then any countably
compact subset of X is a compact metrizable Gδ-subset of X.

Proof: First, consider the case whereM is a compact, metrizable subspace ofX. Let 〈G(n)〉 be a
quasi-Gδ-diagonal sequence forX. We may assume thatG(1) = {X}. Being a compact, metrizable
subset ofX, M is hereditarily Lindel̈of so that there is a countable sub-collectionH (n) ⊆ G(n) that
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coversM ∩ (
⋃

G(n)). Let H =
⋃
{H (n) : n ≥ 1}. BecauseH is countable, we may index it as

H = {Hi : i ≥ 1}. For eachx ∈ M andn≥ 1, let W(x,n) =
⋂
{Hi : i ≤ n andx ∈ Hi}. Let V(n) =⋃

{W(x,n) : x∈M}. ThenM ⊆
⋂
{V(n) : n≥ 1}. For contradiction, suppose that there is some point

z∈
⋂
{V(n) : n≥ 1}−M. Choose pointsxi ∈M with z∈W(xi , i). Becausexi ∈M, there is a cluster

point p of 〈xi〉 in M. Becausep 6= z, we may find anN ≥ 1 such thatp ∈ St(p,G(N)) ⊆ X−{z}.
Becausep∈M∩(

⋃
G(N))⊆M∩(

⋃
H (N)), someH ∈H (N) hasp∈H. ThenH appears somewhere

in the listing ofH given above, sayH = Hk. Becausep is a cluster point of〈xi〉 andp∈H = Hk, there
is somej > k with x j ∈ Hk. But then we havez∈W(x j , j)⊆ Hk ⊆ St(p,G(N))⊆ X−{z} and that is
impossible. HenceM is aGδ-set inX.

Next, consider the case whereC is a countably compact subset ofX. Chaber (Corollary 3.A.1 of
[12]) has proved that any countably compact space with a quasi-Gδ-diagonal is compact, and Hodel
(Corollary 3.6 in [21]) proved that any paracompact wd-space with a quasi-Gδ-diagonal (and hence
any compact Hausdorff space with a quasi-Gδ-diagonal) must be metrizable. Consequently, the setC
is a compact metrizable subspace ofX, and now the first paragraph of the proof applies to show thatC
is aGδ-subset ofX. 2

We next show that any compact subset of a space with a base of countable order (BCO) must be a
Gδ-set. We will need a characterization of BCO-spaces given by Worrell and Wicke [28]:

Proposition 2.4 A regular space X has a BCO if there is a sequence〈B(n)〉 of bases for the topology
of X such that if p∈ Bn+1⊆ Bn ∈ B(n) for each n≥ 1, then{Bn : n≥ 1} is a local base at p.2

Proposition 2.5 If X is regular and has a BCO, then any compact subset of X is a Gδ-subset of X.

Proof: LetB(n) be a the sequence of bases forX given by Proposition 2.4, and supposeK ⊆ X is
compact. ThenK inherits a BCO (Theorem 6.4 in [17]), and any compact Hausdorff space with a BCO
is metrizable. We recursively define open coversD(n) of K as follows. LetD(1) be any finite minimal
(= irreducible) cover ofK by members ofB(1). If D(n) is defined, let

C (n+1) = {B∈ B(n+1) : cl(B)⊆C for someC∈D(n)}.

Let D(n+ 1) be any finite minimal cover ofK by members ofC (n+ 1). Let W(n) =
⋃

D(n). Then
K ⊆

⋂
{W(n) : n≥ 1}. For contradiction, suppose there is a pointp ∈

⋂
{W(n) : n≥ 1}−K. Let

E(n) = {B ∈ D(n) : p ∈ B}. ThenE(n) 6= /0 for eachn, and if C ∈ E(n+ 1) then we may choose
someπn+1(C) ∈ D(n) with cl(C) ⊆ πn+1(C) for someπn+1(C) ∈ D(n). Note thatp ∈C⊆ πn+1(C)
means thatπn+1(C) ∈ E(n). Consequently, if we use the bonding mapsπn+1 : E(n+ 1)→ E(n),
we have an inverse system of non-empty compact Hausdorff spaces (namely the setsE(n) with the
discrete topology) so that Theorem 3.2.13 of [14] allows us to choose a sequenceC(n) ∈E(n) with the
property thatπn+1(C(n+1)) = C(n), i.e., cl(C(n+1))⊆C(n). Because eachD(n) is a minimal cover
of K, C(n)∩K 6= /0 for eachn. Choosexn ∈C(n)∩K. BecauseK is compact, the sequence〈xn〉 has
some cluster pointq∈ K. Because cl(Cn+1)⊆Cn for eachn we see that the cluster pointq belongs to
eachCn. But then the collection{Cn : n≥ 1} is forced to be a base at bothp 6∈ K and atq∈ K, and that
is impossible.2

Unlike the situation in Propositions 2.1, 2.2 and 2.3, Proposition 2.5 cannot be proved for countably
compact sets. For example,X = [0,ω1) with its usual topology has a BCO, and its subspaceC = {λ ∈
X : λ is a limit ordinal} is a countably compact subset that is not metrizable and is not aGδ-subset of
X.

Our next two results provide easy ways to recognize that a given space(X,T ) has compact setsGδ.
The first is a “local implies global” proposition.
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Proposition 2.6 SupposeU is an open cover of the Hausdorff space X such that for every U∈ U,
each compact subset of U is a Gδ-subset of U. Then each compact subset of X is a Gδ-subset of X.

Proof: SupposeC is a compact subset ofX. Choose finitely many setsU(i)∈U such thatC⊆
⋃
{U(i) :

i ≤ n}. Then{U(i)∩C : i ≤ n} is a finite relatively open cover of the compact Hausdorff spaceC so
that there are closed subsetsD(i)⊆C such thatD(i)⊆U(i) andC =

⋃
{D(i) : i ≤ n}. Each setD(i) is

compact andD(i)⊆U(i) so thatD(i) is known to be aGδ-subset ofU(i) and therefore aGδ-subset of
X. HenceC =

⋃
{D(i) : i ≤ n} is also aGδ-subset ofX. 2

In applications of the next proposition, it often happens that the weaker topologyS mentioned in
the proposition is metrizable.

Proposition 2.7 SupposeS ⊆ T are topologies on X with the property that each compact subset of
(X,S) is a Gδ in (X,S). Then each compact subset of(X,T ) is a Gδ-set in(X,T ).

Proof: Any compact subset of(X,T ) is also compact in(X,S). 2

3 The CSS-property in general spaces

The next lemma shows that large classes of topological spaces are CSS. It was proved by H. W. Martin
in his dissertation [24] and announced in [25].

Lemma 3.1 The Hausdorff space(X,T ) is CSS provided any one of the following holds:

a) X is aσ#-space, i.e., X has aσ-closure-preserving collectionC of closed sets with the property
that if x 6= y are points of X, then some C∈ C has x∈C and y6∈C;

b) X has a G∗δ-diagonal, i.e., there is a sequence〈G(n)〉 of open covers of X such that for each
x∈ X,

⋂
{cl(St(x,G(n))) : n≥ 1}= {x};

c) X has a topologyS ⊆ T such that(X,S) is CSS.2

To what extent do properties (a) or (b) in Lemma 3.1 characterize CSS-spaces? As the next example
shows, (b) does not.

Example 3.2 The space M∗ of Example 4.5 is CSS but does not have a Gδ-diagonal.

Question 3.3 Is there a regular CSS space that is not aσ#-space?

Question 3.3 was posed by H. Martin in his thesis [24]. It will follow from Proposition 4.6 that there
cannot be a LOTS counterexample, but there might be a GO-space example of the desired type.

The definition of CSS-spaces refers to arbitrary compact subsets of a space. As our next lemma
shows, there is a characterization of CSS-spaces that refers only to convergent sequences.

Lemma 3.4 A topological space is CSS if and only if for each x∈ X there is a sequence〈g(n,x)〉 of
open sets such that

a) g(n+1,x)⊆ g(n,x) for each n≥ 1;
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b)
⋂
{g(n,x) : n≥ 1}= {x};

c) if a sequence〈xn〉 of distinct points of X converges to some y∈X, then
⋂
{g(n,xn) : n≥ 1}⊆ {y}.

Proof: SupposeX is CSS with CSS functionG(n,K), defined for each compact subsetK of X as
in the Introduction. For anyx ∈ X, let g(n,x) = G(n,{x}). Then both a) and b) of this lemma are
satisfied. We verify assertion c). Suppose〈xn〉 is a sequence of distinct points ofX that converges to
a pointy ∈ X. Let q ∈

⋂
{g(n,xn) : n≥ 1}. With K = {xn : n≥ 1}∪ {y} we haveq ∈

⋂
{g(n,xn) :

n≥ 1} ⊆
⋂
{G(n,K) : n≥ 1} = K so that eitherq = y as required, or elseq = xM for someM. If

q = xM definezi = xM+i . Then 〈zi〉 converges toy. Writing L = {zi : i ≥ 1} ∪ {y}, we know that
q∈

⋂
{g(n,xn) : n≥ 1} ⊆

⋂
{g(n,xn) : n > M} =

⋂
{g(i,zi) : i ≥ 1} ⊆

⋂
{G(i,L) : i ≥ 1} = L so that

q 6= xM, a contradiction. Thereforeq = y, as required.

Conversely, supposeX has a functiong(n,x) with properties (a), (b), and (c). For any compact
setK, let G(n,K) =

⋃
{g(n,x) : x ∈ K}. Clearly parts (ii) and (iii) of the definition of a CSS space

(see the Introduction) are satisfied. We verify (i). Supposeq∈
⋂
{G(n,K) : n≥ 1}. If q 6∈ K, then for

eachn, choosexn ∈ K with q ∈ g(xn,n). Becausexn 6= q for eachn, by passing to a subsequence if
necessary, we may assume that the pointsxn are pairwise distinct. Note that becauseK is compact and
each point ofK is aGδ-set, the subspaceK is first countable. Hence there is a subsequence〈xn(k)〉 that
converges to some pointz∈ K. Consequently,q∈

⋂
{g(n(k),xn(k)) : k≥ 1} ⊆ {z} ⊆ K, soq∈ K. That

contradiction establishes part (i) of the definition of a CSS structure and completes the proof.2

As noted in the previous section, “local implies global” for the property “every compact set is a
Gδ-set.” Example 4.2 shows that the CSS property does not satisfy a “local implies global” theorem.
However, in the presence of a suitable covering condition, locally CSSdoesimply CSS, as our next
result shows. (We thank the referee for showing us how a result of Gruenhage and Yajima can be used
to remove the assumption of normality from an earlier version of the theorem.)

Proposition 3.5 Suppose X is submetacompact (=θ-refinable). If X is locally CSS. then X is CSS.

Proof: LetW = {W(α) : α∈A} be a cover ofX by open subspaces, each of which is CSS in its relative
topology, and let{gα(n,x) : n≥ 1, x∈W(α)} be a CSS function for the subspaceW(α) as described
in Lemma 3.4.

BecauseX is submetacompact, Theorem 2.1 of [19] shows that there is a filterF of subsets of
ω and a sequence〈U(n)〉 of open covers ofX, each refiningW with the property that for every
x∈ X, {n < ω : ord(x,U(n)) < ω} ∈ F . (In fact, the same filterF works for all open covers of all
submetacompact spaces.) For each fixedn choose a functionfn : U(n)→ A such thatU ⊆W( fn(U))
wheneverU ∈U(n). For eachα ∈ A defineV(n,α) =

⋃
{U ∈U(n) : fn(U) = α}. Then the collection

V (n) = {V(n,α) : α ∈ A} is an open cover ofX that hasV(n,α) ⊆W(α). Furthermore, for any
x ∈ X, if ord(x,U(n)) < ω, then ord(x,V (n)) < ω so that{m < ω : ord(x,U(m)) < ω} ⊆ {m <
ω : ord(x,V (m)) < ω}. Because the first of those two sets belongs to the filterF , so does the second.
In summary, we now have open coversV (n) = {V(n,α) : α ∈ A} such that:

a) V(n,α)⊆W(α) for eachα ∈ A;

b) for eachx∈ X there is somen≥ 1 such that the set{α ∈ A : x∈V(n,α)} is finite;

c) for eachx∈ X, the set{n < ω : ord(x,V (n)) < ω} ∈ F ; and therefore

d) wheneverx,y∈X, the set{n< ω : ord(x,V (n)) < ω}∩{n< ω : ord(y,V (n)) < ω} is a member
of F and is therefore nonempty, so that for somen < ω, both ord(x,V (n)) and ord(y,V (n)) are
finite.
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For eachx∈ X andn≥ 1, let A(x,n) be defined as follows. If ord(x,V (n)) is finite, letA(x,n) =
{α ∈ A : x ∈ V(n,α)}, and if ord(x,V (n)) is infinite, choose anyα ∈ A with x ∈ V(n,α) and let
A(x,n) = {α}. Now define

g′(n,x) =
⋂
{gα(n,x)∩V(n,α) : α ∈

⋃
{A(x, i) : i ≤ n}}.

Eachg′(n,x) is open because
⋃
{A(x, i) : i ≤ n} is finite. LetH(n,m) = {y∈ X : ord(y,V (n)) < m}.

EachH(n,m) is closed inX so that the seth(n,x) = X−
⋃
{H(i,m) : i,m≤ n andx 6∈ H(i,m)} is open

and containsx. Now letg(n,x) = g′(n,x)∩h(n,x).

We will show that the functiong(x,n) has the properties described in Lemma 3.4. Property (a) is
clear. To verify (b), fixx∈ X andα(x) ∈ A(x,1). Theng(n,x)⊆ g′(n,x)⊆ gα(x)(n,x) for eachn≥ 1 so
thatx∈

⋂
{g(n.x) : n≥ 1} ⊆

⋂
{gα(x)(n,x) : n≥ 1}= {x}

To verify (c), suppose〈xn〉 is a sequence of distinct points ofX that converges to a pointy∈ X. For
contradiction, suppose there is somez∈ X−{y} with z∈ g(n,xn) for eachn≥ 1. According to (d)
above, there is some integerk such that the collectionV (k) has finite order at bothy andz.

Let m0 = ord(z,V (k)). Supposen≥max(m0,k). We claim that the coverV (k) has finite order at
xn. If not, thenxn 6∈ H(k,m0) while z∈ H(k,m0) so that

z∈ g(n,xn)⊆ h(n,xn)⊆ X−
⋃
{H(i,m) : i,m≤ n,xn 6∈ H(i,m)} ⊆ X−H(k,m0)⊆ X−{z}

and that is impossible.

Fix anyV(k,α) ∈ V (k) with y∈V(k,α). Because〈xn〉 converges toy, there is someN such that
xn ∈ V(k,α) for eachn≥ N. From the previous paragraph, for alln≥ max(k,m0), ord(xn,V (k)) is
finite. Then for eachn≥max(k,m0,N) we haveα∈A(xn,k) so thatz∈ g(n,xn)⊆ g′(n,xn)⊆ gα(n,xn).

Recall that the functiongα satisfies the conditions described in Proposition 3.4 for the subspace
W(α). Because the sequence〈xn : n≥max(k,m0,N)〉 consists of points ofV(k,α) ⊆W(α) and con-
verges toy∈V(k,α)⊆W(α) we know that

⋂
{gα(n,xn) : n≥max(k,m0,N)}⊆ {y}. But we havez 6= y

andz∈
⋂
{g(n,xn) : n≥max(k,m0,N)} ⊆

⋂
{gα(n,xn) : n≥max(k,m0,N)}= {y} and that contradic-

tion completes the proof.2

In the previous section, we showed that any compact subset ofX is aGδ-subset ofX providedX
has aδθ-base, or has a point-countable,T1-point-separating open cover, or has a BCO. None of these
properties is enough to guarantee thatX is CSS, as shown by Example 4.7 (a paracompact, monotoni-
cally normal space with a point-countable base that is not CSS) and by Example 4.2 (a monotonically
normal space with a BCO that is not CSS).

In Proposition 2.3 we showed that every compact subset ofX is aGδ-subset ofX providedX has a
quasi-Gδ-diagonal. Given certain additional covering conditions, we can prove that such a space must
be CSS:

Proposition 3.6 Suppose X is a Hausdorff space and has quasi-Gδ-diagonal〈G(n)〉 such that
⋂

C is
open wheneverC ⊆ G(n). Then X is CSS.

Proof: We may assume thatG(1) = {X}. For eachn≥ 1 and eachx∈ X, let

C(n,x) =
⋂
{G∈ G(i) : i ≤ n andx∈G}.

EachC(n,x) is open andC(n+1,x) ⊆C(n,x). For any compact setK ⊆ X let V(n,K) =
⋃
{C(n,x) :

x∈ K}. ClearlyV(n,K) is monotonic in bothn andK, andK ⊆
⋂∞

n=1V(n,K). Let z∈
⋂∞

n=1V(n,K)
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and supposez 6∈ K. There are pointsxn ∈ K with z∈C(n,xn). BecauseK is compact, the sequence
〈xn〉 has a cluster pointp∈ K. Thenp 6= zso there is somen with p∈ St(p,G(n))⊆ X−{z}. There is
somem> n with xm∈ St(p,G(n)). ChooseG0 ∈ G(n) with p,xm∈G0. But then we have

z∈C(m,xm)⊆C(n,xm)⊆G0⊆ St(p,G(n))⊆ X−{z}

and that is impossible. HenceX is CSS.2

What kinds of spaces satisfy the hypothesis of Proposition 3.6? Proposition 3.6 applies to any space
that has a quasi-Gδ-diagonal and is hereditarily metacompact or (more generally) has the property that
any open collectionU in X has aσ-Q refinementV that covers the set

⋃
U. 1 For example, any space

with a σ-point-finite base has this property.

Any quasi-developable space has aδθ base, so that Proposition 2.1 shows that any compact subset
of a quasi-developable space is aGδ-set. The proof requires so many arbitrary choices that we cannot
see how to prove that any quasi-developable space is CSS. It was announced in [26] that that anyT3,
quasi-developable space is CSS, but the details of some steps in the proof are not completely clear.
Therefore we ask:

Question 3.7 Is it true that each quasi-developable T3-space is CSS?

As noted in [26], an affirmative answer to Question 3.7 would yield an affirmative answer to an old
problem posed by Fletcher and Lindgren in [16], namelyIs every quasi-developableβ-space devel-
opable?.

We close this section with a result on the role of the CSS property in metrization theory. It is clear
that a compact Hausdorff space that is CSS must be semi-stratifiable and hence must be metrizable. As
with many other metrization theorems for compact Hausdorff spaces, that result holds for countably
compact spaces and extends to the much larger class of paracompact p-spaces, as the next result shows.
(The result is essentially due to Martin [25], although he did not state or prove it in exactly the following
way.)

Proposition 3.8 Let X be a completely regular space. Then:

a) X is developable if and only if X is submetacompact (=θ-refinable), a p-space in the sense of
Arhangel’skii, and CSS;

b) X is metrizable if and only if X is a paracompact p-space and is CSS.

c) if X is a countably compact CSS-space, then X is compact and metrizable,

Proof: Clearly (a) implies (b). To prove the harder half of (a), we recall that any submetacompact
p-space is aβ-space (Theorem 7.8 in [17]) and that any CSSβ-space is semi-stratifiable (Theorem 3 of
[25]). Hence any CSS submetacompact p-space is a semi-stratifiable p-space and is, therefore, a Moore
space (Corollary 5.12 in [17]). To prove (c), recall that any countably compact space is aβ-space and
combine Martin’s theorem [25] that a CSSβ-space is semistratifiable with Creede’s theorem that a
semistratifiable countably compact space is compact and metrizable.2

1The collectionV is a σ-Q-collection if V =
⋃∞

n=1 V (n) where
⋂

C is open for eachC ⊆ V (n). For example, every
σ-point-finite open collection isσ-Q, and any open collection in a GO-space has aσ-Q-refinement.
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4 The CSS property in ordered spaces

Proposition 4.1 Let S be a stationary subset of a regular uncountable cardinalκ. Then, in its relative
topology, S is not CSS. Hence any monotonically normal CSS space is hereditarily paracompact. In
particular, any CSS GO-space is hereditarily paracompact.

Proof: Theorem 4.1 of [15] shows that no stationary set in a regular uncountable cardinal can be CSS
and deduces hereditary paracompactness for GO-spaces that are CSS. The more general result about
monotonically normal spaces follows from that stationary set argument in the light of a theorem of
Balogh and Rudin [3].2

Example 4.2 There is a LOTS with a BCO that is locally CSS but not CSS.

Proof: Proposition 4.1 shows that the usual spaceX = [0,ω1) of all countable ordinals is not CSS.
However every point ofX has a compact, metrizable neighborhood, so thatX is locally CSS. (Contrast
this behavior with Proposition 2.6.) Also note that because “local implies global” for the BCO property
(see [28]),X has a BCO.2

It was announced in [15] that a result onG-Souslin diagonals could be used to prove that any
GO-space with a quasi-Gδ-diagonal must be CSS. Our next proposition provides a direct proof of that
result. We begin with a lemma that may be of use in its own right.

Lemma 4.3 Suppose(X,τ,<) is a GO space. Then X has a quasi-Gδ-diagonal if and only if there is
a GO-topologyσ on (X,<) that is quasi-developable and hasσ⊆ τ.

Proof: Any quasi-developable space has a quasi-Gδ-diagonal, so that if there is a quasi-developable
topologyσ⊆ τ onX, then(X,τ) has a quasi-Gδ-diagonal.

To prove the harder implication, suppose that the GO-space(X,τ,<) has a quasi-Gδ-diagonal struc-
ture 〈G(n)〉 as defined above. A stationary set argument (see [15]) shows thatX is hereditarily para-
compact so for eachn there is aσ-disjoint collection that refinesG(n) and covers

⋃
G(n). Therefore,

we may assume that eachG(n) is a pairwise disjoint collection of convex sets. The collectionB of all
finite intersections of sets fromG =

⋃
{G(n) : n≥ 1} is σ-disjoint and is the base for some topology

σ on X havingσ ⊆ τ. If we can show that(X,σ) is Hausdorff, then, members ofB being convex in
(X,<), we will have the required GO-topology.

To showσ is a Hausdorff topology, supposep andq are distinct points ofX. We may suppose
p < q. If the open interval(p,q) is the empty set, choose membersGp,Gq ∈G with p∈Gp⊆ X−{q}
andq∈ Gq ⊆ X−{p}. Then convexity forcesGp ⊆ (←,q) andGq ⊆ (p,→) so thatGp∩Gq ⊆ (←
,q)∩ (p,→) = /0. If (p,q) 6= /0, choose anyz∈ (p,q) and findGp,Gq ∈ G with p∈Gp⊆ X−{z} and
q∈Gq⊆ X−{z}. Convexity forcesGp⊆ (←,z) andGq⊆ (z,→) so thatGp∩Gq = /0, as required.2

Proposition 4.4 Let X be a GO space. If X has a quasi-Gδ-diagonal, then X is CSS.

Proof: In the light of Lemma 4.3, it is enough to prove that a quasi-developable GO-space is CSS. IfX
is a quasi-developable GO-space, thenX has aσ-disjoint base (see [5] or [23]) so that Proposition 3.6
completes the proof.2

The spaceS∗ in the next example shows that in the category of GO-spaces, the CSS property is not
characterized by the existence of a quasi-Gδ-diagonal.
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Example 4.5 Each of the following linearly ordered topological spaces is CSS and is aσ#-space.

LOTS Additional Properties
M∗ CSS, quasi-developable, noGδ-diagonal, not perfect,

and contains the Michael line as a closed subspace
S∗ CSS, not quasi-developable, not perfect, no quasi-Gδ-diagonal,

and contains the Sorgenfrey line as a closed subspace
the Big Bush CSS, point-countable base, not perfect,

no quasi-Gδ-diagonal, not quasi-developable

In the above table,M∗= (R×{0})∪(P×Z) andS∗= R×{n∈Z : n≤ 0}, both with the lexicographic
order and the associated open-interval topology. It is easy to check (using Lemma 3.4) that each
of these spaces is CSS. See [23] for the additional properties ofM∗ and S∗. The Big Bush is the
lexicographically ordered setB =

⋃
{Bλ : λ < ω1 is a limit} whereBλ is the set of all functionsf :

[0,λ]→ R with the property thatf (α) ∈ P for eachα < λ while f (λ) ∈ Q. The additional properties
of B are verified in [6]. To see thatB is CSS, letf ∈ Bλ and let

g(n, f ) = {h∈ B : [0,λ]⊆ dom(h) andh(α) = f (α) for all α < λ and| f (λ)−h(λ)|< 1
n
}.

Suppose thatfn is a sequence inB that converges tof and thatk ∈ g(n, fn) for eachn≥ 1. Write
dom( f ) = [0,λ] and dom( fn) = [0,λn]. We may assume thatfn ∈ g(n, f ) for all n. Henceλ ≤
λn, fn(α) = f (α) for all α < λ, and the real-number sequencefn(λ) converges tof (λ). If λ < λn

occurs for infinitely many values ofn, then for all suchn we havek(α) = fn(α) so that the real se-
quence〈 fn(λ)〉 has a subsequence with a constant irrational value, showing thatfn(λ) cannot converge
to the rational numberf (λ). Therefore, we may assume thatλn = λ for all n. If k(λ) 6= f (λ) find a
positive integerm with 2

m < | f (λ)−k(λ)|. Becausefn(λ) converges tof (λ) there is an integern > m
with | fn(λ)− f (λ)|< 1

m. Becausek∈ g(n, fn) we have

| f (λ)−k(λ)| ≤ | f (λ)− fn(λ)|+ | fn(λ)−k(λ)|< 2
m

< |k(λ)− f (λ)|

and that is impossible. Hencek(λ) = f (λ) ∈Q so thatk = f , as required to prove thatB is CSS.

To see that neither the Big Bush norS∗ has a quasi-Gδ-diagonal, note that in any LOTS, the ex-
istence of a quasi-Gδ-diagonal is equivalent to quasi-developability. But the Big Bush is not quasi-
developable (see [4], [6]) andS∗ is not quasi-developable because it contains a copy of the Sorgenfrey
line (a perfect, non-metrizable GO-space). To see that each of the three spaces is aσ#-space, we may
apply Proposition 4.6, because each space is a LOTS (and not merely a GO-space).2

Proposition 4.6 For any LOTS X, the following are equivalent:

a) X is CSS;

b) X is aγ-space;

c) the topology of X can be generated by a non-Archimedean quasi-metric;

d) the topology of X can be generated by a quasi-metric;

e) X is aσ#-space.
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Proof: The equivalence of (b), (c), and (d) in any GO-space was proved by Kofner in [22]. The
equivalence of (e) and (c) is easy to prove in any LOTS, and was announced in [15], as was the
equivalence of (a) and (b) in any LOTS.2

Example 4.7 There is a LOTS with a point-countable base that is not CSS.

Proof: In [18], Gruenhage constructed a LOTS with a point-countable base that is not quasi-metrizable.
In the light of Proposition 4.6, that space cannot be CSS.2

Question 4.8 Is there a GO-space that is CSS but not aσ#-space?

Note that Question 4.8 is a special case of Question 3.3. Also note that such a space could not be a
LOTS, in the light of Proposition 4.6. Finally, as can be seen from Example 4.12, the standardX∗

construction for a GO-spaceX may fail to preserve the CSS property.

None of the three spaces in Example 4.5 are perfect and none have aGδ-diagonal. This is no
accident because for a very large class of perfect GO-spaces, being CSS is equivalent to having a
Gδ-diagonal, as our next theorem shows. Recall that any GO-space having aσ-closed-discrete dense
subset is perfect [7] and that there is no known ZFC example of a perfect GO-space that does not have
aσ-closed-discrete dense set. (See [27] and [10] for related material. More recent work [9] has pointed
out that there cannot be any ZFC example of a perfect GO-space that has local densityω1 and does not
have aσ-closed-discrete dense subset.) We begin with a lemma.

Lemma 4.9 Suppose X is a GO-space.

a) If X has aσ-closed-discrete dense subset, then there is a sequence〈V (n)〉 of convex open covers
of X with the property that for each p∈ X,

⋂
{St(p,V (n)) : n≥ 1} is a convex set with at most

two points.

b) If 〈V (n)〉 is any sequence of open covers of X as described in (a) and if the set K of all points
such that|

⋂
{St(p,V (n)) : n≥ 1}|= 2 is σ-closed-discrete in X, then X has a Gδ-diagonal.

c) If X is a perfect GO-space and if the set K in (b) isσ-relatively-discrete, then X has a Gδ-
diagonal.

Proof: Assertion (a) is part of Theorem 2.1 of [7]. Assertion (c) follows directly from assertion (b) in
any perfect GO-space. To prove (b), writeK =

⋃
{Kn : n≥ 1} where eachKn is closed and discrete in

X. We may assumeKn⊆ Kn+1 for all n. Use the fact thatX is collectionwise normal to find a discrete
collectionU(n) = {U(n,x) : x ∈ Kn} of open sets withx ∈ U(n,x). DefineW (n) = {V −Kn : V ∈
V (n)}∪{U(n,x) : x∈ Kn}. ThenW (n) is aGδ-diagonal sequence of open covers ofX, as required.2

Theorem 4.10 Suppose(X,S ,<) is a GO-space with aσ-closed-discrete dense subset. Then X is CSS
if and only is X has a Gδ-diagonal.

Proof: Half of the proof follows from Proposition 4.4. For the converse, supposeX is CSS. Having a
σ-closed-discrete dense subset,X is perfect and paracompact. We will begin by reducing the problem
to a special case. LetG =

⋃
{U ∈ S : U has aGδ-diagonal in its relative topology}. BecauseX is

hereditarily paracompact, the subspaceG has aGδ-diagonal for its relative topology. BecauseX is
perfect,G is a union of countably many closedGδ-subsets, each with aGδ-diagonal in its relative
topology. LetY = X−G. If we can show thatY has aGδ-diagonal for its relative topology, thenX is

11



seen to be a countable union of closed,Gδ-subspaces, each with aGδ-diagonal in its subspace topology,
and that would be enough to guarantee thatX has aGδ-diagonal.

Note that the subspaceY = X−G is CSS, has aσ-closed-discrete dense subspace (see [8]) and
(most important) has no isolated points. To see thatY has no isolated points, suppose there is a point
p∈ Y and an open setV ⊆ X such thatV ∩Y = {p}. ThenV−{p} ⊆ G so thatV−{p} has aGδ-
diagonal for its relative topology. Because{p} is aGδ-subset ofX, it follows that the entire setV has
a Gδ-diagonal for its relative topology, whenceV ⊆ G andV ∩Y = /0. ThereforeY has no isolated
points. Henceforth, we consider only the GO-spaceY with its topology and ordering inherited fromX.
(Alternatively, the reader could assume thatY = X so thatX itself has no isolated points.)

Let J = {p ∈ Y : ∃q ∈ Y−{p} with conv{p,q} = {p,q}}, where conv{p,q} denotes the order-
convex hull of the set{p,q} in Y. ThusJ is the set of jump-points inY. Apply Lemma 4.9 to find
convex open coversV (n) of Y with the property that wheneverp∈Y has|

⋂
{St(p,V (n)) : n≥ 1}|> 1

thenp∈ J. In the light of Lemma 4.9 it will be enough to show that the setJ is σ-relatively discrete in
Y. For contradiction, suppose thatJ is not σ-relatively-discrete inY.

Let J0 = {p∈ J : ∃q > p with [p,q] = {p,q}} and letJ1 = J− J0. Eachp∈ J0 has an immediate
successor that we will callp+ in J− J0 = J1 becauseY has no isolated points. BecauseJ is not σ-
relatively-discrete, at least one ofJ0 andJ1 must fail to beσ-relatively discrete. We will need more,
namely thatJ0 is notσ-relatively-discrete, and that follows from the stronger assertion (to be needed
later) in the next claim.

Claim 1: Let C⊆ J0 and letD = {p+ : p∈C}. Then both of the setsC andD areσ-relatively-discrete
if and only if one ofC andD is σ-relatively-discrete. Half of Claim 1 is trivial. To prove the non-
trivial half, supposeC is σ-relatively-discrete. BecauseY is perfect, it follows thatC can be written as
C =

⋃
{Cn : n≥ 1} where eachCn is a closed and discrete subset ofY. Let Dn = {p+ : p∈Cn}. We

claim thatDn is relatively discrete. If not, then there is a sequenceqk ∈ Dn that converges to a point
q∈Dn. We may assume that the pointsqk are distinct. For eachk, find pk ∈Cn with qk = p+

k . Note that
[q,→) is an open set inY so we may assume thatq < qk for all k. But then we must haveq < pk < qk

so that the sequencepk must also converge toq. But that is impossible because the pointspk were
chosen from the closed, discrete subsetCn. ThusDn is relatively discrete. HenceD =

⋃
{Dn : n≥ 1} is

σ-relatively-discrete, as claimed. An analogous argument shows that ifD is σ-relatively-discrete, then
so isC.

Next we collapse the jumps ofY. For a,b ∈ Y, definea∼ b to mean that eithera = b of else
conv{a,b}= {a,b} (i.e.,a andb are the endpoints of a jump ofY). BecauseY has no isolated points,
∼ is an equivalence relation onY. Let Z = Y/∼ and letT be the quotient topology and≺ the induced
ordering ofZ. Then by Proposition 1.2.3 of [29](Z,T ,≺) is a GO-space and the natural projection
mapπ : Y→ Z has the property thaty1 ≤ y2 in Y impliesπ(y1) � π(y2) in Z. Consequently, the GO-
spaceZ has aσ-closed-discrete dense set and it is easy to verify that there are no jumps in the set
(Z,≺). Applying Lemma 4.9, we see that the GO-space(Z,T ) has aGδ-diagonal. It follows from a
theorem of Przymusinski (quoted in [1]) that there is a metrizable topologyM on Z such thatM ⊆ T
and such that(Z,M ,≺) is a GO-space. Letd be a metric onZ that is compatible withM .

The subspace(Y,SY) is CSS because the CSS property is hereditary. Therefore we can find a CSS
functiong(n,y) for Y and we may assume that eachg(n,y) is convex, that if[y,→) ∈ SY (respectively
if (←,y] ∈ SY) then g(n,y) ⊆ [y,→) (respectivelyg(n,y) ⊆ (←,y]), and that{g(n,y) : n ≥ 1} is a
neighborhood base aty.

Claim 2: It cannot happen that for somey ∈ J0 there are pointsxn ∈ g(n,y) with the property that
g(n,xn) 6⊆ (←,y]. For suppose that the pointsy and xn exist. Then〈xn〉 converges toy. Also the
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convexity ofg(n,xn) combines withg(n,xn) 6⊆ (←,y] to show thaty+, the immediate successor ofy in
Y, belongs to eachg(n,xn). That contradicts

⋂
{g(n,xn) : n≥ 1} ⊆ {y} (see Lemma 3.4). Therefore

Claim 2 is established and we conclude

(∗∗) for eachy∈ J0, ∃m= m(y) such that ifx∈ g(m,y) theng(m,x)⊆ (←,y].

For each positive integerr, defineC(r) = {y∈ J0 : m(y) = r}. BecauseJ0 is notσ-relatively-discrete
there is somer0 such thatC(r0) is not σ-relatively-discrete. For future reference, let us record that
y∈C(r0) if and only if

(∗∗∗) x∈ g(r0,y)⇒ g(r0,x)⊆ (←,y].

Supposey ∈ J0 and u ∈ Y hasu < y. Then in the quotient spaceZ we haveπ(u) ≺ π(y) so
that (π(u),→) is an open set in the metric GO-topologyM . Hence there is anε > 0 such that, if
Bd(π(y),ε) denotes theε-ball with respect to the metricd that was chosen to be compatible with
M , thenBd(π(y),ε)∩ (←,π(y)] has the property that ifv ∈ Y hasv < y andπ(v) ∈ Bd(π(y),ε) then
v ∈ (u,y]. In particular, ify ∈ C(r0) there is some positive integern = n(y) such that ifv < y has
π(v) ∈ Bd(π(y), 1

n) thenv∈ g(r0,y).

For each integers≥ 1 letC(r0,s) = {y∈C(r0) : n(y) = s}. BecauseC(r0) is the union of all the
setsC(r0,s) and becauseC(r0) is notσ-relatively-discrete, there must exist an integers0 such that the
setC(r0,s0) is not σ-relatively-discrete. For future reference we record the key property of the set
C(r0,s0), namely

(∗∗∗∗) if y∈C(r0,s0) andv < y hasπ(v) ∈ Bd(π(y),
1
s0

) thenv∈ g(r0,y).

Let D(r0,s0) = {p+ : p∈C(r0,s0)}. In the light of Claim 1,D(r0,s0) cannot be relatively discrete,
so there must be a sequence of distinct pointsqi ∈ D(r0,s0) that converges to the pointq∈ D(r0,s0).
Because the set[q,→) is open inY, we may assume thatq < qi for eachi ≥ 1. Because no point
of Y is isolated inY, each set[q,qi) must be infinite. Consequently, the fact thatqi = p+

i for some
pi ∈C(r0,s0) yieldsq < pi < qi for eachi and therefore the sequence〈pi〉 converges toq in Y.

Projecting into the quotient space(Z,T ) we see that〈π(pi)〉 converges toπ(q). BecauseM ⊆ T
we know that〈π(pi)〉 converges toπ(q) in the metric space(Z,M ). Therefore we may assume that
d(π(q),π(pi)) < 1

s0
for eachi ≥ 1. Becausepi ∈ C(r0,s0) ⊆ C(r0) andq < pi in Y, it now follows

from (****) that q ∈ g(r0, pi) for eachi ≥ 1. But thenpi ∈C(r0) forcesg(r0,q) ⊆ (←, pi ] for each
i ≥ 1 so thatg(r0,q)⊆ (←,q] becauseq = inf{pi : i ≥ 1}. But that is impossible becauseg(r0,q) is a
neighborhood ofq while (←,q] is not (because Y has no isolated points). That contradiction completes
the proof that the subsetJ of jump points ofY must beσ-relatively-discrete and, in the light of Lemma
4.9, that is enough to show thatY has aGδ-diagonal.2

Example 4.11 If there is a Souslin line, then there is a perfect GO space that is CSS but does not have
a quasi-Gδ-diagonal, showing that the existence of aσ-closed-discrete dense subset is a necessary part
of the proof of Theorem 4.10.

Proof: In [20], R. W. Heath showed that if there is a Souslin line (something that is undecidable in
ZFC) then there is a quasi-metrizable Souslin line. In the light of Proposition 4.6, Heath’s space is CSS.
Because Heath’s space is a Souslin line, it cannot have aGδ-diagonal, or even a quasi-Gδ-diagonal.2

It is known that any GO-spaceX embeds as a closed subspace of a LOTSX∗ in a canonical way,
and that for many topological propertiesP, if X hasP then so doesX∗ [23]. Our next example shows
that being a CSS space, and being aσ#-space, are not properties of that type.
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Example 4.12 There is a GO space X that is both CSS and aσ#-space, and yet the LOTS X∗ is neither.

Proof: LetX be the GO-space constructed onR by making[x,→) open for eachx∈ P and(←,q] open
for eachq∈Q. ThenX is a separable GO space with a weaker metrizable topology, so thatX is both
CSS and aσ#-space. The LOTS extension ofX is

X∗ = (P×{n∈ Z : n≤ 0})∪ (Q×{n∈ Z : n≥ 0})

with the lexicographic ordering. For contradiction, supposeX∗ is CSS and thatg(n,(x, i)) is a CSS
function forX∗ as in Lemma 3.4. We may assume that eachg(n,(x, i)) is convex. If there is somex∈ P
such that for alln≥ 1 someqn ∈ [x,x+ 1

n) hasg(n,(qn,0))∩ ((x,0),→) 6= /0, then(x,1) ∈ X∗ because
x∈ P so that convexity ofg(n,(qn,0)) gives

(x,1) ∈
⋂
{g(n,(qn,0)) : n≥ 1} ⊆ {(x,0)}

and that contradicts Lemma 3.4 because(qn,0) converges to(x,0).

Therefore, for eachx∈ P there is somen = n(x) such that ifq∈ Q∩ [x,x+ 1
n) theng(n,(q,0)) ⊆

[(x,0),→). LetP(k) = {x∈ P : n(x) = k}. Baire Category theory yields an open interval(a,b)⊆R and
an integerk0 such thatP(k0) is dense in(a,b). Choose anyq∈Q∩(a,b) and, fori ≥ k0, choose a point
xi ∈ (q− 1

i ,q)∩P(k0). Then we haveg(k0,(q,0)) ⊆ [(xi ,0),→) for eachi ≥ k0 so thatg(k0,(q,0)) ⊆
[(q,0),→). But that is impossible because the latter set is not a neighborhood of(q,0) in X∗. Hence
X∗ is not CSS. Because anyσ#-space is CSS (see 3.1), it follows thatX∗ is not aσ#-space.

We remark that there is a Lindelöf example of this type: letB andC be complementary Bernstein
sets inR, and make a GO-spaceY by requiring that(←,x] open for eachx∈ B, and[x,→) open for
eachx∈C. The resulting GO-spaceY is Lindelöf, CSS, and aσ#-space, and the LOTS extensionY∗ is
Lindelöf but neither CSS nor aσ#-space.2
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