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1 Introduction

By a line we mean a linearly ordered set(X,<). Todořcevic pointed out that any lineX is order isomorphic to
the branch space of some tree, provided the tree is allowed to be as complicated asX itself. The problem studied
in this paper is “Which lines(X,<) can be represented, up to order isomorphism, as the branch space of a tree
that is less complicated thanX?”

Our terminology and notation for trees generally follow [9]. Recall that atreeis a partially ordered set(T,≤T )
such that for eacht ∈ T the setTt = {s ∈ T : s 6= t, s ≤T t} is well-ordered by≤T . The order type ofTt is
called thelevelof t, abbreviatedlv(t). For any ordinalα, the setTα = {t ∈ T : lv(t) = α} is theαth level ofT .
BecauseT is a set, there must be some ordinalα with Tα = ∅; the first such ordinal is called theheightof the tree
and is denoted byht(T ).

By apath in T we mean a subsetρ ⊆ T that is linearly ordered by≤T and has the property that ifs ≤T t and
t ∈ ρ, thens ∈ ρ. Each non-maximal pathρ determines anodeof the tree byNode(ρ) = {t ∈ T : Tt = ρ}.

1This paper is part of the undergraduate honors thesis of Will Funk, written at the College of William and Mary with financial support
from the College’s Charles Center, and under the supervision of David Lutzer.
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Sometimes we will have a pointt ∈ T and we will want to look at the node ofT to whicht belongs. We will use
the notationN(t, T ) = {s ∈ T : Tt = Ts}.

LetN (T ) be the collection of all nodes of the treeT . Observe that for any nodeN ∈ N (T ), the points ofN
are incomparable with respect to≤T . For each nodeN we will choose a linear ordering<N of N . There is no
necessary relation between the orderings of one node and another.

By a branchof T we mean a maximal path inT and we denote the set of all branches ofT by BT . For any
branchb ∈ BT let ht(b) be the order type of the well-ordered setb (ordered as a subset of(T,≤T )). Forα < ht(b)
let b(α) be the unique point ofb ∩ Tα. For distinctb, c ∈ BT , there is a first ordinalδ = ∆T (b, c) such that
b(δ) 6= c(δ). Thenb(δ), c(δ) belong to the same nodeN of T and we defineb <B c if and only if in the ordering
<N chosen forN , we haveb(δ) <N c(δ). Thebranch spaceof the tree is the linearly ordered set(BT , <B). The
term “branch space ofT ” is actually a misnomer, because the linear orderings chosen for the nodes have at least
as much influence on the structure of the branch space as does the tree itself. Ift ∈ T andN is a node ofT , then
both [t]T = {b ∈ BT : t ∈ b} and[N ]T =

⋃
{[t]T : t ∈ N} are convex subsets ofBT . One cannot (in general)

assume that each[t]T has|[t]T | ≥ 3: see Proposition 2.3 in Section 2.

With that terminology and notation in hand, we can describe Todočevic’s observation in [9] showing that any
line is the branch space of a tree provided one is willing to allow the tree to be as complicated as the line one
seeks to represent. For any linearly ordered set(X,<) let T = T0 = X and use equality as the partial order on
T . ThenT0 is the only node ofT and we linearly orderT0 to make it a copy of(X,<). The branch space of the
resulting tree is a copy of(X,<).

The above example shows that if one wants a reasonable branch space representation theory for linearly
ordered sets, one needs to restrict the trees used to represent a given(X,<) to make sure that they are less
complicated thanX itself. The literature contains several well-known ways to impose such restrictions on a tree
T . One could impose cardinality constraints on the height ofT , or on each level ofT , or on each node ofT , or
on each anti-chain ofT . Alternatively one could constrain the node orderings needed to define the linear ordering
of the branches ofT . For a given linearly ordered set(L,<), we will say that the node-orderings ofT areL-non-
degenerateif for each nodeN of T , the linearly ordered set(N,<N) does not contain an order-isomorphic copy
of (L,<).

Throughout this paper we reserve the symbolsR, P, Q andZ for the sets of real, irrational, and rational
numbers, and for the set of all integers, respectively. Iff : X → Y andS ⊆ X, then we abuse notation slightly
by writing f(S) = {f(s) : s ∈ S} in lieu of the more familiarf [S] because notation involving square brackets
already has too many meanings in our paper.

The authors want to thank the referee whose suggestions significantly improved our paper. In particular, the
proofs given for Lemmas 2.1 and 6.1 are much clearer and shorter than the ones we originally proposed.

2 Simplifying Trees for Branch Space Constructions

In this section we present two technical lemmas that describe how we can simplify certain trees without changing
their branch spaces. The first deals with trees in general, and the second deals with trees whose branch spaces
are order isomorphic to sets of real numbers. The lemmas may be known, but we have not been able to find
proofs in the literature. In the first reading of the next lemma, readers may want to ignore the references to
L-non-degeneracy. This idea is not needed until the end of Section 4.
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Lemma 2.1 : Let (L,<L) be a linearly ordered set. Let(T,≤T ) be a tree and{<N : N ∈ N (T )} a family of
node orderings ofT each of which isL-non-degenerate. Let(BT , <BT

) be the corresponding branch space. Then
there is a subtree(V,≤V ) of T such that

a)N (V ) = {N ∈ N (T ) : |N | > 1}

b) if nodes ofV are linearly ordered exactly as they are ordered inT , then the nodes ofV areL-non-
degenerate and the branch space(BV , <BV ) is order-isomorphic to(BT , <BT

).

c) each node ofV has at least two elements, so that each non-maximal element ofV splits inV .

Proof: Once assertions (a) and (b) are established, (c) is immediate.

LetM(T ) = {N ∈ N (T ) : |N | > 1} and letV =
⋃
M(T ). Let V carry the partial order induced by the

partial order ofT . We first show thatN (V ) = M(T ).

Claim 1: If N is a node ofV , then for someM ∈M(T ), N ⊆M . Fix a nodeN of V and letx ∈ N . Then there
is someM ∈M(T ) with x ∈M . For contradiction, suppose thatN 6⊆M . Choosey ∈ N with y 6∈M . Because
x, y ∈ N we have

(∗) {z ∈ V : z < y} = {z ∈ V : z < x}

and becausey 6∈M we have
(∗∗) {w ∈ T : w < y} 6= {w ∈ T : w < x}.

For contradiction, suppose that{w ∈ T : w < y} ⊆ {w ∈ T : w < x}. Let r be the unique point of the set
{w ∈ T : w < x} whose level inT is the same aslvT (y). If y = r, theny < x and that contradicts(∗). Hence
r 6= y and we have{w ∈ T : w < r} = {w ∈ T : w < y} so that some nodeP of T contains bothy andr. Then
|P | ≥ 2 so thatr ∈ P ⊆ V and that contradicts(∗).

An analogous argument shows that{w ∈ T : w < x} ⊆ {w ∈ T : w < y} is also impossible.

At this stage, we know that neither{w ∈ T : w < x} nor{w ∈ T : w < y} is a subset of the other. Then(∗∗)
allows us to choose the first ordinalα so that the sets{w ∈ T : w < x} and{w ∈ T : w < y} contain distinct
pointsr, s, respectively, withlvT (r) = lvT (s) = α. Then{w ∈ T : w < r} = {w ∈ T : w < s} so thatr ands
are distinct members of the same nodeQ of T . But thenr, s ∈ Q ⊆ V and once again we have contradicted(∗).
Therefore,N ⊆M and Claim 1 is established.

Claim 2: If M ∈ M(T ) then someN ∈ N (V ) hasM ⊆ N . This follows from the fact that ifx, y ∈ M then
{w ∈ T : w < x} = {w ∈ T : w < y} and the facts that{z ∈ V : z < x} = {w ∈ T : w < x} ∩ V and
{w ∈ T : w < y} ∩ V = {z ∈ V : z < y}.

Together, Claim 1 and Claim 2 establish (a).

Now linearly order the nodes ofV using the node orderings ofT and let(BV , <BV
) denote the branch space

of V . If b ∈ BT , it is easy to see thatb ∩ V ∈ BV . Therefore, the rulef(b) = b ∩ V defines a function fromBT

toBV . To show thatf is strictly increasing, supposea, b ∈ BT with a <BT
b. Let δ = ∆(a, b) and choose distinct

x ∈ a, y ∈ b with lvT (x) = lvT (y) = δ. But then{w ∈ T : w < x} = {w ∈ T : w < y} so thatx andy are
distinct points of the same nodeM of T . Thereforex, y ∈ M ⊆ V showing thata ∩ V precedesb ∩ V in the
ordering ofBV . Finally, suppose thatc ∈ BV . Thenc is a linearly ordered subset ofT so there is someb ∈ BT

with c ⊆ b. But thenf(b) = c so thatf is also seen to be onto. Therefore,BT is isomorphic toBV , as required.2
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Lemma 2.2 Suppose(T,≤T ) is a tree with countable nodes and that{<N : N ∈ N (T )} is a fixed family of node
orderings forT . Suppose that the resulting branch space(BT , <BT

) is known to be order isomorphic to some set
X of real numbers. Then there is a subtree(U,≤U) of T having countable levels and height≤ ω and a set of
node orderings{<M : M ∈ N (U)} such that the corresponding branch space is order isomorphic toX.

Proof: Recall that a subsetC ⊆ X ⊆ R is relatively convexin X if given three pointsx < y < z of X with
x, z ∈ C, we havey ∈ C.

We may assume thatT satisfies Lemma 2.1. Letf : BT → X be an order isomorphism from the branch space
of T onto a setX ⊆ R.

Claim 1: Each branch ofT has height< ω1 and henceT has height≤ ω1. For suppose some branchb ∈ BT

has height≥ ω1. Then either{infR(f([t]T ) : t ∈ b} or {supR(f([t]T )) : t ∈ b} contains an uncountable strictly
increasing (respectively, decreasing)ω1 sequence inR and that is impossible. Thus, each branch las height< ω1

and therefore the height ofT is≤ ω1.

Claim 2: Each level ofT is countable. In the light of Lemma 2.1, each node ofT has at least two points. Fix an
ordinalα and consider the collectionNα consisting of all nodes ofT at levelα and forN ∈ Nα let [N ] be the
set of all branchesb of T with b ∩ Tα ⊆ N . Then{conv(f([N ])) : N ∈ Nα} is a pairwise disjoint collection of
convex subsets ofR, whereconv(S) denotes the convex hull inR of a setS. Such a collection must be countable,
so thatNα must be countable. Because each individual node ofT is known to be countable, each level ofT must
be countable.2

Claim 3: The height ofT is less thanω1. For contradiction, suppose thatht(T ) = ω1. BecauseX ⊆ R, there
is a countable setD ⊆ X that isorder densein X, i.e., if x < y belong toX, then[x, y] ∩ D 6= ∅. (Note: this
is not the same as being topologically dense inX.) Let α0 = sup({ht(b) : b ∈ BT , f(b) ∈ D}). BecauseD is
countable andf is 1-1, Claim 1 shows thatα0 < ω1. Becauseα0 < ω1, Tα0+1 6= ∅. Chooset ∈ Tα0+1. The node
N of T to whicht belongs has at least two members, so thatf([N ]) is a non-degenerate, relatively convex subset
of X. However,f([N ]) ∩ D = ∅ and that is impossible becauseD is an order-dense subset ofX. Therefore,
ht(T ) < ω1 as claimed.

For eacht ∈ T , let It be the convex hull inR of the setf([t]T ) = {f(b) : t ∈ b}. If s andt are distinct and
belong to the same level ofT , thenIs andIt are disjoint subsets ofR. For eachb ∈ BT , letKb =

⋂
{It : t ∈ b}.

Claim 4: For eachb ∈ BT the setKb is a closed and bounded subset ofR. Computef(b) ∈ R. For each
t ∈ b choose branchesbt0, b

t
1 ∈ [t] with bt0 ≤BT

b ≤BT
bt1 with strict inequalities whenever possible. Then

Kb =
⋂
{It : t ∈ b} =

⋂
{[f(bt0), f(bt1)] : t ∈ b}, where the second equality follows from the fact that whenever

possible, we used strict inequalities in choosing the branchesbti. Therefore the setKb is closed and bounded inR.

For eachb ∈ BT , f(b) ∈ Kb. If b1 andb2 are distinct branches ofT and ifδ = ∆T (b1, b2), thenb1(δ) 6= b2(δ).
Write ti = bi(δ). ThenKbi

⊆ Iti forcesKb1 ∩Kb2 = ∅.

Defineπ : R → R by the rule that ifx ∈ Kb for someb ∈ BT , thenπ(x) = f(b) and for all otherx ∈ R define
π(x) = x. ThenY = π[R] ⊆ R.

Claim 5: The setY = π[R] with the order inherited fromR is order isomorphic toR. Because|Y | > 1, to prove
this assertion, it will be enough to show thatY has a countable order-dense subset, has no endpoints, is densely
ordered, and has the least upper bound property (because that list of properties characterizes the ordered setR).
Because each setKb is bounded,Y has no end points. ThatY has a countable order-dense subset follows from
Y ⊆ R. To see thatY is densely ordered, supposey1 < y2 in Y . Becauseπ is weakly increasing (i.e., ifx1 < x2
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in R thenπ(x1) ≤ π(x2) in Y ) we know that ifxi ∈ π−1(yi) thenx1 < x2. Furthermore, the setsπ−1(yi) are each
compact and therefore the numbersx1 = sup(π−1(y1)) andx2 = inf(π−1(y2)) both exist inR andxi ∈ π−1(yi).
Hencex1 < x2. Choose anyz ∈ (x1, x2). Thenπ(z) ∈ Y ∩ (π(x1), π(x2)) = Y ∩ (y1, y2). ThusY is densely
ordered.

Finally, Y has the least upper bound property becauseR has that property andπ is weakly increasing and
π−1(y) is a compact, convex subset ofR for eachy ∈ Y . Hence,Y = π(R) is order isomorphic toR. Let
g : π(R) → R be an order isomorphism.

Claim 6: For any branchb ∈ BT ,
⋂
{π(It) : t ∈ b} = π(Kb) = {f(b)}. Clearlyπ(Kb) ⊆

⋂
{π(It) : t ∈ b}.

For a givent ∈ b note thatπ(It) ⊆ It and therefore
⋂
{π(It) : t ∈ b} ⊆

⋂
{It : t ∈ b} = Kb. But then⋂

{π(It) : t ∈ b} ⊆ Kb ∩ π(R) = π(Kb), as required.

Define a functiond : Y × Y → [0,∞) by the rule that ify1, y2 ∈ π[R], thend(y1, y2) = |g(y1)− g(y2)|. Then
d is a metric on the setπ(R). We used to define the diameter of a set in the usual way.

Claim 7: For any branchb of T, inf{diamd(π(It)) : t ∈ b} = 0. Fix b ∈ BT and suppose thatu, v ∈ π(R) have
u < π(f(b)) < v in π(R). Choosexu = max π−1(u) andxv = minπ−1(v). Because the setπ−1(y) is compact
for everyy ∈ π(R), bothxu andxv exist and belong toπ−1(u) andπ−1(v) respectively. ThenKb ⊆ (xu, xv).
Because the setsIt are convex and have

⋂
{It : t ∈ b} = Kb, somet ∈ b hasIt ⊆ (xu, xv), showing that the

d-diameter ofπ(It) is less than thed-diameter of any interval(u, v) with u, v ∈ π(R) andπ(f(b)) ∈ (u, v).
Therefore,inf{diamd(π(It)) : t ∈ b} = 0 as claimed.

For eachn ≥ 1 let Vn = {t ∈ T : diamd(π(It)) <
1
n

and s <T t⇒ diamd(π(Is)) ≥ 1
n
}.

Claim 8: EachVn is a maximal anti-chain ofT .
Clearly Vn is an anti-chain. To prove maximality, consider anyt0 ∈ T . Choose any branchb0 of T that

containst0. According to Claim 8, somet ∈ b0 hasdiamd(π(It)) <
1
n
. Let t1 be the first member ofb0 with that

property. Thent1 ∈ Vn and the pointst0 andt1 are comparable inT because both belong to the branchb0. Hence
Vn is maximal.

Now defineU =
⋃
{Vn : n ≥ 1} and partially orderU by restricting the partial order ofT . From earlier

claims we know thatT has countable height and countable levels, so that|U | ≤ |T | ≤ ω. (Notice that we donot
claim that the setsVn are the levels ofU .)

Claim 9: If vi ∈ Vi andvj ∈ Vj havevi <T vj theni < j. If j ≤ i then 1
i
≤ 1

j
so thatdiamd(π(Ivi

)) < 1
i
≤ 1

j
.

But vi <T vj and that contradicts the minimality condition built into the definition ofVj.

Claim 10The height ofU is≤ ω.
Otherwise there would be some elementu∗ ∈ U with heightω in U . List the predecessors ofu∗ in U as

{uk : k ≥ 1} and choose integersnk with uk ∈ Vnk
. Because eachVnk

is an anti-chain, no more than one of
the pointsuk can belong to any one setVnk

, showing that the setN∗ = {nk : k ≥ 1} must be infinite. Because
u∗ ∈ U there is some integern∗ ≥ 1 with u∗ ∈ Un∗. But then Claim 9 shows thatnk ≤ n∗ for eachk, so the set
N∗ must be finite. That contradiction completes the proof of Claim 10.

Claim 11: Let c be any branch of the tree(U,≤U) and letψ(c) = {t ∈ T : ∃u ∈ c having t ≤T u}. Then
ψ(c) is a branch ofT . If that is not true, there is a branchb of T havingψ(c) properly contained inb. Choose
t∗ from the lowest possible level ofT having t∗ ∈ b andu <T t∗ for everyu ∈ c. BecauseVn is a maximal
anti-chain inT , there is someun ∈ Vn that is comparable tot∗. Consider anyn ≥ 1. If it happens thatt∗ ≤T un

then we have found an elementun ∈ U that lies strictly above every member of the branchc of U , and that
is impossible. Henceun <T t∗ so thatun ∈ b. But thenun ∈ U ∩ b = c for everyn ≥ 1. Therefore,
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diamd(π(It∗)) ≤ diamd(π(Iun)) < 1
n

for eachn ≥ 1 showing thatdiamd(π(It∗) = 0 and hence that exactly one
branch ofT containst∗. Thereforet∗ is a maximal element ofT and the setb(t∗) = {t ∈ T : t ≤ t∗} is a branch
of T .

BecauseT satisfies Lemma 2.1, the node ofT to whicht∗ belongs has at least two elements. Chooses∗ distinct
from t∗ in that node. Then with notation as in the previous paragraph,un < s∗ for eachn so thats∗ is also maximal
in T and the setb(s∗) = {t ∈ T : t ≤ s∗} is a branch ofT that is distinct fromb(t∗). Thenf(b(s∗)) 6= f(b(t∗))
andπ(f(b(s∗))) 6= π(f(b(t∗))) are elements of the setπ(Iun) for eachn, showing thatdiamd(π(Iun)) cannot be
made arbitrarily small, contrary toun ∈ Vn. Therefore, Claim 11 is established.

Fix a nodeM of U . We linearly orderM as follows. Lets, t ∈M be distinct. Thens andt are incomparable
in T so that in the branch spaceBT of T , the set[s]T = {b ∈ BT : s ∈ b} and the analogously defined set[t]T are
disjoint convex sets. Defines <M t if and only if every point of[s]T precedes every point of[t]T in (BT , <BT

).

The next two claims complete the proof by showing thatBU is order isomorphic toBT .

Claim 12: The functionψ : BU → BT is strictly increasing. Letc1 <BU
c2 be branches ofU . Let δ = ∆U(c1, c2)

be the first level ofU where the branchesc1 andc2 differ. Thenc1(δ), c2(δ) belong to the same nodeM of U
and we know thatc1(δ) <M c2(δ). But then in the branch space ofT we know that each branch belonging to the
set [c1(δ)]T precedes each branch belonging to[c2(δ)]T and we know thatψ(ci) ∈ [ci(δ)]T . Henceψ is strictly
increasing.

Claim 13: The functionψ : BU → BT is onto. Letb ∈ BT . Becauseinf{diamd(π(It)) : t ∈ b} = 0, we know
thatb ∩ Vn 6= ∅ for everyn ≥ 1. Let c = b ∩ U . Thenc is a branch ofU andψ(c) = b. 2

The first two results in this section have shown that one can assume that the trees involved have been “cleaned
up” without changing their branch spaces, and another result of this type will appear in the section on Aronszajn
lines, below. One might wonder whether it is possible to make other assumptions about the trees being used, to
make branch space constructions smoother. For example, could we always assume that each element of the tree
splits? The next result from [1] provides a negative answer. Its hypothesis is even weaker than “everything splits”:
it holds, for example, if everyt ∈ T has at least three branches that containt.

Proposition 2.3 : Let (T,≤T ) be a tree with a family of node orderings and suppose that, when the branch space
BT ofT is endowed with its open interval topology, each set[t]T has non-empty interior inBT . ThenBT is a Baire
space, i.e., the intersection of countably many dense open sets is dense.

In fact, one can show that the branch space of a tree as in Proposition 2.3 is actuallyα-favorable [1]. See Section
4 for definitions.

3 Branch Space Representation of Compact anďCech-complete Lines

Recall that a linearly ordered set(X,<) is order-completeif every subset ofX, including∅ andX, has a least
upper bound inX. It is well-known that(X,<) is order-complete if and only ifX is compact when endowed
with its usual open interval topology. A completely regular topological space is said to beČech-completeif it
is aGδ-subset of some (equivalently, of each) of its compactifications. For a linearly ordered set(X,<), that
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is equivalent to saying thatX is aGδ-subset of its Dedekind completionX+ whenX+ carries its open interval
topology.

Our first theorem will make use of a standard line to tree construction called apartition tree. This idea is in
widespread use, but the literature contains many different descriptions of it. We will construct our partition trees
as follows. For an order-convex subsetC of a linearly ordered setX and for an ordinalα, we will have a collection
Pα(C) of pairwise disjoint convex subsets ofC. UsuallyPα(C) is expected to coverC, but sometimes it does
not. Some of the members ofPα(C) might be degenerate, i.e., might be singleton convex sets. In some cases the
subscriptα is irrelevant, and then we suppress it, writingP (C). We construct the partition treeT recursively. Let
T0 = {X}. If Tα is defined for some ordinalα, letTα+1 =

⋃
{Pα+1(C) : C ∈ Tα, |C| ≥ 2}. If λ is a limit ordinal

and ifTα is defined for eachα < λ, then let

Tλ = {D =
⋂
{Cα : α < λ} : Cα ∈ Tα, |D| ≥ 2}.

Partially orderT by reverse inclusion. ThenT is a tree. BecauseX is a set, there is someα with Tα = ∅. The
height of the tree is the least suchα andT =

⋃
{Tα : Tα 6= ∅}.

Next we will go from the partition treeT to its branch space(BT , <B), something that requires us to linearly
order each node. Observe that each node of the partition treeT is a family of pairwise disjoint convex subsets of
(X,<) and therefore inherits a natural ordering that we call theprecedence orderingfromX. That is, ifC,D are
distinct members of a nodeN , we say thatC <N D if and only if every pair of pointsx ∈ C, y ∈ D hasx < y
in the ordering ofX. Let (BT , <BT ) be the resulting branch space. There is a natural strictly increasing function
i : (X,<) → (BT , <BT

) given byi(x) = {t ∈ T : x ∈ t}. Unfortunately, this function is not necessarily onto,
and is not necessarily continuous when bothX andBT carry their usual open interval topologies. See Section 2
of [1] for details.

We use a certain cardinal invariant of the ordered setX to impose constraints onT . It is a relative of the
familiar cardinal invariant of a topological spaceX called cellularity [3]. Recall that a topological spaceX has
cellularity c(X) if c(X) is the least cardinal such that ifU is a family of pairwise disjoint, non-empty open subsets
of X, then|U| ≤ c(X). For a linearly ordered set(X,<) the order cellularity of (X,<) is the least cardinal
orc(X) such that every familyC of pairwise disjoint non-degenerate (= has more than one point) convex subsets of
X has cardinality≤ orc(X). These two cardinal invariants can be different. For example, in the lexicographically
ordered setX = R×{0, 1} with its usual open interval topology, we havec(X) = ω < 2ω = orc(X). In general,
orc(X) is the maximum of the topological cellularity ofX (equipped with its open interval topology) and the
number of jumps inX (i.e. pairs of consecutive points ofX). Another familiar cardinal invariant of the linearly
ordered set(X,<) is supcf(X) (for “supremum of cofinalities”), defined to be the least cardinal numberκ such
that for eachx ∈ X, cf({y ∈ X : y < x}) ≤ κ. The analog for co-initialities issupci(X) and is analogously
defined.

Proposition 3.1 : Suppose that(X,<) is an infinite order-complete linearly ordered set. Then there is a treeT
such that:

a) each nodeN of T has|N | ≤ supcf(X);

b) each levelTα of T has|Tα| ≤ orc(X);

c) each branchb of T has|b| ≤ max{supcf(X), supci(X)} ≤ orc(X); and

d) there is a node ordering forT so that the associated branch space ofT is order isomorphic toX.

7



Proof: For any interval[a, b) ⊆ X with at least two points, the cardinal numbercf(b) is finite if and only ifb has
an immediate predecessorb− in X and in that case we defineP [a, b) = {[a, b−), {b−}}. If the cardinalcf(b) is
infinite, then there is a strictly increasing net{xα : 0 ≤ α < cf(b)} that is cofinal in[a, b), hasx0 = a, and has
the property that each set[xα, xα+1) has at least two points. BecauseX is order-complete, we may also assume
that for each limit ordinalλ < cf(b) we havexλ = supX{xα : α < λ}. Then defineP [a, b) = {[xα, xα+1) : 0 ≤
α < cf(b)}. For an interval[a, b], defineP [a, b] = {[a, b), {b}}.

We now define setsTα recursively. BecauseX is order-complete, there are pointsa0, b0 with X = [a0, b0].
Let T0 = {[a0, b0]} andT1 = {[a0, b0), {b0}}. Next, supposeγ > 1 and suppose thatTα is defined for allα < γ
in such a way that:

1) for any non-limit ordinalβ < γ, each non-degenerate member ofTβ can be written as[a, b);

2) for any limit ordinalβ < γ, each member ofTβ can be written in the form[a, b] and has at least
two points; and

3) if β1 < β2 < γ and ifBi ∈ Tβi
, then eitherB1 ∩ B2 = ∅ or elsecl(B1) ⊆ B2. (We will refer to

this last property as “strong nesting.”)

In caseγ is a limit ordinal, defineTγ = {D =
⋂
{Cβ : β < γ} : Cβ ∈ Tβ, |D| ≥ 2}. The strong nesting property

in the induction hypothesis guarantees that eachD ∈ Tγ is compact and convex, and hence can be written as
D = [a, b] for suitably chosena, b ∈ X. In caseγ = β + 1 let Tγ =

⋃
{P (C) : C ∈ Tβ, |C| ≥ 2}.

Let T =
⋃
{Tα : Tα 6= ∅} and partially orderT by reverse inclusion. Order the nodes ofT by the precedence

order fromX. Definei : X → BT by i(x) = {t ∈ T : x ∈ t}. Theni is 1-1 and increasing. BecauseX is
compact and each branch ofT is strongly nested, we see thati is also onto, as required to prove (d).

Observe that every node ofT is either finite or has cardinality equal to the cofinality of some point ofX. This
proves (a).

We prove (b) by induction. Clearly (b) holds forT0 andT1 defined above. Suppose that (b) holds for each
β < α. If α is a limit ordinal, then each setC ∈ Tα is a convex subset ofX with at least two points. HenceTα is
a collection of pairwise disjoint non-degenerate convex subsets ofX, and so|Tα| ≤ orc(X). In caseα = β + 1,
then each memberC ∈ Tα is either a non-degenerate convex subset ofX (and there are at mostorc(X) of these),
or else there is someC ′ ∈ Tα such thatC ∪ C ′ is a member ofTβ. Hence|Tα| ≤ orc(X).

To prove (c), note that any infinite branchb of T is strongly nested and the intersection of the members ofb
is a single pointx ∈ X. The cardinality ofb cannot exceedmax{cf(x), ci(x)} and in any casecf(x) andci(x)
cannot exceedorc(X). 2

A well-known result due to Todorčevic [9] is useful in recognizing branch spaces that are order complete.
Todořcevic proved that if each node of a treeT is order-complete, then the branch spaceB(T ) of T is also order-
complete. That theorem suggests asking whether, if a branch spaceB(T ) is order-complete, the nodes ofT must
be order-complete. The answer is “no” as our next example shows. Also, in the light of the previous proposition,
Todořcevic’s theorem suggests asking whether any order-complete line must be representable as the branch space
of a tree with order-complete nodes. If one is willing to use trees whose nodes are as complicated as the line being
represented, the answer to the second question is “yes” – one uses the trivial tree described in the introduction.
But if one wants to use trees that are less complicated than the linearly ordered set being represented, then our
next example shows that the answer is “no”. Recall the notion of “L-non-degenerate” in the first section of this
paper.
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Example 3.2 : The order-complete linearly ordered set[0, 1] is isomorphic to the branch space of a countable
tree (by Proposition 3.1) and yet[0, 1] is not isomorphic to the branch space of any treeT that has order-complete
nodes that are[0, 1]-non-degenerate.

Proof: For contradiction suppose there is a treeT and a set of node orderings so that no node ofT contains an
order-isomorphic copy of[0, 1] and that the associated branch space is order isomorphic to[0, 1].

Because the branch space ofT is not finite, some nodeN of T must have more than one point. Fix any
such nodeN of T . Choosing a branchbt ∈ [t]T for eacht ∈ N gives an order isomorphism fromN into [0, 1]
and consequentlyN has a countable order-dense subset. Next, suppose there are pointss, t ∈ N with s <N t
and such that no point ofN lies strictly betweens andt in the ordering ofN . Then, because each node ofT
is order-complete, there is a branchb ∈ [s] such that for eachα with lv(s) ≤ α < ht(b), the pointb(α) is the
supremum of the node to which it belongs. Similarly, there is a branchc ∈ [t] such thatc(β) is the infimum of
the node to which it belongs wheneverlv(t) ≤ β < ht(c). But thenb andc are adjacent points ofBT which is
impossible becauseBT is order isomorphic to[0, 1]. Therefore, the node ordering ofN must be order-dense. But
then the nodeN is non-degenerate, order-complete, dense-ordered, and has a countable order-dense subset, and
that is enough to makeN order isomorphic to[0, 1], which is impossible.2

There is a family of order complete lines that admit branch space representations in which each node has either
one or two points, as our next result shows.

Proposition 3.3 Suppose(X,<) is an order-complete linearly ordered set with the property that givenx < y in
X, there exist pointsu, v ∈ X such thatx ≤ u < v ≤ y and no point ofX lies strictly betweenu andv. Then
there is a treeT in which each node has either one or two members and whose branch space is order isomorphic
toX.

Proof: For any interval[x, y] ⊆ X with at least two points, chooseu, v as in the hypothesis of the proposition and
letQ[x, y] = {[a, u], [v, b]}. Now useQ to build a partition treeT for X. Each node ofT will have either one or
two members, and the branch space ofT will be order isomorphic toX. 2

For another result related to Todorčevic’s theorem, see the end of Section 4 where we show that a compact
subsetS ⊆ R is isomorphic to the branch space of a tree with countable, order-complete nodes if and only ifS is
totally disconnected.

In the remainder of this section we study the following problem: suppose that a linearly ordered set(X,<) is
known to be isomorphic to the branch space of some “nice” tree. For which subsetsY ⊆ X can we be sure that
Y can also be represented as the branch space of some similarly nice tree? The next result deals with a general
situation in which a branch space representations can be found.

Proposition 3.4 : Suppose(X,<) is a linearly ordered set and thatT is a tree such that, for some choice of node
orderings, there is an order isomorphismf from the branch space(BT , <BT

) onto(X,<). Suppose that, whenX
carries the open interval topology of<, Y is aGδ subset ofX. Then there is a subtreeS ⊆ T and node orderings
for S such that

a) there is a strictly increasing functionj : BS → BT such thatg = f ◦ j is an order isomorphism
fromBS ontoY ;

b) each level ofS is an anti-chain inT .
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Proof: In this proof, once the subtreeS ⊆ T is constructed we will need to carefully distinguish between the set
[t]T = {b ∈ BT : t ∈ b} and the analogously defined[s]S = {c ∈ BS : s ∈ c}.

Write Y =
⋂
{Un : n ≥ 1} where eachUn is open andUn+1 ⊆ Un. Forn ≥ 1 define

Sn = {t ∈ T : f([t]T ) ∩ Y 6= ∅, f([t]T ) ⊆ Un, and if t
′
<T t then f([t

′
]T ) 6⊆ Un}.

Note that eachSn is an anti-chain inT . Now let

S =
(⋃

{Sn : n ≥ 1}
)
∪ {t ∈ T : f([t]T ) ⊆ Y }

and partially orderS by restricting the ordering ofT .

Suppose thatc is a branch ofS. Let c∗ = {t ∈ T : ∃s ∈ c with t ≤T s}. We claim thatc∗ is a branch of
T . For contradiction, suppose not. Then there is somet∗ ∈ T − c∗ with t ≤T t∗ for eacht ∈ c∗. Becausec is a
branch inS, t∗ 6∈ S. There are three cases to consider.

Case 1: Suppose somes ∈ c hasf([s]T ) ⊆ Y . Thens ∈ c∗ so thats ≤T t∗ and hencef([t∗]T ) ⊆ f([s]T ) ⊆ Y ,
whencet∗ ∈ S and that is impossible. Therefore, Case 1 can never occur.

Case 2: Supposec ⊆
⋃
{Sn : n ≥ 1} andc ∩ Sn 6= ∅ for infinitely many values ofn. Let n1 < n2 < · · · be

integers such that we can choosesk ∈ c ∩ Snk
. Then for eachk, snk

≤T t∗ so thatf([t∗]T ) ⊆ f([sk]T ) ⊆ Unk
.

But thenf([t∗]T ) ⊆
⋂
{Unk

: k ≥ 1} = Y showing thatt∗ ∈ S, and that is impossible. Thus Case 2 cannot occur.

Case 3: Supposec ⊆
⋃
{Sn : n ≥ 1} andc ∩ Sn 6= ∅ for only finitely many integers. BecauseSn is an anti-chain

of T, |c∩Sn| ≤ 1 for eachn. Hence, in Case 3, the branchc of S is finite. Lets be the maximum element ofc and
letm be an integer withs ∈ Sm. Thenf([s]T ) ⊆ Um andf([s]T ) ∩ Y 6= ∅. However, because we are not in Case
1, f([s]T ) ⊆ Y is impossible. Therefore we may choose branchesb1, b2 ∈ [s]T with f(b1) ∈ Y andf(b2) 6∈ Y .
BecauseY =

⋂
{Ui : i ≥ 1} we may choosek > m with f(b2) 6∈ Uk. Becausef(b1) ∈ Y ⊆ Uk there are points

r < s of X with f(b1) ∈ (r, s) ⊆ Uk. Then there is someα < ht(b1) with f([b1(α)]T ) ⊆ (r, s) ⊆ Uk. Letα0 be
the first ordinal withf([b1(α0)]T ) ⊆ Uk. Thenb1(α0) ∈ Sk ⊆ S. Becauses andb1(α0) both belong to the branch
b1 we know that eitherb1(α0) ≤T s or elses <T b1(α0). The first option would yieldb1, b2 ∈ [s]T ⊆ [b1(α0)]T
so thatf(b1), f(b2) ∈ f([b1(α0)]T ) ⊆ Uk contrary tof(b2) 6∈ Uk. The second option is impossible becausec is a
branch ofS. Hence Case 3 cannot occur.

It follows thatc∗ must be a branch ofT , as claimed. Now definej : BS → BT by the rule thatj(c) = c∗. It is easy
to see thatj is 1-1.

The next step in the proof is to define a family of node orderings for the treeS. Suppose thats1, s2 are distinct
members ofS with Ss1 = Ss2, whereSsi

= {s ∈ S : s 6= si, s ≤S si}, and letN be the node ofS to which thesi

belong. Thens1, s2 are incomparable elements ofT so thatf([s1]T ) andf([s2]T ) are disjoint nonempty convex
subsets ofX. We defines1 <N s2 if and only if for everyxi ∈ f([si]T ), x1 < x2. The relation<N linearly orders
the nodeN .

We claim that the functionj above is strictly increasing. Suppose thatc1, c2 ∈ BS are distinct and have
c1 ≤BS

c2. Let δ be the first ordinal such that in the treeS we havec1(δ) 6= c2(δ) whereci(δ) is the unique point
of c ∩ Sδ, and letN be the node ofS to which theci(δ) both belong. Then inN we havec1(δ) <N c2(δ) which
means that in(X,<) we know that every point of the convex setf([c1(δ)]T ) precedes every point off([c2(δ)]T ).
Becausef(c∗i ) ∈ f([ci(δ)]T ) we see thatf(c∗1) < f(c∗2) so that,f being an order isomorphism,c∗1 <BT

c∗2 in the
branch spaceBT . Thus,j : BS → BT is strictly increasing.
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Next we claim that ifc ∈ BS thenf(c∗) ∈ Y . This is proved by a three case analysis as above, depending
upon whether somes ∈ c hasf([s]T ) ⊆ Y .

Finally, we claim that ify ∈ Y then somec ∈ BS hasf(c∗) = y. Fix y ∈ Y . There is a uniqueb ∈ BT with
f(b) = y becausef is onto. Letc = S ∩ b. We claim thatc is a branch ofS and thatc∗ = b. There are two cases
to consider.

Case 4: Suppose somet0 ∈ b hasf([t0]T ) ⊆ Y . Thent0 ∈ c. If c is not a branch ofS then there is some
s∗ ∈ S havings <S s∗ for eachs ∈ c. In particular,s∗ 6∈ c. Let t1 be any member ofb. Chooset2 ∈ b with
t2 = max(t0, t1). This is possible becauset0, t1 both lie in the branchb and therefore are comparable elements
of T . Thent0 ≤T t2 forcest2 ∈ S ∩ b so thatt2 ∈ c and hencet2 ≤S s∗. Becauset1 ≤T t2 ≤T s∗ we see that
s∗ is an element ofT that hast1 ≤T s∗ for everyt1 ∈ b . Becauseb is a branch ofT , we must haves∗ ∈ b and
therefores∗ ∈ c, and that is impossible. Hence in Case (4) we see thatc is a branch ofS. It is easy to check that
becauset0 ∈ c the setc contains a cofinal subset ofb. Hencec∗ = b as claimed.

Case 5: Suppose that not ∈ b hasf([t]T ) ⊆ Y . We know thatf(b) ∈ Y ⊆ Un for eachn ≥ 1, so there is a
first ordinalαn with f([b(αn)]T ) ⊆ Un. Thenb(αn) ∈ Sn so thatb(αn) ∈ c. We claim that{b(αn) : n ≥ 1} is a
cofinal subset ofb, because otherwise someb(α) hasf([b(α)]T ) ⊆

⋂
{Un : n ≥ 1} = Y which is impossible in

Case (5). (From this it will follow thatc∗ = b once we know thatc is a branch ofS.) For contradiction suppose
that somes∗ ∈ S − c hass ≤S s

∗ for eachs ∈ c. Then thiss∗ is a point ofT that hasb(αn) ≤T s
∗, so thats∗ lies

strictly above a cofinal subset ofb and that is impossible becauseb is a branch ofT . This completes the proof in
Case 5.2

If T is a very nice tree, say a countable tree, then the subtreeS found in the proof of Proposition 3.4 is equally
nice. But in other situations, the subtreeS can be very different from the treeT , e.g., in terms of its cardinal
invariants, as our next example shows.

Example 3.5 : The linearly ordered setX = [0, ω1] is isomorphic to the branch space of a treeT that has height
ω1 and that has every level finite (see Proposition 5.1). The subtreeS of T found in the proof of Proposition 3.4
to represent the open subsetY = [0, ω1) ofX has a single level and that level has cardinalityω1. 2

It is no accident that, in the previous example, some node ofS is very large. As will be seen from Corollary
5.4, any treeS whose branch space represents[0, ω1) must have a node that contains a copy ofω1 or of ω∗1.

4 Branch Space Representations of Subsets ofR

The results from the previous section show that the usual two-point compactification[−∞,∞] of R is order
isomorphic to the branch space of a treeT with countable levels and countable branches. Furthermore, the tree
T must have countable height because otherwiseT would be an Aronszajn tree, and Aronszajn trees cannot have
separable branch spaces (see Proposition 6.3 ). Then Proposition 3.4 shows that the setR, the setP of all irrational
numbers, and each closed subset ofR are also representable as branch spaces of countable trees. However, it is
easy, and sometimes useful, to give concrete branch space representations of the setsR andP.

Example 4.1 : The setsR andP are each representable as the branch spaces of trees with countable levels and
heightω.
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Proof: To obtainR, for any interval[a, b) ⊆ R, let

P [a, b) = {[a, a+
b− a

2
), [a+

b− a

2
, a+

3(b− a)

4
), [a+

3(b− a)

4
, a+

5(b− a)

6
), · · ·}

and order eachP [a, b) using the precedence order fromR. Now letT0 = {[n, n + 1) : n ∈ Z} and letTn+1 =⋃
{P [a, b) : [a, b) ∈ Tn}. Partially orderT =

⋃
{Tn : 0 ≤ n < ω} by reverse inclusion. The crucial property

of T is that if s ≤T t, thenclR(t) ⊆ s and as a result, each branch ofT has non-empty intersection. Then it is
easy to see that the natural injectioni(x) = {t ∈ T : x ∈ t} is the required order isomorphism fromR onto
the branch spaceBT . To representP, fix an indexingQ = {qn : n ≥ 1} of the set of rational numbers and let
S0 = {(n, n + 1) : n ∈ Z}. For any interval(a, b) andn ≥ 1 let Pn(a, b) be a family of pairwise disjoint open
intervals ofR each with rational endpoints, each with length less thanb−a

2
, none containing the rational number

qn, and such that with the natural precedence ordering formR, the collectionP (a, b) is a copy ofZ. Now for
n ≥ 0 defineSn+1 =

⋃
{Pn+1(a, b) : (a, b) ∈ Sn} and letS =

⋃
{Sn : 0 ≤ n < ω} be partially ordered by

reverse inclusion. Order the nodes ofS using the natural precedence order fromR. Once again, ifs ≤S t are
distinct elements ofS, thenclR(t) ⊆ s so that branches ofS have non-empty intersection, and the intersection
contains no rational number. Hence it is easy to see that the natural injection is an order isomorphism fromP onto
the branch space ofS. 2

Next consider which subsets ofR are representable by nice branch spaces. The remaining results in this section
will show whileR is representable as a branch space of a tree with countable levels and countable height (indeed,
with heightω as seen in Example 4.1 ), most subsets ofR cannot be represented in this way. (See Corollary 4.3.)
We will rely on the technical lemmas from Section 2.

Proposition 4.2 : SupposeX ⊆ R is order isomorphic to the branch space of a treeT having countable nodes.
ThenX is anFσδ-subset ofR and there is a countable subtreeU ⊆ T such thatX is order isomorphic to the
branch space ofU .

Proof: According to Lemmas 2.1 and 2.2, we may assume thatT has countable levels and has heightω (and then
we takeU = T ). Let f be an order isomorphism from(BT , <BT

) ontoX. As in Lemma 2.1 define subsetsIt and
Kb =

⋂
{It : t ∈ b} of R for eacht ∈ T andb ∈ BT . Note that each setIt, being a convex subset ofR, is an

Fσ-subset ofR.

Write T =
⋃
{Tn : n < ω} as the union of its levels. Because the collection{It : t ∈ Tn} is pairwise disjoint

for eachn, we have

(∗) X = {f(b) : b ∈ BT} ⊆
⋃
b∈Bt

Kb ⊆
⋂ {⋃

{It : t ∈ Tn} : n ≥ 1}
}
.

Write Y =
⋂
{
⋃
{It : t ∈ Tn} : n ≥ 1}} and note thatY is an(Fσ)δ-subset ofR.

The containment in(∗) is strict, provided some setKb =
⋂
{It : t ∈ b} has more than one element. Note that

the collection{Kb : b ∈ BT , |Kb| > 1} is a pairwise disjoint collection of non-degenerate convex subsets ofR
and therefore must be countable. For eachKb with |Kb| > 1, the setLb = Kb − {f(b)} is anFσ-subset ofR and
hence so is the setZ =

⋃
{Lb : b ∈ BT and |Kb| > 1}. Therefore setR−Z is aGδ-subset ofR and hence also an

(Fσ)δ-subset ofR. From (*), we haveX = {f(b) : b ∈ BT} = Y ∩ (R− Z) so we see thatX is the intersection
of two (Fσ)δ subsets ofR and hence is an(Fσ)δ-subset ofR as claimed.2

12



Corollary 4.3 : There are2ω subsets ofR that are order isomorphic to the branch space of a tree with countable
nodes, and there are22ω

subsets ofR that are not order isomorphic to a branch space of any tree with countable
nodes.

Proof: There are at most2ω subsets ofR that areFσδ-sets inR and22ω
that are not. Now apply Proposition 4.2.2

Proposition 4.4 : Let T be any countable tree. Then for every choice of node orderings, the branch space ofT is
isomorphic to someFσδ-subset ofR.

Proof: For eacht ∈ T let Pt be a one or two point subset of[t]T that contains each endpoint of[t]T if any such
endpoints exist. Then the setD =

⋃
{Pt : t ∈ T} is a countable order-dense subset of the branch spaceBT so

that the branch space is order isomorphic to some setX of real numbers. Now apply Proposition 4.2.2

Our next three results provide a negative answer to the question “Is it true that everyFσδ-subset ofR is
order-isomorphic to the branch space of some countable tree?” It uses the Banach-Mazur game (see [7]).

Recall that the Banach-Mazur game in a topological space(X, T ) is a game with playersα andβ in which
β opens the game by specifying a non-empty open setU0 and then the players alternately choose non-void open
setsU0,⊇ U1 ⊇ U2 ⊇ U3 ⊇ · · ·. Playerα wins if and only if

⋂
{Un : n < ω} 6= ∅. To say that the space(X, T )

isα-favorable means that playerα has a winning strategy for the game, i.e., a functionσ that gives, for each finite
sequenceU0 ⊇ U1 ⊇ · · · ⊇ U2n of non-void open sets, a non-void open setU2n+1 = σ(U0, U1, · · · , U2n) in such a
way thatα wins any play of the game where all odd-numbered sets are chosen using strategyσ. The notion of a
β-favorable topological space is analogously defined.

Proposition 4.5 Suppose that(T,≤T ) is a countable tree with some family of node orderings, and letB be the
associated branch space. Then in the open-interval topology of the branch space ordering, eitherB has a non-void
countable open set, or elseB is α-favorable.

Proof: Suppose that every non-void open subset ofB is uncountable. LetS = {t ∈ T : |[t]| ≤ 2}. ThenS is
countable and hence so isC =

⋃
{[t] : t ∈ S}. Therefore, ifU is any non-void open subset ofB, we know that

U − C 6= ∅.
Suppose thatβ begins the Banach-Mazur game by specifying a non-empty open setU0. Choose a branch

b1 ∈ U0 − C. Then chooset1 ∈ b1 with b1 ∈ [t1] ⊆ U0. Becauseb1 6∈ C, we know thatt1 6∈ S and therefore
Int([t1]) 6= ∅ (because[t1] is a convex subset ofB with at least three points). Playerα definesU1 = Int([t1]).

Suppose that(U0, U1, · · · , U2n) is a decreasing sequence of non-void open sets whereU2k+1 = Int([t2k+1])
wheret1 ≤T t3 ≤T · · · ≤T t2n−1. Playerα notes thatU2n − C 6= ∅ and choosesb2n+1 ∈ U2n − C. Then
b2n+1 ∈ U2n ⊆ [t2n−1] and we may chooset2n+1 ∈ b2n+1 with b2n+1 ∈ [t2n+1] ⊆ U2n. Because botht2n−1 and
t2n+1 belong tob2n+1 we may assume thatt2n−1 ≤T t2n+1. Becauseb2n+1 6∈ C, we know thatt2n+1 6∈ S and
therefore playerα may respond toβ’s move by definingU2n+1 = Int([t2n+1]).

If U0, U1, U2, · · ·) is a play of the game in whichα has used the above strategy, then we havet1 ≤T t3 ≤T t5 ≤T

· · · so, by Zorn’s lemma, there is some branchc of the tree that contains everyt2k+1. But thenc ∈
⋂
{Un : n < ω},

as required.2

Corollary 4.6 SupposeX ⊆ R is order-isomorphic to the branch space of some tree(T,≤T ) having countable
nodes. Then in its topology as a subspace ofR, eitherX has a non-void countable open set or elseX is α-
favorable.
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Proof: We will need to distinguish carefully between the topologyT thatX inherits fromR and the open-interval
topologyL of the linear order thatX inherits fromR. In general,L ⊆ T and the two are not the same. However,
it is always true thatT is a GO topology on(X,<), where< is the linear ordering thatX inherits fromR. To
begin the proof, suppose that(X, T ) has no countable non-void open set. BecauseL ⊆ T , neither does(X,L).

According to Lemma 2.2 we may assume that the treeT is countable. Then Proposition 4.5 shows that since
each non-void open subset of(X,L) is uncountable,(X,L) is α-favorable. Then it is easy to prove that(X, T )
must also beα-favorable: indeed, if(Y,<Y ) is any linearly ordered set such that the usual open-interval topology
of <Y is α-favorable, then so is(Y, T ) for any GO-topologyT onY,<Y ). 2

We would like to thank Arnold Miller for suggesting the subset ofR used in our next corollary.

Corollary 4.7 There is a dense-in-itselfFσδ subset ofR that is not order isomorphic to the branch space of any
tree with countable nodes.

Proof: The product spaceQω is an absoluteFσδ set, i.e., ifQω is embedded in any complete metric spaceY , then
its image is anFσδ subset ofY (see Chapter III, Section 35.IV, Corollary 1 of [5]). Furthermore, each non-void
open subset ofQω is uncountable andQω is not a Baire space so that it is notα-favorable. However,Qω is
homeomorphic to a subsetX of R, andX is anFσδ in R. In the light of Corollary 4.6, the subsetX cannot be
order-isomorphic to the branch space of any tree with countable nodes.2

Question: WhichFσδ subsets ofR are order-isomorphic to the branch space of a tree with countable nodes?

Probably the most simple interestingFσδ subset ofR is the setQ of all rational numbers. It is clear that the
setQ of rational numbers can be represented as the branch space of a tree with countable levels and countable
height: one could letT = T0 = Q, use equality as the partial ordering ofT , and linearly order the unique nodeT0

to make it a copy ofQ. What is surprising is that, in some sense, this is the only way to representQ as the branch
space of a tree with countable height and countable levels, as our next result shows.

Proposition 4.8 : Let (T,≤T ) be a tree and let{<N : N ∈ N (T )} be a set of node orderings such that the branch
space ofT is order isomorphic toQ. Then for some nodeN of T, (N,<N) contains a copy ofQ, i.e., the node
orderings are notQ-non-degenerate.

Proof: For contradiction, suppose that(T,≤T ) is a tree with a set ofQ-non-degenerate node orderings whose
branch space is order isomorphic toQ. Then each node ofT must be countable (or otherwise we could choose
uncountably many branches ofT ) so that Lemmas 2.1 and 2.2 allow is to assume thatT has countable levels and
heightω. For eachn < ω, letTn be then-th level ofT .

Claim 1: Let (N,<N) be any node ofT and supposeN ⊆ Tn. We claim that ifs <N t belong toN , then the set
J = {b ∈ BT : ht(b) > n and b(n) ∈ N and s ≤N b(n) ≤N t} contains an interval ofBT that is order isomorphic
to Q. Choose anybs ∈ [s]T andbt ∈ [t]T . Thenbs <BT

bt. Consider any branchb with bs <BT
b <BT

bt. Then
ht(b) > n andbs(n) ≤N b(n) ≤N bt(n) sob ∈ J . ThereforeJ above contains a non-empty interval[bs, bt]BT

of
BT . But becauseBT is order isomorphic toQ, it follows thatJ contains an interval ofBT that is order isomorphic
to Q.

Claim 2: Supposet ∈ T and t splits in T (i.e., has at least two immediate successors inT ). Then the set
S = {s ∈ T : t ≤T s and s splits in T} is not a chain. For contradiction, supposeS is a chain. Letn = lv(t).
Let U = {u ∈ T : t ≤T u}. ThenU is a subtree ofT and every node ofU at levelk ≥ 1 of U is a node ofT
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at leveln + k. Linearly order the nodes ofU exactly as they are ordered inT . We claim that every node ofU is
finite. Clearly the 0-th level node ofU is finite – it consists oft alone. LetM be any node ofU at levelk > 0
and supposeM is infinite. ThenM is a node ofT at leveln + k. BecauseS is a chain,|S ∩M | ≤ 1 so we may
chooseu <M v in M in such a way that no point ofS ∩M lies betweenu andv in the ordering<M . Then no
point ofM lying betweenu andv splits, so eachw ∈ M with u ≤M w ≤M v is maximal inT . Choose branches
bu ∈ [u]T andbv ∈ [v]T . According to Claim 1, the setJ = {b ∈ BM : ht(b) > n0 +k and u ≤M b(n+k) ≤m v}
contains a copy ofQ. But maximality of all points ofM betweenu andv then tells us that(M,<M) contains
a copy ofQ and that is impossible. ThereforeM must be finite. It follows from Todorčevic’s theorem [9] that
the branch spaceBU is order-complete. Clearly the branch spaceBU of the subtreeU is order isomorphic to the
convex subset[t]T of the branch spaceBT of T . Becauset splits, we know that[t]T is (order isomorphic to) a
convex non-degenerate subset ofQ. But that is impossible because there is no order-complete convex subset of
Q that has more than one point. We conclude that the setS = {s ∈ T : t ≤T s and s splits} is not a chain, i.e.,
must contain two elements that are not comparable inT .

Clearly some elements of the treeT must split – otherwise the unique node at the 0-th level ofT would contain
a copy ofQ. Let t0 be any element ofT0 that splits inT . Let V = {v ∈ T : t0 ≤T v and v splits}. Apply Claim
2 recursively to show that eachv ∈ V has two incomparable successors inV . ThereforeV contains a copy of the
complete binary tree and consequentlyV has2ω branches, which is impossible because|Q| = ω. 2

Remark 4.9 : One can prove even more: if a treeT has countable nodes and if the node orderings ofT are
Q-non-degenerate then the branch spaceBT cannot be homeomorphic to the spaceQ under anymapping.

We conclude this section on representing subsets ofR as branch spaces by characterizing subsets ofR that can
be represented as the branch space of trees with countable, order complete nodes. Recall that a space istotally
disconnectedif |X| > 1 and the only connected subsets ofX are singletons.

Proposition 4.10 : Let X be a non-degenerate order-complete (i.e., compact) subset ofR. ThenX can be
represented as the branch space of a treeT with countable, order-complete nodes if and only ifX is totally
disconnected.

Proof: Proposition 3.3 shows that ifX is totally disconnected thenX is representable as the branch space of a
binary tree. Conversely, supposeX ⊆ R is order isomorphic to the branch space of a treeT with countable order-
complete nodes. Now consider two branchesa <BT

d of T . Computeδ = ∆T (a, d), the first level ofT where
the two branches differ. Thena(δ) andd(δ) belong to the same nodeN of T so that, becauseN is countable
and order-complete, there must exists, t ∈ N with a(δ) ≤N s <N t ≤N d(δ) with no point of(N,<N) lying
strictly betweens andt. Because each node ofT is order-complete, there is a branchb ∈ [s]T with the property
that wheneverδ < α < ht(b), b(α) is the maximum of the node ofT to which it belongs. Similarly there is a
branchc ∈ [t]T such that wheneverδ < α < ht(c), c(α) is the minimum of the node to which it belongs. Then
a ≤BT

b <BT
c ≤BT

d and no branch ofT lies strictly betweenb andc. Hence the branch space ofT must be
totally disconnected. Hence so isX. 2
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5 Representing Ordinals as Branch Spaces

It follows from Proposition 3.1 that for each ordinalα, the set[0, α] (i.e., the ordinalα+ 1) can be represented as
the branch space of a tree. However, the tree in (3.1) might have large height and large nodes and we have

Proposition 5.1 : For each ordinalα, the linearly ordered set[0, α] is order isomorphic to the branch space of a
tree of heightα with nodes having exactly two points. (Such a tree is often called a binary tree.)

Proof: LetT be the set[0, α)× {0, 1}. Partially orderT by the rules that

a) (β, 0) ≤ (γ, 0) wheneverβ ≤ γ < α;
b) (β, 0) ≤ (γ, 1) wheneverβ ≤ γ < α;
c) there are no other relations between points ofT .

The branches ofT have the formb(β) = {(γ, 0) : γ ≤ β} ∪ {(β, 1)} for eachβ < α plus the long branch
b(α + 1) = {(β, 0) : β < α}. The nodes ofT are the sets{(β, 1), (β + 1, 0)} andf(β) = b(β) is the required
order isomorphism.2

A more interesting question is “For which limit ordinalsλ can the set[0, λ) be represented as a branch space?”

Proposition 5.2 : Supposeλ is a limit ordinal that is not a regular cardinal. Then[0, λ) is order isomorphic to
the branch space of some tree whose nodes are bothλ non-degenerate andλ∗-non-degenerate (whereλ∗ is the
reversed ordering ofλ).

Proof: Computeκ = cf(λ) and find a strictly increasing functionf : [0, κ) → [0, λ) such thatf([0, κ)) is cofinal
in [0, λ), f(0) = 0 and eachf(α) is a limit ordinal. For eachγ < κ defineIγ = [f(γ) + 1, f(γ + 1)] if γ is not a
limit ordinal, andIγ = [f(γ), f(γ + 1)] if γ is a limit ordinal (includingγ = 0). From Proposition 5.1 we know
that eachIγ is isomorphic to the branch space of a binary tree(T (γ),≤γ) whose height isf(γ + 1). We may
assume thatγ is the root ofT (γ), i.e.,T0(γ) = {γ}, for eachγ < κ and that the treesT (γ) are pairwise disjoint
sets.

Define a new treeS by specifying thatSα =
⋃
{Tα(γ) : γ < κ} and≤S=

⋃
{≤T (γ): γ < κ}. Thus, theα-th

level ofS is the union of theα-th levels of the treesT (γ). Order the nodeS0 to make it a copy ofκ and order all
other nodes ofS just as they are ordered in one of the treesT (γ). The branch space ofS is then a disjoint union
of copies of the setsI(γ) placed side by side in the natural way, so the branch space is isomorphic to[0, λ). Note
that each level ofS has cardinality at mostκ, and therefore the nodes ofS are bothλ- andλ∗-non-degenerate.2

Proposition 5.3 : Let κ be a regular cardinal. Let(T,≤T ) be a tree with height≤ κ and let{<N : N ∈ N (T )}
be a collection of node orderings that are non-degenerate with respect to bothκ and κ∗. If the branch space
(BT , <B) contains a strictly increasing (respectively decreasing)κ-sequenceK = {bα : α < κ}, thenT has a
branchb∗ of heightκ (so thatht(T ) = κ) that is the supremum (respectively the infimum) of thatκ-sequence in
BT ).

Proof: Suppose there is a strictly increasingκ sequenceK = {bα : α < κ} in BT . (The case whereK is a strictly
decreasingκ-sequence is analogous.) For eachδ < κ, we claim there is a unique pointxδ ∈ Tδ with the property
that|{α < κ : xδ ∈ bα}| = κ. To see that there is at most one such point, note that the set[xδ]T is a convex subset
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of BT and therefore that|{α < κ : xδ ∈ bα}| = κ forces[xδ]T to contain a final segment ofK. Hence ifyδ ∈ Tδ

has the same property asxδ, then[xδ]T ∩ [yδ]T 6= ∅ and that is impossible unlessyδ = xδ.

The argument above also shows that ifxδ exists for someδ, then{α < κ : xδ ∈ bα} contains a final segment
of K and therefore the setSδ = {α < κ : xδ 6∈ bα} has cardinality less thanκ.

To see thatxδ exists for eachδ, suppose that for some levelδ, the pointxδ fails to exist. Letδ0 be the first level
for which no pointxδ0 exists. Thenxδ exists for eachδ < δ0. We claim that ifδ < δ′ < δ0, then in the partial
order ofT we havexδ ≤T xδ′. Clearly the pointxδ′ has some predecessor, sayy, in level δ of T . Thenxδ′ ∈ bα
impliesy ∈ bα so thaty belongs toκ-many branchesbα. Because, as we showed above,xδ is the unique member
of Tδ with that property, we havexδ = y ≤T xδ′ as claimed. Letρ = {xδ : δ < δ0}. Thenρ is a path in the treeT .

We claim thatρ cannot be a branch ofT . As noted above, forδ < δ0, {α < κ : xδ ∈ bα} is a final
segment ofκ, i.e., there is someβδ < κ such thatxδ ∈ bα wheneverα > βδ. Becauseκ is regular, the ordinal
β∗ = sup{βδ : δ < δ0} hasβ∗ < κ. Then we know that ifβ∗ < α < κ, xδ ∈ bα for everyδ < δ0. Therefore,
ρ ⊆ bα wheneverβ < α < κ, showing that there is more than one branch ofT containingρ. Henceρ cannot
be a branch ofT . Furthermore, ifβ∗ < α < κ thenbα is a proper extension ofρ so thatbα ∩ Tδ0 6= ∅ whenever
β∗ < α < κ.

Clearly, for eachα < κ either for allδ < δ0, xδ ∈ bα or else for someδ < δ0, xδ 6∈ bα. Let S = {α < κ :
∀δ < δ0, xδ ∈ bα} and recall thatSδ = {α < κ : xδ 6∈ bα}. Thenκ =

⋃
{Sδ : δ < δ0} ∪ S. Also recall that

|Sδ| < κ for eachδ < δ0 while δ0 < κ. Then regularity ofκ yields|
⋃
{Sδ : δ < δ0}| < κ so that|S| = κ.

For eachα betweenβ∗ andκ, let bα(δ0) be the unique point ofTδ0 ∩ bα and observe that each of the points
bα(δ0) belongs to the nodeN of successors of the pathρ. Recall that no point ofTδ0 belongs toκ-many of the
branchesbα. Regularity ofκ shows that the set{bα(δ0) : β < α < κ} has cardinalityκ. This allows us to
choose a strictly increasingκ sequence{αγ : γ < κ} of ordinals betweenβ andκ such that{bαγ : γ < κ} is a
strictly increasingκ-sequence in the nodeN , and that is impossible because of theκ-non-degeneracy hypothesis.
Therefore,xδ exists for everyδ < κ and, as above, ifδ < δ′ < κ then inT we havexδ ≤T xδ′. Because the height
of T is at mostκ, we see that the setb∗ = {xδ : δ < κ} is a branch ofT with heightκ (and that the height ofT
equalsκ).

First we claim thatbα ≤BT
b∗ for eachα < κ. If that is not true then for some fixedα we haveb∗ <BT

bα.
Computeδ = ∆T (bα, b

∗). Necessarilyδ < ht(b∗) = κ so thatxδ is defined, and if we writebα(δ) for the
unique point ofbα ∩ Tδ and defineb∗(δ) analogously, then in the nodeN that containsb∗(δ) = xδ we must have
xδ = b∗(δ) <N bα(δ). But then for anyγ > α, xδ 6∈ bγ showing thatxδ belongs to fewer thanκ-many of the
branchesbγ, and that is impossible. Henceb∗ is an upper bound for theκ-sequence{bα : α < κ}.

We next claim thatb∗ = supBT
{bα : α < κ}. Otherwise there would be a branchb of T with bα <BT

b <BT
b∗.

Computeγ = ∆T (b, b∗). Then in the nodeM consisting of all successors inTγ of {xδ : δ < γ} we have
b(γ) <M b∗(γ) = xγ. Choose any of theκ-many branchesbα with xγ ∈ bα andα > γ. Then we have
b(γ) <M bα(γ) so thatb <BT

bα and that is impossible. Thereforeb∗ = supBT
{bα : α < κ} as claimed.2

Corollary 5.4 : Let κ be a regular cardinal. Then[0, κ) is not order isomorphic to the branch space of any tree
(T,≤T ) that has height≤ κ and has node orderings that are bothκ andκ∗ non-degenerate.

Proof: Suppose there is an order isomorphismf from [0, κ) ontoBT . Write bα = f(α) and apply the above
proposition to constructb∗ ∈ BT that lies above eachbα. Hencef is not onto.2
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Corollary 5.5 : Suppose(T,≤T ) is a tree of heightω1 and let{<N : N ∈ N (T )} be a set of node orderings that
are non-degenerate with respect to bothω1 andω∗1. Then the branch spaceBT is paracompact when endowed
with its usual open interval topology.

Proof: If BT is not paracompact, then there is a strictly increasing (or strictly decreasing) homeomorphismf
from a stationary subsetS ⊆ [0, κ) onto a closed subset ofBT , whereκ is an uncountable regular cardinal [4].
Consequently there is a strictly increasing (or decreasing)κ-sequence{f(α) : α ∈ S} in BT that contains all of
its limit points (in the open interval topology of the branch space). But according to Proposition 5.3, the branch
space must also contain a branchb∗ that is the supremum (or infimum) off(S) showing thatf(S) is notclosed in
BT . 2

6 Branch Spaces of Aronszajn Trees

An Aronszajn treeis a tree with heightω1 that has countable levels and countable branches. Such trees exist in
ZFC [9]. A Souslin treeis an Aronszajn tree in which every anti-chain is countable. Whether Souslin trees exist
is undecidable in ZFC. The first result in this section sharpens Lemma 2.1 to allow it to apply to Aronszajn trees.

Lemma 6.1 : Let (T,≤T ) be an Aronszajn tree and{<N : N ∈ N (T )} a family of node orderings ofT each of
which isL-non-degenerate for some linearly ordered setL. Let (BT , <BT

) be the corresponding branch space.
Then there is a subtree(V,≤V ) of T that is also an Aronszajn tree such thatN (V ) = {M ∈ N (T ) : |M | > 1}
and such that, if each node ofV is linearly ordered in the same way it was ordered in the construction ofBT , then
the nodes ofV areL-non-degenerate and the branch spaceBV is order-isomorphic toBT .

Proof: LetV be the subtree ofT found in Lemma 2.1. To complete this proof, it remains only to show thatV is
an Aronszajn tree.

We first show that all levels ofV are countable. Letα0 = min{α < ω1 : |Tα| > 1}. ThenV0 = Tα0 so that
|V0| ≤ ω. Supposeβ < ω1 and that for eachα < β we know that|Vα| ≤ ω. Then|

⋃
{Vα : α < β}| ≤ ω.

Then there is someγ < ω1 with
⋃
{Vα : α < β} ⊆

⋃
{Tα : α < γ}. LetM = {N ∈ N (V ) : N ⊆ Vβ} and

M0 = {N ∈ M : ∃α ≤ γ with N ⊆ Tα} andM1 = M−M0. Because|
⋃
{Tα : α < γ}| ≤ ω we know

that |M0| ≤ ω. SupposeM,N are distinct members ofM1. Then the setsA = {z ∈ V : ∃x ∈ M with z < x}
andB = {z ∈ V : ∃y ∈ N with z < y} are distinct, and each is a subset of

⋃
{Vα : α < β} which is a

subset of
⋃
{Tα : α < γ}. BecauseA andB differ in the set

⋃
{Tα : α < γ}, the setsA ∩ Tγ andB ∩ Tγ

are subsets of different members of{N ∈ N (T ) : N ⊆ Tγ} and there are only countably many members of
{N ∈ N (T ) : N ⊆ Tγ} becauseT is an Aronszajn tree. Therefore the collectionM1 is also countable. Hence
so isM. Hence so isVβ =

⋃
M, and hence the induction continues.

We next show thatV has heightω1. To do this, it is enough to show thatV has cardinalityω1 and for that
it is enough to show that for each countableα, some non-singleton node ofT lies at a level aboveα. If there
were an ordinalα such that each node ofT having height greater thanα is a singleton, then for eachx ∈ Tα,
the setA(x) = {y ∈ T : y > x} is linearly ordered. Further,A(x) ∩ A(y) = ∅ for distinctx, y ∈ Tα so that
{z ∈ T : htT (z) > α} =

⋃
{A(x) : x ∈ Tα} forces one of the chainsA(x) to be uncountable, and that is

impossible becauseT is an Aronszajn tree.2
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Lemma 6.2 : Suppose thatT is an Aronszajn tree and thatA is an uncountable anti-chain inT andβ < ω1. Let
S = {t ∈ T :someat ∈ A hast ≤ at}. ThenS is an Aronszajn tree and there is a subsetB ⊆ BT such that

a) |B| = 2ω

b) eachb ∈ B hasb ⊂ S andb ∩ A = ∅.

c) Each member ofB has height> β.

Proof: First consider the case whereβ = 0. BecauseA is uncountable,S is an Aronszajn tree. Therefore,S
contains a copyW of the full binary tree of heightω [2]. ComputeαW = sup{lvT (t) : t ∈ W}. BecauseW is a
countable set,αW < ω1. Also note that each member ofW has a successor inW and hence also inS. Therefore
W ∩ A = ∅.

LetR = {ρ : ρ is a maximal path in the subtreeW}. (In other words,R = BW .) Observe that|R| = 2ω. For
eachρ ∈ R, there is a branchb(ρ) of T that containsρ. LetR0 = {ρ ∈ R : htT (b(ρ)) > αW}. Note that ifρ1 and
ρ2 are distinct members ofR0 thenρ1 andρ2 differ below levelαW and thereforeb(ρ1) ∩ TαW

6= b(ρ2) ∩ TαW
.

But TαW
is countable and hence so isR0.

LetR1 = {ρ ∈ R− R0 : b(ρ) ∩ A 6= ∅}. For eachρ ∈ R1 let a(ρ) be the unique point ofb(ρ) ∩ A. We claim
that for all t ∈ ρ, t ≤T a(ρ). Otherwise there is at1 ∈ ρ with a(ρ) <T t1. But t1 ∈ ρ ⊆ W ⊆ S so that some
a ∈ A hast1 ≤T a. But thena(ρ) <T t1 ≤T a ∈ A, and that is impossible becauseA is an anti-chain. Hence
t ≤T a(ρ) for all t ∈ ρ.

Supposeρ1 andρ2 are distinct members ofR1. Considering the first level ofW whereρ1 andρ2 differ, we
find pointsti ∈ ρi such thatt1 andt2 are incomparable inW and hence also inT . If a(ρ1) = a(ρ2), thent1 and
t2 would be incomparable predecessors ofa(ρ1), and that is impossible. Therefore the correspondence that sends
ρ ∈ R1 to a(ρ) ∈ b(ρ) ∩A is 1-1, and{a(ρ) : ρ ∈ R1} ⊆ A ∩ (

⋃
{Tβ : β ≤ αW}). But the latter set is countable,

and hence so isR1.

Let R2 = {ρ ∈ R − (R0 ∪ R1) : b(ρ) − S 6= ∅}. For anyρ ∈ R2 chooset(ρ) ∈ b(ρ) − S. Thent(ρ) and
each point ofρ are comparable in the partially ordered setT . If there were somet ∈ ρ with t(ρ) ≤T t thent ∈ S
would allow us to finda ∈ A with t ≤T a. But thent(ρ) ≤T a showing thatt(ρ) ∈ S and that is impossible.
Therefore, for eacht ∈ ρ, t <T t(ρ). It follows that ifρ1 6= ρ2 are inR2, then(b(ρ1)− S)∩ (b(ρ2)− S) = ∅. But
note that eachρ ∈ R2 hasht(b(ρ)) ≤ αW so that eachb(ρ)− S is a subset of the countable set

⋃
{Tβ : β ≤ αW},

and hence we have a 1-1 correspondenceρ → (b(ρ)− S) fromR2 into a family of pairwise disjoint subsets of a
countable set. HenceR2 is also countable.

Therefore the setR3 = R − (R0 ∪ R1 ∪ R2) has2ω members. We letB = {b(ρ) : ρ ∈ R3} and the lemma
is proved in the special case whereβ = 0. To establish the general case, letT̂ = {t ∈ T : lvT (t) ≥ β + 1}.
ThenT̂ is an Aronszajn tree and̂A is an uncountable anti-chain in̂T . Apply the special case proof tôT andÂ to
find a setB̂ of 2ω branches of̂T that satisfy (a) and (b) of the special case of the Lemma. For eachb̂ ∈ B̂ define
b∗ = {t ∈ T : for somes ∈ b̂, , t ≤T s}. Eachb∗ is a branch ofT with height> β andb∗ ∩ A = ∅. 2

By anAronszajn linewe mean an uncountable linearly ordered set that does not contain a order isomorphic
copy ofω1 or of ω∗1, and does not contain an order isomorphic copy of any uncountable set of real numbers [9].
Aronszajn lines also exist in ZFC; they can be obtained from lexicographic orderings of any Aronszajn tree.

Part (a) of the next proposition was used at the beginning of Section 4 and part (b) is an application of results
from Section 5.
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Proposition 6.3 : Let T be any Aronszajn tree with any family of node orderings and let(BT , <B) be the associ-
ated branch space ofT . Then:

a) with its open interval topology,(BT , <B) is not separable and the branch space(BT , <BT
) has no

countable order-dense subset;

b) with its open interval topology,BT is Lindel̈of, first-countable, and hereditarily paracompact;

c)BT is not metrizable;

d) if T does not contain any Souslin subtree, thenBT is not perfect (i.e.,BT has a closed subset that
is not aGδ-subset);

e) (BT , <B) contains a copy of an uncountable set of real numbers and therefore is not an Aronszajn
line;

f) BT contains a dense subspace that is order isomorphic to an Aronszajn line.

Proof: According to Lemma 6.1 we may assume that each element ofT is either maximal or splits and that no
limit level of T contains any maximal elements ofT .

To prove (a), supposeD is any countable subset ofBT . Eachb ∈ D has countable height, so that the ordinal
β = sup{ht(b) : b ∈ D} hasβ < ω1. We claim that somet ∈ Tβ+1 has|[t]T | > 2. If than is not the case, then
there would be only a countable number of branches with height aboveβ + 1, and therefore the overall height of
T would be less thanω1 which is not the case. Chooset ∈ Tβ+1 with |[t]T | ≥ 3. Then whenBT carries its open
interval topology, the convex set[t]T has non-empty interior. But[t]T ∩D = ∅ and that shows that the countable
setD cannot be topologically dense inBT . HenceBT is not separable. Because having a countable order-dense
subset is even more restrictive than having a countable topologically dense subset, we conclude thatBT has no
countable order-dense subset.

To prove (b) observe that each node ofT is countable so that Corollary 5.5 shows that when endowed with its
open interval topology, the spaceBT is paracompact. In addition, it follows from Proposition 5.3 that the branch
spaceBT is first countable. In any linearly ordered topological space, that is enough to show that the space is
hereditarily paracompact [6].

It is easy to see that a paracompact space is Lindelöf if and only if it does not contain an uncountable closed
discrete subset. For contradiction, suppose thatBT contains a closed, discrete, uncountable subsetC. Because
any linearly ordered topological space is collectionwise normal [6], there is a collection of pairwise disjoint open
subsets{Ub : b ∈ C} with the property thatb is the unique point ofC ∩Ub for eachb ∈ C. For eachb ∈ C choose
tb ∈ b with [tb]T ⊆ Ub and such that ifs ∈ b ands <T tb, then[s]t 6⊆ Ub. Then the setA = {tb : b ∈ C} is an
uncountable anti-chain inT . LetS = {t ∈ T : someat ∈ A hast ≤T at}. ThenS is an Aronszajn tree.

According to Lemma 6.2 above, there is a branchb∗ of T with b∗ ⊆ S andb∗ ∩ A = ∅. LetG be any open
neighborhood ofb∗ in BT . Then there is somet1 ∈ b∗ with [t1]T ⊆ G. Becauset1 ∈ b∗ ⊆ S, there is some
a1 ∈ A with t1 ≤T a1. We claim there is somet2 ∈ b∗ with t1 <T t2 and such thatt2 does not lie belowa1 in T .
Otherwise, every element ofb∗ lies belowa1 so that maximality ofb∗ forcesa1 ∈ A ∩ b∗ = ∅. Givent2, choose
a2 ∈ A with t2 ≤ a2. Necessarilya2 6= a1 and we have

(∗) [a2]T ⊆ [t2]T ⊆ [t1]T ⊆ G and [a1]T ⊆ [t1]T ⊆ G.
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Recall that each of the sets[ai]T contains a pointbi ∈ C. Becausea1 anda2 are distinct members of the anti-chain
A, b1 6= b2. But then (*) shows thatG contains at least two distinct members of the closed discrete setC showing
thatb∗ is a limit point ofC and that is impossible. Therefore,BT does not contain any uncountable closed discrete
subset, and thereforeBT is Lindelöf.

To prove (c), note that ifBT were metrizable, then it would be Lindelöf and metrizable, whence separable,
and that contradicts (a), above.

To prove (d), suppose thatT does not contain any Souslin tree. ThenT contains anω-branching Aronszajn
subtreeS andS cannot be a Souslin tree. Hence there is an uncountable anti-chainB ⊆ S. ThenB is an anti-chain
in T and for eacht ∈ B, infinitely many branches ofT belong to the convex set[t]T . ThereforeintBT

([t]T ) 6= ∅
for eacht ∈ B.

Let U =
⋃
{intBT

([t]T ) : t ∈ B}. BecauseBT is perfect, there are closed subsetsFn ⊆ BT such that
U =

⋃
{Fn : n ≥ 1}. Then for somen0 ≥ 1 the setA = {t ∈ B : intBT

([t]T )∩Fn0} 6= ∅ is uncountable. Choose
bt ∈ intBT

([t]T ) ∩ Fn0 Then{bt : t ∈ A} is an uncountable, closed discrete subset ofBT . But, as established in
the proof of (b), the branch spaceBT contains no such subsets. Thus (d) is proved.

To prove (e), we need to recall a lemma from [2] guaranteeing that any Aronszajn tree contains a copyW of
the complete binary tree of heightω. ThenBW is the usual Cantor set and is an uncountable set of real numbers.
For each branchρ ∈ BW there is at least one branchb(ρ) ∈ BT with ρ ⊆ b(ρ). Then the correspondence that
sendsρ to b(ρ) is an order isomorphism that embeds an uncountable set of real numbers intoBT , and henceBT is
not an Aronszajn tree.

To prove (f) we need to use a kind of linear ordering not yet seen in this paper, namely the lexicographic
ordering of the treeT itself. We will use the same node orderings used to define the ordering ofBT to define the
lexicographic ordering ofT . According to [9], any Aronszajn tree with a lexicographic ordering is an Aronszajn
line.

We now define a functionf from an uncountable subsetD ⊆ T into BT that is strictly increasing and has the
property that for eacht ∈ T, f(D) ∩ [t]T 6= ∅. That will be enough to show that the subspacef(D) is dense is
BT and is an Aronszajn line.

We definef andD recursively. For eacht ∈ T0, let f(t) be any element of[t]T and letD0 = T0. Suppose
α < ω1 and that for eachβ < α we have defined setsDβ ⊆

⋃
{Tγ : γ ≤ β} and a strictly increasing function

fβ : Dβ → BT in such a way that ifγ < β < α thenfβ extendsfγ and such that for eachs ∈ Tβ, somet ∈ Dβ

hasfβ(t) ∈ [s]. Write Eα =
⋃
{Dβ : β < α} and letDα = Eα ∪ {t ∈ Tα : ∀s ∈ Eα, f(s) 6∈ [t]T}. Define

fα(t) to befβ(t) if t is in someDβ with β < α and definefβ(t) to be any member of[t]T otherwise. We let
D =

⋃
{Dα : α < ω1} andf =

⋃
{fα : α < ω1}. The only remaining question is whetherD is uncountable. If

it is not, thenf(D) is a countable set of branches ofT with f(D) ∩ [t]T 6= ∅ for eacht ∈ T , and that makesBT

separable, contrary to (a).2

Remark 6.4 : Assertion (d) of Proposition 6.3 can be sharpened somewhat. The precise hypothesis needed in (d)
is that the subtreeS = {t ∈ T : intBT

([t]T ) 6= ∅} is not a Souslin tree. It would also be enough to know that the
subtreeU = {t ∈ T : |[t]T | > 2} is not a Souslin tree.
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7 Some Topological Properties of Branch Spaces

We can characterize certain other topological properties that the branch spaces of trees might or might not have.
Recall that aπ-basefor a topological spaceX is a collectionP of non-empty open subsets ofX such that if
G 6= ∅ is open then someP ∈ P hasP ⊆ G. We will say that a treeT is semi-specialif there is a sequence
{An : n ≥ 1} of anti-chains inT such that for eacht ∈ T there is somea ∈

⋃
{An : n ≥ 1} havingt ≤ a. If it

happens thatT =
⋃
{An : n ≥ 1} for some sequence of anti-chains, then we say thatT is special.

Proposition 7.1 : Let T be any tree. If there is a family of node orderings such thatBT has aσ-disjointπ-base,
then there is a subtreeS of T that is semi-special and hasBS order isomorphic toBT .

Proof: If necessary, use Lemma 2.1 to replaceT by a subtree that satisfies 2.1. Therefore, we may assume thatT
satisfies Lemma 2.1.

Let P =
⋃
{P(n) : n ≥ 1} be aπ-base forBT where eachP(n) is a disjoint collection of non-empty open

sets. Forn ≥ 1, letAn = {t ∈ T : [t]T ⊆ some member ofP(n) and if s <T t then[s]T is not a subset of any
member ofP(n)}. LetA0 = {t ∈ T : t is a maximal element ofT}. Then eachAn is an anti-chain.

Fix any t ∈ T . If t or some successor oft is a maximal element ofT then eithert ∈ A0 of some successor
of t belongs toA0. Hence assume thatt is not maximal and that no successor oft in T is maximal. Then
intBT

([t]T ) 6= ∅, so there is somen ≥ 1 and someP ∈ P(n) with P ⊆ [t]T . Chooseb ∈ P and then choose the
minimal tn ∈ b with b ∈ [tn]T ⊆ P . Thentn ∈ An and because[tn]T ⊆ P ⊆ [t]T we see thatt ≤T tn as required.
2

Without some additional hypotheses, the converse of Proposition 7.1 is false: take any linearly ordered(X,<)
whose open interval topology does not have aσ-disjointπ-base. LetT = T0 = X with T0 being ordered as a copy
of (X,<). ClearlyT is a special tree and becauseBT is exactlyX, the branch space has noσ-disjoint π-base.
However, one can prove

Proposition 7.2 : SupposeT is a tree with a family of node orderings such that for eacht ∈ T, intBT
([t]T ) 6= ∅.

ThenBT has aσ-disjointπ-base if and only ifT is semi-special.

Proof: Half of the proposition follows from Proposition 7.1. For the other half, if{An : n ≥ 1} is the sequence
of anti-chains in the definition of semi-special and ifP(n) = {intBT

([t]T ) : t ∈ An}, then
⋃
{P(n) : n ≥ 1} is

the requiredπ-base.2

Recall that among first-countable regular spaces, the existence of aσ-disjoint π-base is equivalent to the
existence of a dense metrizable subspace [10]. In particular, this equivalence holds for any branch space of a
semi-special Aronszajn tree.

A property that is stronger than the existence of aσ-disjointπ-base is the existence of aσ-disjoint base.

Proposition 7.3 : SupposeT is a tree that, for some node ordering,BT has aσ-disjoint base. Then there is a
subtreeS ⊆ T such that

a) S is special;
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b) for each branchb of T, b ∩ S is cofinal inb;

c) if nodes ofS are ordered consistently with the ordering ofBT , then the branch space ofS is order isomorphic
to the branch space ofT ;

d) if T is an Aronszajn tree, then so isS.

Proof: If necessary, we replaceT by a subtree that satisfies Lemma 2.1. This allows us to assume thatT itself
satisfies 2.1. LetB(n) be a disjoint collection of open sets such thatB =

⋃
{B(n) : n ≥ 1} is a base forBT . Let

A(n) = {t ∈ T : [t]T ⊆ some member ofB(n) and no strict predecessor oft has this property}. Then eachA(n)
is an anti-chain inT . LetS =

⋃
{A(n) : n ≥ 1} and partially orderS as a subtree ofT .

Let b be any branch ofT and let{n1, n2, · · ·} be the set of all integersn such that some member ofB(n)
containsb. For eachnk let B(nk) be the unique member ofB(nk) that containsb. There is sometk ∈ b that is
the first member ofb with [tk]T ⊆ B(nk). Thentk ∈ A(nk) ⊆ S. For contradiction, suppose{tk : k ≥ 1} is not
cofinal in b. Then there is somet∗ ∈ b with tk <T t∗ for eachk. Thenb ∈ [t∗]T ⊆ [tk]T ⊆ B(nk) so that[t∗]
is a subset of every member of the base that containsb. Hence[t∗]T = {b} so thatt∗ is a maximal member ofT
(because each member ofT is either maximal or splits inT ) andb = {t ∈ T : t ≤T t∗}. There are two cases to
consider. Ift∗ has an immediate predecessort∗∗ in T , thentk ≤T t∗∗ for eachk. Hence[t∗∗]T ⊆ [tk]T for eachk
so that[t∗∗] is a subset of every member of the baseB that containsb, showing that[t∗∗] = {b} and that makest∗∗

maximal inT , which is false. Therefore,t∗ has no immediate predecessor inT , and thereforelvT (t∗) is a limit
ordinal. It follows from part (b) of Lemma 2.1 that the node ofT containingt∗ must also contain some element
u∗ 6= t∗. Let c ∈ [u∗]. Thenc 6= b so we may choose an elementB0 ∈ B with b ∈ B0 andc 6∈ B0. Because
b ∈ B0 there is annk with B0 ∈ B(nk) and then we haveb ∈ [tk] ⊆ B0. Becauset∗ andu∗ have exactly the same
set of predecessors,tk ≤T u

∗ showing thatc ∈ [tk] ⊆ B0, and that is false. Thereforeb ∩ S is cofinal inb, so that
assertion (b) holds, and assertion (c) now follows directly.

To prove (d), suppose thatT is an Aronszajn tree. In the light of (b),|S| = ω1. ClearlyS has no uncountable
branches, so that it will be enough to show that each level ofS is countable. For contradiction, suppose there
are uncountable levels inS and letα be the first ordinal such thatSα is uncountable. Then the setA = Sα

is an uncountable anti-chain inT . Consider the setU = {s ∈ T : for somea ∈ A, s ≤S a}. The subset
E =

⋃
{Sγ : γ < α} of U is countable so thatβ = sup{lvT (s) : s ∈ E} is a countable ordinal. Apply Lemma

6.2 to find a branchb of T with height> β, b ⊆ U , andb ∩ A = ∅. Chooset0 ∈ b with lvT (t0) > β and then use
(b) to find somes0 ∈ S with t0 <T s0. Thens0 6∈ E shows thatlvS(s0) ≥ α. But s0 ∈ b ⊆ U so thatlvS(s0) ≤ α
from which it follows thatlvS(s0) = α. But thens0 ∈ b ∩A = ∅ and that is impossible. Therefore, every level of
S is countable, as claimed.2

Remark 7.4 : The proof of assertion (d) in Proposition 7.3 shows that ifS is a subtree of an Aronszajn treeT
and has the property thatb ∩ S is cofinal inb for everyb ∈ BT , thenS is also an Aronszajn tree.

Example 7.5 : Topological types of branch spaces of Aronszajn trees.

In this example, all Aronszajn trees satisfy Lemma 6.1. Starting with an Aronszajn treeT , one can obtain many
different topological types as branch spaces ofT . Each node ofT is a countable set and if each node is ordered
to make it order-complete, the resulting branch space is compact by Todorčevic’s theorem. It is not separable in
the light of Proposition 6.3, and is not metrizable in the light of part (c) of the same proposition. IfT contains
no Souslin subtrees, then the branch space is not perfect. An impressive use of a compact branch space of an
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Aronszajn tree appears in [8] where W.X. Shi constructs a compact linearly ordered topological space that is not
metrizable and yet every subspace of it has aσ-minimal base.

Put countably many pairwise disjoint copies of that compact branch space side by side, obtaining a Lindelöf
linearly ordered topological spaceY that is not compact. To obtainY as the branch space of an Aronszajn tree,
put countably many copies ofT side by side, one above each integer.

In a model of ZFC that contains Souslin trees, if one starts with a Souslin tree (which is certainly an Aron-
szajn tree), then for any choice of node orderings one obtains a branch space that is hereditarily Lindelöf but not
separable. This branch space would be a Souslin line and would satisfy the topological countable chain condi-
tion (= every pairwise disjoint collection of non-empty open sets is countable), a weaker relative of separability.
However, ifT is anω-branching Aronszajn tree that is not Souslin and we order each non-limit node so that it is
a copy ofZ, the resulting branch space is not hereditarily Lindelöf and does not satisfy the topological countable
chain condition. Furthermore, if we start with a special Aronszajn tree that isω-branching and order each node at
non-limit levels to make it a copy ofZ, the resulting branch space has aσ-disjoint base, namely{[t]T : t ∈ T},
and some closed subset of the branch space is not aGδ-set of the branch space.2

8 Open Questions

a) For which subsetsX ⊆ R is there a treeT and node orderings that areX-non-degenerate and have the
property thatBT is order isomorphic toX? (According to Proposition 4.8, the setQ is not representable in
this way, while bothR andP are.)

b) WhichFσδ-subsets ofR are order isomorphic to the branch space of some countable tree?
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[9] Todořcevic, S., Trees and Linearly Ordered Sets, inHandbook of General Topologyed. by K. Kunen and
J. Vaughan, North Holland, New York, 1984, pp. 235-293.

24



[10] White, H.E., First countable spaces that have special pseudo-bases,Canad. Math. Bull.21 (1978), 103–
112.

25


