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Abstract: Todorevic noted that any linearly ordered $éf, <) is isomorphic to the branch space of some tree,
provided the tree is allowed to be as complicatedaself. In this paper we investigate representing linearly
ordered sets as branch spaces of trees where the trees satisfy certain natural restrictions designed to make
less complicated than the set we are seeking to represent. We show that any uncountable order-complete line
ordered setX can be represented as the branch space of d/ttbat is more simple thaX and that if X is
representable as a branch space, then(agngubset ofX is also representable as a branch space. However, we
show that even though the usual $ebf real numbers can be represented as the branch space of a tree witt
countable height and countable levels, most subséksoainnot be represented in this way. We characterize those
limit ordinals \ that can be represented by trees whose nodes do not contain copies af. We also study
topological properties of branch spaces. Our results show thaidfa tree of height, that does not contain

any wi-branches, then the branch spacelomust be hereditarily paracompact. We investigate branch spaces
of Aronszajn trees, showing that any such branch space is hereditarily paracompact, first-countabl@f, Lindel
non-separable, non-metrizable, and providédoes not contain any Souslin subtree, then its branch space is
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1 Introduction

By aline we mean a linearly ordered seX, <). TodorCevic pointed out that any lin& is order isomorphic to

the branch space of some tree, provided the tree is allowed to be as complicAtédels The problem studied

in this paper is “Which lineg X, <) can be represented, up to order isomorphism, as the branch space of a tre
that is less complicated than?”

Our terminology and notation for trees generally follow [9]. Recall tha¢ais a partially ordered séi’, <r)
such that for each € T the setl};, = {s € T : s # t,s <r t} is well-ordered by<;. The order type of; is
called thelevelof ¢, abbreviateduv(t). For any ordinaky, the setl, = {t € T": lv(t) = «a} is theath level of T".
Becausd is a set, there must be some ordinakith T,, = (); the first such ordinal is called theightof the tree
and is denoted byt (7).

By apathin T"we mean a subsetC T that is linearly ordered by, and has the property thatif<, ¢ and
t € p, thens € p. Each non-maximal path determines aodeof the tree byNode(p) = {t € T : T; = p}.

1This paper is part of the undergraduate honors thesis of Will Funk, written at the College of William and Mary with financial suppor
from the College’s Charles Center, and under the supervision of David Lutzer.
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Sometimes we will have a pointe 7" and we will want to look at the node @f to whicht¢ belongs. We will use
the notationV(t,7) = {s € T : Ty = T}}.

Let N(T') be the collection of all nodes of the trée Observe that for any nod¥ € N (T'), the points ofN
are incomparable with respect tor. For each nodeV we will choose a linear ordering y of N. There is no
necessary relation between the orderings of one node and another.

By abranchof 7" we mean a maximal path ifi and we denote the set of all branchesoby 5. For any
branchb € By let ht(b) be the order type of the well-ordered s¢brdered as a subset @, <7)). Fora < ht(b)
let b(«) be the unique point of N 7,,. For distinctb,c € By, there is a first ordinad = Ar(b, ¢) such that
b(0) # ¢(6). Thenb(6), c(d) belong to the same node€ of 7" and we definé < c if and only if in the ordering
<y chosen forN, we haveh(d) <y ¢(d). Thebranch spacef the tree is the linearly ordered 9éd,, <z). The
term “branch space &f” is actually a misnomer, because the linear orderings chosen for the nodes have at lea
as much influence on the structure of the branch space as does the tree itself’ Hnd/V is a node off’, then
both[t]; = {b € Br : t € b} and[N]r = |J{[t]r : t € N} are convex subsets #,. One cannot (in general)
assume that eadhr has|[t|r| > 3: see Proposition 2.3 in Section 2.

With that terminology and notation in hand, we can describe Gedao’s observation in [9] showing that any
line is the branch space of a tree provided one is willing to allow the tree to be as complicated as the line ol
seeks to represent. For any linearly ordered &et<) let 7' = T, = X and use equality as the partial order on
T. ThenTy is the only node of” and we linearly ordef;, to make it a copy of X, <). The branch space of the
resulting tree is a copy dfX, <).

The above example shows that if one wants a reasonable branch space representation theory for line:
ordered sets, one needs to restrict the trees used to represent gd.givento make sure that they are less
complicated tharX itself. The literature contains several well-known ways to impose such restrictions on a tree
T. One could impose cardinality constraints on the height,obr on each level of’, or on each node df’, or
on each anti-chain of. Alternatively one could constrain the node orderings needed to define the linear ordering
of the branches df'. For a given linearly ordered sgk, <), we will say that the node-orderings bfare L-non-
degeneratéf for each nodeV of 7', the linearly ordered s€tV, <,) does not contain an order-isomorphic copy
of (L, <).

Throughout this paper we reserve the symi®|sP, Q andZ for the sets of real, irrational, and rational
numbers, and for the set of all integers, respectively. 1fX — Y andS C X, then we abuse notation slightly
by writing f(S) = {f(s) : s € S} in lieu of the more familiarf[S] because notation involving square brackets
already has too many meanings in our paper.

The authors want to thank the referee whose suggestions significantly improved our paper. In particular, t
proofs given for Lemmas 2.1 and 6.1 are much clearer and shorter than the ones we originally proposed.

2 Simplifying Trees for Branch Space Constructions

In this section we present two technical lemmas that describe how we can simplify certain trees without changil
their branch spaces. The first deals with trees in general, and the second deals with trees whose branch sp
are order isomorphic to sets of real numbers. The lemmas may be known, but we have not been able to fi
proofs in the literature. In the first reading of the next lemma, readers may want to ignore the references
L-non-degeneracy. This idea is not needed until the end of Section 4.



Lemma 2.1 : Let (L, <;) be a linearly ordered set. Léf", <) be a tree and{<y: N € N (T)} a family of
node orderings o’ each of which id.-non-degenerate. LéB;, <z,.) be the corresponding branch space. Then
there is a subtreél’, </) of ' such that

AN(V)={NeN(T):|N|>1}

b) if nodes oft” are linearly ordered exactly as they are ordered/inthen the nodes df are L-non-
degenerate and the branch spdd®,, <z, ) is order-isomorphic tq B, <g,.).

c) each node o¥ has at least two elements, so that each non-maximal elemé&nsgplits in1/.

Proof: Once assertions (a) and (b) are established, (c) is immediate.

Let M(T) = {N € N(T) : |[N| > 1} and letV = |JM(T'). LetV carry the partial order induced by the
partial order ofl". We first show that\V' (V') = M(T).

Claim 1 If N is a node ofV/, then for somé\/ € M(T'), N C M. Fix anodeN of V and letz € N. Then there
is someM € M(T) with z € M. For contradiction, suppose th&tZ M. Choosey € N with y ¢ M. Because
x,y € N we have

(x) {zeViz<yt={z€eV: iz<z}

and becausg ¢ M we have
(x%) {weT :w<yt#{weT : w<z}.

For contradiction, suppose th € T: w < y} C {w € T : w < z}. Letr be the unique point of the set
{w € T :w < x} whose level in" is the same a&r(y). If y = r, theny < x and that contradicté«). Hence
r#yandwehavdw € T:w <r} ={w € T : w < y} so that some nodP of T’ contains bothy andr. Then
|P| > 2 sothatr € P C V and that contradictsk).

An analogous argument shows that € 7' : w < 2} C {w € T : w < y} is also impossible.

At this stage, we know that neithéw € 7' : w < z} nor{w € T': w < y} is a subset of the other. Thésx)
allows us to choose the first ordinalso that the setéw € 7' : w < 2} and{w € T : w < y} contain distinct
pointsr, s, respectively, withvy(r) = lvp(s) = a. Then{w € T: w < r} = {w € T : w < s} so thatr ands
are distinct members of the same naglef 7. But thenr, s € ) C V' and once again we have contradicted
Therefore, N C M and Claim 1 is established.

Claim2 If M € M(T) then someN € N (V) hasM C N. This follows from the fact that if;,y € M then
{fweT:w<z}={weT:w<y}andthefactsthafz ¢ V :z <z} ={w e T :w < z}NVand
{weT:w<ypnV={zeV:z<y}

Together, Claim 1 and Claim 2 establish (a).

Now linearly order the nodes &f using the node orderings @f and let(By, <z, ) denote the branch space
of V. If b € Br, itis easy to see thatn V' € By. Therefore, the rulg/(b) = b NV defines a function fronB;
to By. To show thatf is strictly increasing, supposeb € By with a <gz,. b. Letd = A(a, b) and choose distinct
x € a, y € bwith lup(z) = lup(y) = 0. Butthen{w € T: w < 2} = {w € T : w < y} so thatr andy are
distinct points of the same node of 7. Thereforer,y € M C V showing that: NV precede$ NV in the
ordering ofBy,. Finally, suppose that € By,. Thenc is a linearly ordered subset @f so there is somé € B
with ¢ C b. Butthenf(b) = c so thatf is also seen to be onto. Therefol; is isomorphic ta3y,, as requiredd



Lemma 2.2 SupposéT’, <r) is a tree with countable nodes and tHat y: N € NV (T)} is a fixed family of node
orderings for7". Suppose that the resulting branch spaBe, <z,.) is known to be order isomorphic to some set
X of real numbers. Then there is a subtigé <;;) of 7" having countable levels and heightw and a set of
node orderingg <,;: M € N(U)} such that the corresponding branch space is order isomorphi€.to

Proof: Recall that a subsét C X C R is relatively convexn X if given three pointsc < y < z of X with
x,z € C,we havey € C.

We may assume thdt satisfies Lemma 2.1. Lgt: By — X be an order isomorphism from the branch space
of 7" onto a setX C R.

Claim I Each branch of" has height< w; and hencd’ has height< w;. For suppose some branéhe B
has height> w;. Then eitheKinfr(f([t]r) : t € b} or {supr(f([t]r)) : t € b} contains an uncountable strictly
increasing (respectively, decreasing)sequence ifR and that is impossible. Thus, each branch las heiglt
and therefore the height @fis < w;.

Claim 2 Each level off" is countable. In the light of Lemma 2.1, each nodd'dias at least two points. Fix an
ordinal « and consider the collectial,, consisting of all nodes df’ at levela and forN € N, let [N] be the
set of all brancheé of 7" with b N T, C N. Then{conv(f([N])) : N € N,} is a pairwise disjoint collection of
convex subsets @&, whereconv(.S) denotes the convex hull iR of a setS. Such a collection must be countable,
so that\V,, must be countable. Because each individual nodg isfknown to be countable, each levelBimust
be countabler

Claim 3 The height of7" is less thanv;. For contradiction, suppose that(7') = w,. BecauseX C R, there

is a countable seb C X that isorder denseén X, i.e., if z < y belong toX, then[z,y] N D # (. (Note: this

is not the same as being topologically dens&in Let g = sup({ht(b) : b € Br, f(b) € D}). BecauseD is
countable and is 1-1, Claim 1 shows that, < w;. Becausey, < wi, Ty, 11 # 0. Choose € T,,.1. The node

N of T to whicht belongs has at least two members, so fi{@VV]) is a non-degenerate, relatively convex subset
of X. However, f([N]) N D = () and that is impossible becausgkis an order-dense subset & Therefore,
ht(T) < w; as claimed.

For eacht € T, let I; be the convex hull iR of the setf ([t|r) = {f(b) : t € b}. If s andt are distinct and
belong to the same level @f, then/, and/, are disjoint subsets &. For eachb € By, let K;, = (\{I; : t € b}.

Claim 4 For eachb € Br the setK, is a closed and bounded subsetfof Computef(b) € R. For each

t € b choose branche, b < [t] with b} <, b <p, b} with strict inequalities whenever possible. Then
Ky = ({1 :t € b} = N{[f(b), f(b})] : t € b}, where the second equality follows from the fact that whenever
possible, we used strict inequalities in choosing the branghd@herefore the sek, is closed and bounded .

For eachh € Br, f(b) € K. If by andb, are distinct branches @f and if6 = A7 (by, bs), thenb;(0) # by (6).
Write t; = b;(9). ThenK,, C I, forcesK,, N K;, = 0.

Definer : R — R by the rule that ifc € K, for someb € Br, thenw(xz) = f(b) and for all other: € R define
m(x) = z. ThenY = n[R] C R.

Claim 5 The setY” = #[R] with the order inherited fronR is order isomorphic t®. BecauseY'| > 1, to prove

this assertion, it will be enough to show thathas a countable order-dense subset, has no endpoints, is densel
ordered, and has the least upper bound property (because that list of properties characterizes the dijered se
Because each séf, is boundedY has no end points. That has a countable order-dense subset follows from
Y C R. To see that” is densely ordered, suppoge< i, in Y. Becauser is weakly increasing (i.e., if; < x5



in Rthenn(z;) < 7(xy) in Y) we know that ifz; € 7! (y;) thenz; < x,. Furthermore, the sets *(y;) are each
compact and therefore the numbegs= sup(7—(y;)) andz, = inf(7~1(y,)) both exist inR andz; € 7~ 1(y;).
Hencex; < z,. Choose any € (x1,z2). Thenn(z) € Y N (w(xy1), m(x2)) = Y N (y1,y2). ThusY is densely
ordered.

Finally, Y has the least upper bound property becdRdeas that property and is weakly increasing and
7~1(y) is a compact, convex subset Bffor eachy € Y. Hence,Y = =(R) is order isomorphic t@R. Let
g : 7(R) — R be an order isomorphism.

Claim 6 For any branchh € By, (\{7(L) : t € b} = n(K}) = {f(b)}. Clearlyn(K,) C (\{n(L) : t € b}.
For a givent € b note thatr(l;) C I, and thereforg\{=([;) : t € b} C ({I; : t € b} = K,. But then
(Wr(L;) :t € b} C Kynw(R) = w(Ky), as required.

Define a functioni : Y x Y — [0, 00) by the rule that ify,, y» € 7[R], thend(yi,y2) = |g(y1) — g(y=2)|. Then
d is a metric on the set(R). We used to define the diameter of a set in the usual way.

Claim 7. For any branct of T', inf{diamy(m(1;)) : t € b} = 0. Fixb € Br and suppose that v € 7(R) have
u < m(f(b)) < vinxw(R). Chooser, = max7~'(u) andz, = min7—!(v). Because the set '(y) is compact
for everyy € n(R), bothz, andz, exist and belong ta—!(u) andx~!(v) respectively. Therk;, C (x,,x,).
Because the sets are convex and have{/; : t € b} = K;, somet € b hasl; C (z,,z,), showing that the
d-diameter ofr(1;) is less than thel-diameter of any intervalu, v) with u,v € #(R) and=n(f(b)) € (u,v).
Thereforejnf{diamy(w(1;)) : t € b} = 0 as claimed.

Foreachn > 1letV, = {t € T : diamy(n(I,)) <  and s <p t = diamg(r(I;)) > 1}.

Claim 8 EachV,, is a maximal anti-chain df".

Clearly V,, is an anti-chain. To prove maximality, consider agyc 7. Choose any branch, of 7" that
containst,. According to Claim 8, somee b, hasdiamg(w(I;)) < =. Lett; be the first member df, with that
property. Thernt; € V, and the point$, and¢; are comparable ifi’ because both belong to the brarlghHence
V,, is maximal.

Now defineU = |J{V,, : n > 1} and partially ordei/ by restricting the partial order &f. From earlier
claims we know thaf” has countable height and countable levels, so|thaK |T'| < w. (Notice that we damot
claim that the set§¥], are the levels ot/.)

S|

Claim 9 If v; € V; andv; € V; havev; <r v; theni < j. If j < itheni < 1 so thatdiamg(r(1,,)) <
Butv; <r v; and that contradlcts the minimality condition built into the deflnltloerf

Claim 10The height ofU is < w.

Otherwise there would be some elemente U with heightw in U. List the predecessors af in U as
{uy : k > 1} and choose integers, with v, € V,,. Because each,, is an anti-chain, no more than one of
the pointsu,, can belong to any one sk}, , showing that the se¥V* = {n; : £ > 1} must be infinite. Because
u* € U there is some integer* > 1 with «* € U,,-. But then Claim 9 shows that, < n* for eachk, so the set
N* must be finite. That contradiction completes the proof of Claim 10.

Claim 11 Let ¢ be any branch of the tre@/, <) and lety(c) = {t € T : Ju € c having t <r u}. Then
¥(c) is a branch off". If that is not true, there is a branélof 7" having(c) properly contained ih. Choose
t* from the lowest possible level af havingt* € b andu < t* for everyu € c¢. Becausé/, is a maximal
anti-chain inT’, there is some,, € V,, that is comparable tt*. Consider any: > 1. If it happens that* < u,,

then we have found an elememt € U that lies strictly above every member of the bramcbf U, and that
is impossible. Hencey,, <r t* so thatu, € b. But thenu, € UNb = c for everyn > 1. Therefore,

RS-

S
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diamg(m (1)) < diamg(m(1,,)) < + for eachn > 1 showing thatliamy(w(I+) = 0 and hence that exactly one
branch ofl” containst*. Thereforet* is a maximal element df' and the sebk(t*) = {t € T : t < t*} is a branch
of T

Becausd' satisfies Lemma 2.1, the nodebto whicht* belongs has at least two elements. Choosistinct
fromt* in that node. Then with notation as in the previous paragrapk; s* for eachn so thats* is also maximal
in 7" and the seb(s*) = {t € T : t < s*} is a branch off" that is distinct fromb(¢*). Thenf(b(s*)) # f(b(t*))
andz(f(b(s*))) # m(f(b(t*))) are elements of the set!,, ) for eachn, showing thatliam,(w(1,,)) cannot be
made arbitrarily small, contrary ta, € V,,. Therefore, Claim 11 is established.

Fix a nodeM of U. We linearly orderM as follows. Lets, ¢t € M be distinct. Thers andt are incomparable
in 7" so that in the branch spa&y of 7', the sefs|; = {b € Br : s € b} and the analogously defined $&t are
disjoint convex sets. Define<,, t if and only if every point of/s|; precedes every point ¢f]r in (Br, <gz,.).

The next two claims complete the proof by showing thatis order isomorphic t@r.

Claim 12 The functiony : By — By is strictly increasing. Let; <g,, ¢, be branches dff. Letd = Ay (cy, ¢2)

be the first level of/ where the branches andc, differ. Thenc;(0), c2(0) belong to the same nod¥ of U
and we know that, (6) <as c2(0). But then in the branch spaceBfwe know that each branch belonging to the
set[c;(d)]r precedes each branch belongindddd)], and we know that)(c;) € [¢;(0)]7. Hencey is strictly
increasing.

Claim 13 The functiony : By — By is onto. Letb € By. Becausénf{diam,(n(l;)) : t € b} = 0, we know
thatb NV, # () for everyn > 1. Letc = bN U. Thencis a branch ot/ and«(c) = b. O

The first two results in this section have shown that one can assume that the trees involved have been “clea
up” without changing their branch spaces, and another result of this type will appear in the section on Aronsza
lines, below. One might wonder whether it is possible to make other assumptions about the trees being used
make branch space constructions smoother. For example, could we always assume that each element of the
splits? The next result from [1] provides a negative answer. Its hypothesis is even weaker than “everything splits
it holds, for example, if every € T has at least three branches that contain

Proposition 2.3 : Let (7, <r) be a tree with a family of node orderings and suppose that, when the branch space
By of T'is endowed with its open interval topology, each[fgthas non-empty interior il8r. ThenBr is a Baire
space, i.e., the intersection of countably many dense open sets is dense.

In fact, one can show that the branch space of a tree as in Proposition 2.3 is aetizalbrable [1]. See Section
4 for definitions.

3 Branch Space Representation of Compact anGech-complete Lines

Recall that a linearly ordered sgX, <) is order-completef every subset ofX, including) and X, has a least
upper bound inX. It is well-known that(X, <) is order-complete if and only iX is compact when endowed
with its usual open interval topology. A completely regular topological space is said émdecompletﬁ it
is a Gs-subset of some (equivalently, of each) of its compactifications. For a linearly orderéd sef, that



is equivalent to saying that is aGs-subset of its Dedekind completiofi™ when X+ carries its open interval
topology.

Our first theorem will make use of a standard line to tree construction cajpedti@ion tree This idea is in
widespread use, but the literature contains many different descriptions of it. We will construct our partition tree
as follows. For an order-convex subgeof a linearly ordered seX” and for an ordinad, we will have a collection
P,(C) of pairwise disjoint convex subsets 6f Usually P, (C') is expected to covef’, but sometimes it does
not. Some of the members &%,(C') might be degenerate, i.e., might be singleton convex sets. In some cases th
subscriptx is irrelevant, and then we suppress it, writiRgC'). We construct the partition trée recursively. Let
To = {X}. If T,, is defined for some ordinal, let7,, ;1 = (J{P.+1(C) : C € T,,, |C| > 2}. If Ais alimit ordinal
and if T, is defined for each < A, then let

Ty ={D = {Ca:a<A}:Cy €T, |D|>2}.

Partially orderT" by reverse inclusion. Thef is a tree. Becaus is a set, there is somewith 7, = (). The
height of the tree is the least suetand? = J{T, : T, # 0}.

Next we will go from the partition tre@ to its branch spac@3r, <;), something that requires us to linearly
order each node. Observe that each node of the partitiofi'trea family of pairwise disjoint convex subsets of
(X, <) and therefore inherits a natural ordering that we calptiezedence orderinffom X. That s, ifC, D are
distinct members of a nod¥, we say that” <y D if and only if every pair of points € C, y € D hasx < y
in the ordering ofX. Let (Br, <g,) be the resulting branch space. There is a natural strictly increasing function
i:(X,<)— (Br,<g,) given byi(z) = {t € T : € t}. Unfortunately, this function is not necessarily onto,
and is not necessarily continuous when battand B carry their usual open interval topologies. See Section 2
of [1] for details.

We use a certain cardinal invariant of the ordered’sdb impose constraints dh. It is a relative of the
familiar cardinal invariant of a topological spadecalled cellularity [3]. Recall that a topological spagehas
cellularity ¢(X) if ¢(X) is the least cardinal such thatifis a family of pairwise disjoint, non-empty open subsets
of X, then|U| < ¢(X). For a linearly ordered s€tX, <) the order cellularity of (X, <) is the least cardinal
orc(X) such that every famil¢ of pairwise disjoint non-degenerate (= has more than one point) convex subsets o
X has cardinality< orc(X). These two cardinal invariants can be different. For example, in the lexicographically
ordered sef = R x {0, 1} with its usual open interval topology, we hayeX') = w < 2¢ = orc(X). In general,
orc(X) is the maximum of the topological cellularity of (equipped with its open interval topology) and the
number of jJumps inX (i.e. pairs of consecutive points &f). Another familiar cardinal invariant of the linearly
ordered setX, <) is supcf(X) (for “supremum of cofinalities”), defined to be the least cardinal numisarch
that for eachr € X, cf({y € X : y < x}) < k. The analog for co-initialities isupci(X) and is analogously
defined.

Proposition 3.1 : Suppose thatX, <) is an infinite order-complete linearly ordered set. Then there is afree
such that:

a) each nodeV of T' has|N| < supef(X);

b) each levell,, of T" has|T,,| < orc(X);

c) each branch of T" has|b| < max{supcf(X), supci(X)} < orc(X); and

d) there is a node ordering fdf so that the associated branch spacdat order isomorphic toX.
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Proof: For any intervala, b) C X with at least two points, the cardinal numbgi(b) is finite if and only ifb has

an immediate predecesdor in X and in that case we defin@fa,b) = {[a,b™),{b" }}. If the cardinalcf (D) is
infinite, then there is a strictly increasing Het, : 0 < a < ¢f(b)} that is cofinal in[a, b), haszy = a, and has
the property that each spt,, z,.1) has at least two points. Becau&eis order-complete, we may also assume
that for each limit ordinah < c¢f(b) we haver, = supy{z, : @ < A}. Then defineP|a, b) = {[z4, Tat1) : 0 <

a < cf(b)}. For an intervala, b], definePla, b] = {[a,b), {b}}.

We now define set$,, recursively. Becaus&' is order-complete, there are pointg by with X = [ag, bo].
Let Ty = {[ao, bo]} andT} = {[ao, bo), {bo}}. Next, suppose > 1 and suppose th&i, is defined for allv < ~
in such a way that:

1) for any non-limit ordinal3 < -, each non-degenerate membef pfcan be written a§:, b);

2) for any limit ordinal3 < ~, each member df; can be written in the fornju, b] and has at least
two points; and

3)if f1 < B2 < yandif B; € Tp,, then eitherB; N By = 0 or elsecl(B;) C B,. (We will refer to
this last property as “strong nesting.”)

In casey is a limit ordinal, definél’, = {D = ({Cs : 5 < v} : Cs € T,|D| > 2}. The strong nesting property
in the induction hypothesis guarantees that eBck 7', is compact and convex, and hence can be written as
D = [a, b] for suitably chosem,b € X. Incasey =+ 1letT, = | J{P(C) : C € T3,|C| > 2}.

LetT = |J{T. : T # 0} and partially ordefl” by reverse inclusion. Order the nodesIoby the precedence
order fromX. Definei : X — Brbyi(x) = {t € T : = € t}. Theni is 1-1 and increasing. Becausgis
compact and each branchBfis strongly nested, we see thas also onto, as required to prove (d).

Observe that every node ®fis either finite or has cardinality equal to the cofinality of some point off his
proves (a).

We prove (b) by induction. Clearly (b) holds f@f and7; defined above. Suppose that (b) holds for each
G < a. If «is alimit ordinal, then each sét € T, is a convex subset of with at least two points. Hencg, is
a collection of pairwise disjoint non-degenerate convex subseXs ahd so7,| < ore(X). In casex = 5+ 1,
then each member € T, is either a non-degenerate convex subset ¢and there are at mostc(.X ) of these),
or else there is som&’ € T,, such that”' U C” is a member of 5. Hence|T,,| < orc(X).

To prove (c), note that any infinite branétof 7" is strongly nested and the intersection of the membets of
is a single point: € X. The cardinality o cannot exceethax{cf(z),ci(z)} and in any casef(z) andci(z)
cannot exceedrc(X). O

A well-known result due to Tod@evic [9] is useful in recognizing branch spaces that are order complete.
Todorevic proved that if each node of a tréds order-complete, then the branch sp&¢&’) of 7" is also order-
complete. That theorem suggests asking whether, if a branch Bpég¢és order-complete, the nodes Bfmust
be order-complete. The answer is “no” as our next example shows. Also, in the light of the previous propositio
Todorevic’s theorem suggests asking whether any order-complete line must be representable as the branch sj
of a tree with order-complete nodes. If one is willing to use trees whose nodes are as complicated as the line be
represented, the answer to the second question is “yes” — one uses the trivial tree described in the introducti
But if one wants to use trees that are less complicated than the linearly ordered set being represented, then
next example shows that the answer is “no”. Recall the notion of “L-non-degenerate” in the first section of thi
paper.



Example 3.2 : The order-complete linearly ordered st 1] is isomorphic to the branch space of a countable
tree (by Proposition 3.1) and yét, 1] is not isomorphic to the branch space of any tfethat has order-complete
nodes that aré0, 1]-non-degenerate.

Proof: For contradiction suppose there is a tfeand a set of node orderings so that no nod& @ontains an
order-isomorphic copy db, 1] and that the associated branch space is order isomorplficlio

Because the branch space’ofis not finite, some nodé/ of 7" must have more than one point. Fix any
such nodeV of 7. Choosing a branch, € [t]; for eacht € N gives an order isomorphism frofi into [0, 1]
and consequentlyv has a countable order-dense subset. Next, suppose there arespoiatsV with s <y ¢
and such that no point a¥V lies strictly betweers andt in the ordering ofN. Then, because each nodeTof
is order-complete, there is a branghe [s] such that for each with lv(s) < a < ht(b), the pointb(«) is the
supremum of the node to which it belongs. Similarly, there is a braneh¢] such thai:(5) is the infimum of
the node to which it belongs whenevelt) < 3 < ht(c). But thenb andc are adjacent points d#; which is
impossible becausB; is order isomorphic t®, 1|. Therefore, the node ordering &f must be order-dense. But
then the nodeV is non-degenerate, order-complete, dense-ordered, and has a countable order-dense subset,
that is enough to mak®& order isomorphic td0, 1], which is impossible™

There is a family of order complete lines that admit branch space representations in which each node has eit
one or two points, as our next result shows.

Proposition 3.3 Supposé X, <) is an order-complete linearly ordered set with the property that giveny in

X, there exist points, v € X such thatr < v < v < y and no point ofX lies strictly betweem andv. Then
there is a tre€l’ in which each node has either one or two members and whose branch space is order isomorph
to X.

Proof: For any intervalz, y] € X with at least two points, choosev as in the hypothesis of the proposition and
let Qlz,y] = {[a,u], [v,b]}. Now useQ to build a partition tred” for X. Each node of" will have either one or
two members, and the branch spac& ofill be order isomorphic toX. O

For another result related to Todewic’s theorem, see the end of Section 4 where we show that a compact
subsetS C R is isomorphic to the branch space of a tree with countable, order-complete nodes if andsoisly if
totally disconnected.

In the remainder of this section we study the following problem: suppose that a linearly ordef&d setis
known to be isomorphic to the branch space of some “nice” tree. For which sibsetX can we be sure that
Y can also be represented as the branch space of some similarly nice tree? The next result deals with a ger
situation in which a branch space representations can be found.

Proposition 3.4 : Supposé X, <) is a linearly ordered set and thdt is a tree such that, for some choice of node
orderings, there is an order isomorphisfrfrom the branch spac&3r, <z,.) onto (X, <). Suppose that, whek
carries the open interval topology ef, Y is aGs subset ofX'. Then there is a subtreg C 7" and node orderings
for S such that

a) there is a strictly increasing function: Bs — B such thaty = f o j is an order isomorphism
from Bg ontoY’;

b) each level of is an anti-chain in’".



Proof: In this proof, once the subtréeC T is constructed we will need to carefully distinguish between the set
[t|]r ={b € Br : t € b} and the analogously definéds = {c € Bs : s € c}.

WriteY = ({U,, : n > 1} where eaclV/,, is open and/,,;; C U,,. Forn > 1 define
S,={teT:f([tlr)NY #0, f([tlr) C Uy, andif t <t then f([t'|r) Z Uy}

Note that eacly,, is an anti-chain irf". Now let

S = <U{Sn:n2 1}) U{teT: f({f]lr) C Y}

and patrtially ordelS by restricting the ordering ¢f .

Suppose that is a branch ofS. Letc* = {t € T : 3s € c with t <7 s}. We claim that* is a branch of
T'. For contradiction, suppose not. Then there is seme 7' — ¢* with ¢ <, t* for eacht € ¢*. Because: is a
branch inS, t* ¢ S. There are three cases to consider.

Case 1 Suppose some € c hasf([s]r) C Y. Thens € ¢* so thats <, t* and hencef ([t*]r) C f([s]r) C Y,
whencet* € S and that is impossible. Therefore, Case 1 can never occur.

Case 2 Suppose: C | J{S,, : n > 1} anden S,, # 0 for infinitely many values ofi. Letn; < ny < --- be
integers such that we can choosec ¢ N S,,. Then for eaclk, s,, <r t* so thatf([t*|r) C f([sk]r) C U,,-
Butthenf([t*]r) € N{U.,, : K > 1} =Y showing that* € S, and that is impossible. Thus Case 2 cannot occur.

Case 3Suppose C | J{S,, : n > 1} andc N S,, # 0 for only finitely many integers. Becausg is an anti-chain

of T, |cNS,| < 1for eachn. Hence, in Case 3, the branebf S is finite. Lets be the maximum element efand
let m be an integer witls € S,,. Thenf([s]z) C U,, andf([s]r) NY # (). However, because we are not in Case
1, f([s]r) € Y is impossible. Therefore we may choose branche$, € [s|r with f(b;) € Y andf(bs) € Y.
Becaus&” = ({U; : i > 1} we may choosé > m with f(by) € Uy. Becausef(b;) € Y C Uy there are points

r < sof X with f(b,) € (r,s) C Ug. Then there is some < ht(by) with f([by(c)]r) C (r,s) C Uy. Letag be
the first ordinal withf ([b1(co)]7) € Ux. Thenb,(ap) € S, C S. Becauses andb, () both belong to the branch
b; we know that eitheb; (ag) <7 s or elses <r bi(ap). The first option would yield,, b € [s]r C [b1()]r

so thatf(by), f(b2) € f([b1(aw)]r) € Uy contrary tof (b2) ¢ Ux. The second option is impossible becausea
branch ofS. Hence Case 3 cannot occur.

It follows thatc* must be a branch df, as claimed. Now defing: Bs — By by the rule thagj(c) = ¢*. Itis easy
to see thaj is 1-1.

The next step in the proof is to define a family of node orderings for theStr&ippose that, , s, are distinct
members of5 with S;, = S,,, whereS;, = {s € S : s # s;, s <gs s,;}, and letN be the node of to which thes;
belong. Thers,, s, are incomparable elementsBfso thatf([s,|r) and f([s2]r) are disjoint nonempty convex
subsets ofX. We defines; <y s, if and only if for everyz; € f([si]r), 1 < z2. The relation< y linearly orders
the nodeN .

We claim that the functiory above is strictly increasing. Suppose thatc; € Bg are distinct and have
c1 <pg c2. Leto be the first ordinal such that in the tréewe havec, () # c2(0) wherec;(d) is the unique point
of ¢ N Ss, and letN be the node of to which thec;(0) both belong. Then idV we havec, () <y c2(d) which
means that if.X, <) we know that every point of the convex s&fc; (6)]r) precedes every point gf([c2(5)]r).
Becausef(cf) € f([c:(d)]r) we see thaff(c}) < f(c5) so that,f being an order isomorphism;, <z, ¢ in the
branch spac&;. Thus,;j : Bs — Br is strictly increasing.
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Next we claim that ifc € Bg then f(¢*) € Y. This is proved by a three case analysis as above, depending
upon whether some € c hasf([s]r) C Y.

Finally, we claim that ify € Y then some: € Bs hasf(c¢*) = y. Fixy € Y. There is a uniqué € By with
f(b) =y becausef is onto. Letc = S N b. We claim that is a branch of5 and thate* = b. There are two cases
to consider.

Case 4 Suppose some, € b hasf([to]r) C Y. Thenty € c. If cis not a branch of5 then there is some
s* € S havings <g s* for eachs € c. In particular,s* ¢ c. Lett; be any member of. Chooset, € b with

to = max(to,t1). This is possible becausg, ¢; both lie in the branch and therefore are comparable elements
of T. Thenty, <r t, forcest, € S N b sothatt, € c and hence, <5 s*. Because; <r t, <r s* we see that

s* is an element of that hast; < s* for everyt, € b . Becausé is a branch ofl’, we must have* € b and
therefores* € ¢, and that is impossible. Hence in Case (4) we seectigaa branch ofS. It is easy to check that
becauseé, € c the setc contains a cofinal subset bf Hencec* = b as claimed.

Case 5 Suppose that n6 € b hasf([t]r) C Y. We know thatf(b) € Y C U, for eachn > 1, so there is a
first ordinala,, with f([b(aw,)]r) € U,. Thenb(a,,) € S,, so thatb(a,) € c. We claim that{b(«,,) : n > 1}is a
cofinal subset o, because otherwise sorhigx) hasf([b(a)]r) € ({U. : n > 1} = Y which is impossible in
Case (5). (From this it will follow that* = b once we know that is a branch ofS.) For contradiction suppose
that somes* € S — c hass <g s* for eachs € c. Then thiss* is a point ofT" that had(«a,,) <r s*, so thats* lies
strictly above a cofinal subset bfand that is impossible becauses a branch off". This completes the proof in
Case 50

If T"is a very nice tree, say a countable tree, then the subtfeend in the proof of Proposition 3.4 is equally
nice. But in other situations, the subtr8ecan be very different from the treg, e.g., in terms of its cardinal
invariants, as our next example shows.

Example 3.5 : The linearly ordered sek = [0, w] is isomorphic to the branch space of a tfE¢hat has height
wy and that has every level finite (see Proposition 5.1). The subtiefl” found in the proof of Proposition 3.4
to represent the open subsét= [0, w;) of X has a single level and that level has cardinality. O

It is no accident that, in the previous example, some nodeisfvery large. As will be seen from Corollary
5.4, any tree5 whose branch space represédfitss; ) must have a node that contains a copywpbr of w;.

4 Branch Space Representations of Subsets &f

The results from the previous section show that the usual two-point compactifi¢ationoco] of R is order
isomorphic to the branch space of a tféevith countable levels and countable branches. Furthermore, the tree
T must have countable height because other#igeould be an Aronszajn tree, and Aronszajn trees cannot have
separable branch spaces (see Proposition 6.3 ). Then Proposition 3.4 shows th& tteessf? of all irrational
numbers, and each closed subseRaddre also representable as branch spaces of countable trees. However, it i
easy, and sometimes useful, to give concrete branch space representations ofRrengéts

Example 4.1 : The setsR andP are each representable as the branch spaces of trees with countable levels anc
heightw.
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Proof: To obtairR, for any intervalla, b) C R, let

b—a b—a 3(b—a)
4

3(b—a) 5(b—a)

Pla,b) = {[a,a + 1 ;@ + 6 )y}

), [a+

and order eacl®|a, b) using the precedence order fradtn Now let7y = {[n,n+ 1) : n € Z} and letT,,,; =
U{Pla,b) : [a,b) € T,}. Partially orderl’ = |J{7T,, : 0 < n < w} by reverse inclusion. The crucial property
of Tis that if s <7 t, thenclg(t) C s and as a result, each branchiohas non-empty intersection. Then it is
easy to see that the natural injectidm) = {t € T : x € t} is the required order isomorphism froRionto
the branch spacB;. To represenP, fix an indexingQ = {¢, : n > 1} of the set of rational numbers and let
So = {(n,n+ 1) : n € Z}. For any intervala,b) andn > 1 let P,(a, b) be a family of pairwise disjoint open
intervals ofR each with rational endpoints, each with length less ta“-ﬁn none containing the rational number
qn,» and such that with the natural precedence ordering f&rrthe collectionP(a, b) is a copy ofZ. Now for

n > 0 defineS,+1 = U{Pr+1(a,b) : (a,b) € S,} and letS = [J{S, : 0 < n < w} be partially ordered by
reverse inclusion. Order the nodes$ising the natural precedence order frn Once again, ik <g ¢ are
distinct elements of, thenclg () C s so that branches df have non-empty intersection, and the intersection
contains no rational number. Hence it is easy to see that the natural injection is an order isomorphiBrarftom
the branch space ¢f. O

Next consider which subsets&fare representable by nice branch spaces. The remaining results in this sectiol
will show while R is representable as a branch space of a tree with countable levels and countable height (inde
with heightw as seen in Example 4.1 ), most subset® @nnot be represented in this way. (See Corollary 4.3.)
We will rely on the technical lemmas from Section 2.

Proposition 4.2 : SupposeX C R is order isomorphic to the branch space of a tiEdaving countable nodes.
ThenX is an F,s-subset ofR and there is a countable subtréé C T such thatX is order isomorphic to the
branch space of/.

Proof: According to Lemmas 2.1 and 2.2, we may assumelthets countable levels and has heighand then
we takeU = T'). Let f be an order isomorphism fro(#, <z,.) onto X. As in Lemma 2.1 define subsefsand
Ky, = ({1 : t € b} of R for eacht € T"andb € Br. Note that each sdfi, being a convex subset &, is an
F_-subset ofR.

Write T = | J{T’, : n < w} as the union of its levels. Because the collectjén: ¢ € T,,} is pairwise disjoint
for eachn, we have

(x) X ={f():be Br} C UKbgﬂ{U{]t:tETn}:nZH}.

beB:

WriteY = N {U{ :t € T,.,} : n > 1}} and note thal” is an(F,)s-subset ofR.

The containment iti«) is strict, provided some sét, = ({I; : t € b} has more than one element. Note that
the collectior{ K}, : b € By, |K,| > 1} is a pairwise disjoint collection of non-degenerate convex subséks of
and therefore must be countable. For eaglwith |K,| > 1, the setl, = K, — {f(b)} is anF,-subset ofR and
hence sois the set = ( J{L; : b € Br and |K}| > 1}. Therefore seR — 7 is aGs-subset ofR and hence also an
(F,)s-subset ofR. From (*), we haveX = {f(b) : b € By} =Y N (R — Z) so we see thak  is the intersection
of two (F,)s subsets oR and hence is af¥,)s-subset ofR as claimedd
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Corollary 4.3 : There are2* subsets oR that are order isomorphic to the branch space of a tree with countable
nodes, and there ar2*” subsets oR that are not order isomorphic to a branch space of any tree with countable
nodes.

Proof: There are at mo8t subsets oR that areF,;-sets inR and2%” that are not. Now apply Proposition 42.

Proposition 4.4 : Let T be any countable tree. Then for every choice of node orderings, the branch space of
isomorphic to somé’, s-subset ofR.

Proof: For eacht € T let P, be a one or two point subset @f, that contains each endpoint @f, if any such
endpoints exist. Then the set= (J{P, : t € T} is a countable order-dense subset of the branch dpac®
that the branch space is order isomorphic to some(set real numbers. Now apply Proposition 412.

Our next three results provide a negative answer to the question “Is it true that Eyesybset ofR is
order-isomorphic to the branch space of some countable tree?” It uses the Banach-Mazur game (see [7]).

Recall that the Banach-Mazur game in a topological space) is a game with playera and in which
[ opens the game by specifying a non-empty oper/seind then the players alternately choose non-void open
setslUy, 2 Uy 2 Uy 2 Uz D ---. Playera wins if and only if {U, : n < w} # (). To say that the spadeX, 7))
is a-favorable means that playerhas a winning strategy for the game, i.e., a functidhat gives, for each finite
sequencé/, D U; D --- 2 Uy, of non-void open sets, a non-void open8egt,; = o(Uy, Uy, - -+, Us,) in such a
way thata wins any play of the game where all odd-numbered sets are chosen using straldgy/notion of a
(-favorable topological space is analogously defined.

Proposition 4.5 Suppose thatT', <r) is a countable tree with some family of node orderings, and@lbt the
associated branch space. Then in the open-interval topology of the branch space orderingd; egisex non-void
countable open set, or eléeis a-favorable.

Proof: Suppose that every non-void open subséf &f uncountable. Let = {t € T : |[t]| < 2}. ThenS'is
countable and hence sods= | J{[t] : t € S}. Therefore, ifU is any non-void open subset 8f we know that
U—-C#19.

Suppose that begins the Banach-Mazur game by specifying a non-empty opelii,se€hoose a branch
by € Uy — C. Then choose; € b; with b; € [t;] C U,. Because; ¢ C, we know thatt; ¢ S and therefore
Int([t1]) # 0 (becausét,] is a convex subset @ with at least three points). Playerdefinest/; = Int([t1]).

Suppose thatlUy, Uy, - - -, Us,) is a decreasing sequence of non-void open sets wWiigte = Int([tar+1])
wheret; <r t3 <p --- <p t2,_1. Playera notes that/,, — C' # () and chooses$,,.,, € U,, — C. Then
bont1 € Uz, C [to,—1] @and we may choose,, 1 € by, 1 With bs, 1 € [ta,41] € Us,. Because bothy,, ; and

tons1 belong tob,, .1 we may assume that, | <r ts,,1. Because,,,; ¢ C, we know thatty,,.; ¢ S and
therefore playetr may respond t@’s move by defining/a,, .1 = Int([tani1])-

If Uy, Uy, Us, - - ) is a play of the game in which has used the above strategy, then we haver t3 <r t; <r
---s0, by Zorn’s lemma, there is some branaif the tree that contains evety.,,. Butthenc € (\{U,, : n < w},
as requiredd

Corollary 4.6 SupposeX C R is order-isomorphic to the branch space of some {fEe<;) having countable
nodes. Then in its topology as a subspac&ptither X has a non-void countable open set or efseas a-
favorable.
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Proof: We will need to distinguish carefully between the topol@gthat X inherits fromR and the open-interval
topology L of the linear order thak inherits fromR. In general L C 7 and the two are not the same. However,
it is always true thaf is a GO topology or{ X, <), where< is the linear ordering thak inherits fromR. To
begin the proof, suppose that’, 7) has no countable non-void open set. Becatise 7, neither does X, L).

According to Lemma 2.2 we may assume that the ffeg countable. Then Proposition 4.5 shows that since
each non-void open subset X, £) is uncountable( X, £) is a-favorable. Then it is easy to prove that, 7)
must also bev-favorable: indeed, ifY, <y ) is any linearly ordered set such that the usual open-interval topology
of <y is a-favorable, then so igY, 7') for any GO-topologyZ onY, <y). O

We would like to thank Arnold Miller for suggesting the subseRofised in our next corollary.

Corollary 4.7 There is a dense-in-itseK, s subset oRR that is not order isomorphic to the branch space of any
tree with countable nodes.

Proof: The product spad@” is an absolutd, s set, i.e., ifQ“ is embedded in any complete metric spacehen

its image is anf,; subset ofY” (see Chapter Ill, Section 35.1V, Corollary 1 of [5]). Furthermore, each non-void
open subset of)* is uncountable and* is not a Baire space so that it is netfavorable. However()“ is
homeomorphic to a subsét of R, and X is anF,s in R. In the light of Corollary 4.6, the subséf cannot be
order-isomorphic to the branch space of any tree with countable nodes.

Question Which F,s subsets oR are order-isomorphic to the branch space of a tree with countable nodes?

Probably the most simple interestiig)s subset ofR is the setQ of all rational numbers. It is clear that the
setQ of rational numbers can be represented as the branch space of a tree with countable levels and count:
height: one could |1’ = T = Q, use equality as the partial orderingBfand linearly order the unique nodg
to make it a copy of). What is surprising is that, in some sense, this is the only way to repr@sa&mthe branch
space of a tree with countable height and countable levels, as our next result shows.

Proposition 4.8 : Let (T, <7) be atree and lef<y: N € N (T')} be a set of node orderings such that the branch
space ofl" is order isomorphic td@Q. Then for some nod& of 7', (N, <y) contains a copy of), i.e., the node
orderings are nof)-non-degenerate.

Proof: For contradiction, suppose thé&t, <r) is a tree with a set of)-non-degenerate node orderings whose
branch space is order isomorphic@ Then each node df must be countable (or otherwise we could choose
uncountably many branchesdj so that Lemmas 2.1 and 2.2 allow is to assumethiaas countable levels and
heightw. For eachm < w, letT,, be then-th level of T".

Claim 1 Let (N, <y) be any node of and supposé&’ C T,,. We claim that ifs <, ¢ belong toNV, then the set
J={be Br:ht(b) >nandb(n) € N and s <y b(n) <y t} contains an interval df; that is order isomorphic
to Q. Choose any; € [s|r andb; € [t|r. Thenb, <g, b;. Consider any branchwith b, <. b <g, b;. Then
ht(b) > n andbs(n) <y b(n) <y b(n) sob € J. Therefore/ above contains a non-empty interv&l, b;]s,. of
Br. But becaus#; is order isomorphic t@), it follows that.J contains an interval a8 that is order isomorphic

to Q.

Claim 2 Supposet € T andt splits inT (i.e., has at least two immediate successorg’in Then the set
S ={seT:t<psand ssplitsin T} is nota chain. For contradiction, suppoSes a chain. Let. = [v(¢).
LetU = {u € T : t <r u}. ThenU is a subtree of" and every node of/ at levelk > 1 of U is a node ofl’
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at leveln + k. Linearly order the nodes @f exactly as they are orderedn We claim that every node d&f is
finite. Clearly the O-th level node df is finite — it consists of alone. Let)M be any node ot/ at levelk > 0
and supposé/ is infinite. Then)/ is a node ofl” at leveln + k. Becauses is a chain|S N M| < 1 so we may
chooseu <, v in M in such a way that no point &f N M lies between, andv in the ordering<,,;. Then no
point of M lying betweeru andv splits, so eaclv € M with u <,; w <, v is maximal in7. Choose branches
b, € [u]r andb, € [v]r. According to Claim 1, the set = {b € By, : ht(b) > no+k and u <p; b(n+k) <,, v}
contains a copy of). But maximality of all points of\/ betweenu andv then tells us thatM, <,,) contains
a copy of@Q and that is impossible. Therefofd must be finite. It follows from Tod@evic's theorem [9] that
the branch spacB;; is order-complete. Clearly the branch sp#;eof the subtred/ is order isomorphic to the
convex subseft]r of the branch spacB, of T. Because splits, we know thatft]; is (order isomorphic to) a
convex non-degenerate subset(pf But that is impossible because there is no order-complete convex subset of
Q that has more than one point. We conclude that th&'set{s € T : t < s and s splits} is not a chain, i.e.,
must contain two elements that are not comparablé.in

Clearly some elements of the tréamust split — otherwise the unique node at the 0-th levé&l wfould contain
a copy ofQ. Lett, be any element dfj that splits in7". LetV = {v € T': t, <y v and v splits}. Apply Claim
2 recursively to show that eache V' has two incomparable successor$/inThereforel” contains a copy of the
complete binary tree and consequenthhas2“ branches, which is impossible becal®¢ = w. O

Remark 4.9 : One can prove even more: if a trdé has countable nodes and if the node orderingg cdre
Q-non-degenerate then the branch sp#gecannot be homeomorphic to the spdgeinder anymapping.

We conclude this section on representing subseksax branch spaces by characterizing subsekstbat can
be represented as the branch space of trees with countable, order complete nodes. Recall that eoilgce is
disconnectedf | X| > 1 and the only connected subsets‘ofare singletons.

Proposition 4.10: Let X be a non-degenerate order-complete (i.e., compact) subsit ofhen X can be
represented as the branch space of a tiésvith countable, order-complete nodes if and onhyXifis totally
disconnected.

Proof: Proposition 3.3 shows that ¥ is totally disconnected theNX is representable as the branch space of a
binary tree. Conversely, suppo&eC R is order isomorphic to the branch space of a ffegith countable order-
complete nodes. Now consider two branchesg, d of 7. Computed = Ar(a,d), the first level ofl" where

the two branches differ. Thea(d) andd(d) belong to the same nod€ of 7" so that, becaus®’ is countable
and order-complete, there must exist € N with a(0) <y s <y t <y d(9) with no point of (IV, <y) lying
strictly betweers andt¢. Because each node @fis order-complete, there is a brancke [s]r with the property
that wheneved < o < ht(b), b(a) is the maximum of the node df to which it belongs. Similarly there is a
branche € [t]7 such that whenever < o < ht(c), c¢(«) is the minimum of the node to which it belongs. Then
a <g, b <p, ¢ <p, d and no branch of lies strictly betweerb andc. Hence the branch space Bfmust be
totally disconnected. Hence sois O
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5 Representing Ordinals as Branch Spaces

It follows from Proposition 3.1 that for each ordinalthe sef0, o] (i.e., the ordinak + 1) can be represented as
the branch space of a tree. However, the tree in (3.1) might have large height and large nodes and we have

Proposition 5.1 : For each ordinal«, the linearly ordered s€b), o] is order isomorphic to the branch space of a
tree of heighty with nodes having exactly two points. (Such a tree is often called a binary tree.)

Proof: LetT be the sef0, ) x {0, 1}. Partially orderT" by the rules that

a) (8,0) < (v,0) wheneverd < v < «;
b) (8,0) < (7. 1) whenevers < y < o
c) there are no other relations between point# of

The branches df’ have the formb(5) = {(7,0) : v < B} U{(3,1)} for each < « plus the long branch
bla+1) = {(5,0) : B < a}. The nodes of are the set$(/,1), (6 + 1,0)} and f(3) = b(p) is the required
order isomorphismd

A more interesting question is “For which limit ordinalsan the sef0, \) be represented as a branch space?”

Proposition 5.2 : Suppose\ is a limit ordinal that is not a regular cardinal. Thej, ) is order isomorphic to
the branch space of some tree whose nodes are botbn-degenerate and*-non-degenerate (wherg" is the
reversed ordering ok).

Proof: Compute: = c¢f () and find a strictly increasing functiof: [0, <) — [0, A) such thatf ([0, )) is cofinal
in [0,\), f(0) = 0and eachyf(«) is alimit ordinal. For each < « definel, = [f(y) + 1, f(y+ 1)] if yisnota
limit ordinal, andZ, = [f(7), f(v + 1)] if v is a limit ordinal (includingy = 0). From Proposition 5.1 we know
that each’,, is isomorphic to the branch space of a binary tf€¢y), <,) whose height isf(y + 1). We may
assume that is the root ofT’(v), i.e., To(y) = {7}, for eachy < x and that the tre€®() are pairwise disjoint
sets.

Define a new tre¢' by specifying thatS, = (J{7.(v) : v < x} and<g= U{<r(,): 7 < x}. Thus, then-th
level of S is the union of thex-th levels of the tree$'(v). Order the nodé&, to make it a copy of and order all
other nodes of just as they are ordered in one of the tré&s). The branch space ¢f is then a disjoint union
of copies of the sets(y) placed side by side in the natural way, so the branch space is isomorpia toNote
that each level ob has cardinality at most, and therefore the nodes 6fare both\- and \*-non-degeneratél

Proposition 5.3 : Let x be a regular cardinal. LetT', <r) be a tree with height x and let{<y: N € N (T)}
be a collection of node orderings that are non-degenerate with respect toxbattl ~*. If the branch space
(Br,<g) contains a strictly increasing (respectively decreasinggequences = {b, : a < k}, thenT has a
branchb* of heightx (so thatht(T) = k) that is the supremum (respectively the infimum) of thaequence in
Br).

Proof: Suppose there is a strictly increasingequences = {b, : a < k} in By. (The case wher& is a strictly

decreasing:-sequence is analogous.) For each x, we claim there is a unique poing € Ts with the property
that|{a < k : x5 € b, }| = k. To see that there is at most one such point, note that the;$eis a convex subset
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of By and therefore thdfa < x : x5 € b, }| = k forces|zs|r to contain a final segment @€. Hence ifys € T
has the same property as then|xs]r N [ys]r # 0 and that is impossible unlegs = ;5.

The argument above also shows thatgfexists for somé, then{« < « : 25 € b,} contains a final segment
of K and therefore the sé = {« < K : 25 € b, } has cardinality less than

To see thats exists for eacld, suppose that for some levklthe pointz; fails to exist. Let), be the first level
for which no pointz;, exists. Thenz; exists for eachh < §,. We claim that ifé < ¢’ < dy, then in the partial
order of T" we havers <r xs. Clearly the pointrs; has some predecessor, sayn level§ of T'. Thenzs € b,
impliesy € b, so thaty belongs tas<-many brancheg,. Because, as we showed abavgis the unique member
of T with that property, we have; = y <r x5 as claimed. Lep = {z5 : § < dp}. Thenp is a path in the tre@.

We claim thatp cannot be a branch df. As noted above, fod < dy, {o < Kk : x5 € b,} is a final
segment ok, i.e., there is somg; < « such thate; € b, whenevere > (35. Becauses is regular, the ordinal
B* = sup{fs : 6 < d} hasp* < k. Then we know that ifi* < o < &, x5 € b, for everyd < §,. Therefore,
p C b, whenevers < a < k, showing that there is more than one branci afontainingp. Hencep cannot
be a branch of". Furthermore, if3* < a < k thenb, is a proper extension ¢f so thath, N T, # 0 whenever
0 < a < K.

Clearly, for eachy < « either for allé < dy, x5 € b, or else for someé < &y, zs5 & b,. LetS = {a < Kk :
Vo < by, zs € by} and recall thatSs = {a < k : 25 & bo}. Thenk = [J{Ss : § < dp} U S. Also recall that
|Ss| < k for eachd < o while §y < . Then regularity of: yields| [ J{Ss : 0 < do}| < x so that|S| = &.

For eachn betweens* andk, letb,(dy) be the unique point of s, N b, and observe that each of the points
b (09) belongs to the nodé’ of successors of the path Recall that no point of’s, belongs tox-many of the
branches,. Regularity ofx shows that the sefth,(dy) : 8 < a < k} has cardinality<. This allows us to
choose a strictly increasingsequencg o, : v < «} of ordinals betweem andx such that{b, : v < s} isa
strictly increasing:-sequence in the nod€, and that is impossible because of #i@aon-degeneracy hypothesis.
Therefore s exists for every) < x and, as above, if < §' < « theninT we havers < xs;. Because the height
of T is at mostx, we see that the sét = {z; : 6 < k} is a branch ofl" with heightx (and that the height ¢f
equalsk).

First we claim that, <z, b* for eacha < k. If that is not true then for some fixed we haveb* <z, b,.
Computed = Ar(bs,b*). Necessarilyy < ht(b*) = k so thatzs is defined, and if we writé, () for the
unigue point ofb, N 75 and definé*(§) analogously, then in the nod€ that containg*(6) = x5 we must have
x5 = b*(0) <n b,(0). Butthen for anyy > o, x5 ¢ b, showing thatzs belongs to fewer thar-many of the
branche$,, and that is impossible. Henégis an upper bound for the-sequenceb,, : « < x}.

We next claim thab* = supg_{b, : @ < k}. Otherwise there would be a brangbf T with b, <z, b <z, b*.
Computey = Ar(b,b*). Then in the nodeV/ consisting of all successors ifi, of {z5; : 6 < v} we have
b(y) <m b*(y) = z,. Choose any of thea-many branche$, with =, € b, anda > ~. Then we have
b(7y) <ar ba(v) SO thath <z, b, and that is impossible. Therefoie = supy_{b, : @ < x} as claimedd

Corollary 5.4 : Let x be a regular cardinal. Thef, ) is not order isomorphic to the branch space of any tree
(T, <r) that has heighK « and has node orderings that are bottand x* non-degenerate.

Proof: Suppose there is an order isomorphigrftom [0, ) onto Br. Write b, = f(«) and apply the above
proposition to construét' € By that lies above eadh,. Hencef is not onto.O
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Corollary 5.5 : SupposeT, <r) is a tree of height; and let{<y: N € N(T)} be a set of node orderings that
are non-degenerate with respect to bathandw;. Then the branch spadé; is paracompact when endowed
with its usual open interval topology.

Proof: If By is not paracompact, then there is a strictly increasing (or strictly decreasing) homeomoyphism
from a stationary subsét C [0, ) onto a closed subset &, wherex is an uncountable regular cardinal [4].
Consequently there is a strictly increasing (or decreasirggquence f(«) : « € S} in By that contains all of

its limit points (in the open interval topology of the branch space). But according to Proposition 5.3, the branc
space must also contain a brar¢hhat is the supremum (or infimum) ¢f S) showing thatf (.S) is notclosed in

Br. O

6 Branch Spaces of Aronszajn Trees

An Aronszajn treas a tree with height; that has countable levels and countable branches. Such trees exist ir
ZFC [9]. A Souslin treas an Aronszajn tree in which every anti-chain is countable. Whether Souslin trees exist
is undecidable in ZFC. The first result in this section sharpens Lemma 2.1 to allow it to apply to Aronszajn tree:

Lemma 6.1 : Let (T, <7) be an Aronszajn tree anfk y: N € N(T')} a family of node orderings &f each of
which is L-non-degenerate for some linearly ordered getLet (B, <z,.) be the corresponding branch space.
Then there is a subtre@’, <,/) of T that is also an Aronszajn tree such th&t(V') = {M € N(T) : |M| > 1}
and such that, if each node bfis linearly ordered in the same way it was ordered in the constructidsy-othen
the nodes of are L-non-degenerate and the branch spdteis order-isomorphic td3;.

Proof: LetV be the subtree df’ found in Lemma 2.1. To complete this proof, it remains only to show thest
an Aronszajn tree.

We first show that all levels df” are countable. Lety = min{a < w; : |T,| > 1}. Thenl, = T, so that
[Vo| < w. Suppose’ < w; and that for eaclv < 5 we know that|V,| < w. Then|(J{V, : a < 8}| < w.
Then there is some < w; with (J{V, : o < 8} CU{To : a < 7}. Let M = {N e N(V) : N C V;} and
Moy ={NeM: Ja <~vywith N C T,} andM; = M — M,. Because| J{T,, : a« < 7}| < w we know
that| M| < w. Supposél/, N are distinct members o¥1,. Then the setsl = {z € V : 3z € M with z < x}
andB = {z € V : Jy € N with z < y} are distinct, and each is a subsetl ¢fV,, : a« < [} which is a
subset ofl J{T,, : o < 7v}. Becaused and B differ in the setl J{7,, : a < v}, the setsAN T, andB N T,
are subsets of different members{ad¥ € N(T) : N C T,} and there are only countably many members of
{N e N(T) : N C T, } becausd’ is an Aronszajn tree. Therefore the collectitt, is also countable. Hence
so isM. Hence so i93 = |J M, and hence the induction continues.

We next show that” has heightv;. To do this, it is enough to show th&t has cardinalityw; and for that
it is enough to show that for each countablesome non-singleton node @f lies at a level above.. If there
were an ordinaly such that each node d@f having height greater tham is a singleton, then for each € T,,
the setA(z) = {y € T : y > z} is linearly ordered. Furtherd(x) N A(y) = 0 for distinctz,y € T, so that
{z € T: htr(z) > o} = J{A(z) : = € T,} forces one of the chaind(z) to be uncountable, and that is
impossible becausE is an Aronszajn tregl
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Lemma 6.2 : Suppose thal’ is an Aronszajn tree and that is an uncountable anti-chain i and 3 < w;. Let
S ={t € T :someu; € A hast < a,}. ThenS is an Aronszajn tree and there is a subseC B, such that

a) |B| =2%
b) eachb € Bhasb c Sandbn A = (.
c) Each member aB has height> j.

Proof: First consider the case whete= 0. BecauseA is uncountableS is an Aronszajn tree. Thereforg,
contains a copyV’ of the full binary tree of height [2]. Computeay, = sup{lvr(t) : t € W}. Becausél is a
countable setyy < wy. Also note that each member Bf has a successor I and hence also if. Therefore
WnA=0.

Let R = {p : pis a maximal path in the subtré&}. (In other wordsR = By .) Observe thatR| = 2. For
eachp € R, there is a branch(p) of T" that containg. Let Ry = {p € R : htr(b(p)) > aw }. Note that ifp; and
p2 are distinct members ok, thenp, andp, differ below levelay, and thereforé(p,) N 7., # b(p2) N Thy,
ButT,,, is countable and hence sois.

Let R, ={p€ R— Ry :b(p) N A+#0D}. Foreactp € R, leta(p) be the unique point df(p) N A. We claim
that for allt € p, t <r a(p). Otherwise there is & € p with a(p) <7 t,. Butt; € p C W C S so that some
a € Ahast; <r a. Butthena(p) <7 t; <r a € A, and that is impossible becaudes an anti-chain. Hence
t <ra(p)forallt e p.

Supposey; andp, are distinct members ak,. Considering the first level dfi” wherep, andp, differ, we
find pointst; € p; such that,; andt¢, are incomparable ifl” and hence also it". If a(p;) = a(p2), thent; and
t, would be incomparable predecessors©f; ), and that is impossible. Therefore the correspondence that sends
p € Ritoa(p) € b(p)NAis1-1,and{a(p) : p € R} C AN (U{1s: 5 < aw}). Butthe latter set is countable,
and hence so iR;.

LetRy = {p € R— (RyURy) : b(p) — S # 0}. Foranyp € R, chooset(p) € b(p) — S. Thent(p) and
each point ofp are comparable in the partially ordered $etif there were some € p with ¢(p) < t thent € S
would allow us to finde € A with ¢t <r a. But thent(p) <r a showing that(p) € S and that is impossible.
Therefore, for eache p, t <7 t(p). It follows that if p; # p, are inRy, then(b(py) — S) N (b(p2) — S) = 0. But
note that eaclh € R, hasht(b(p)) < ay So that each(p) — S is a subset of the countable $¢{7; : 5 < aw },
and hence we have a 1-1 correspondenee (b(p) — S) from R; into a family of pairwise disjoint subsets of a
countable set. HencR, is also countable.

Therefore the sek; = R — (Ry U Ry U Ry) has2¥ members. We leB = {b(p) : p € R3} and the lemma
is proved in the special case whefe= 0. To establish the general case, Tet= {t € T : lup(t) > B+ 1}
ThenT is an Aronszajn tree and is an uncountable anti-chain i Apply the special case proof foand A to
find a setB of 2* branches of that satisfy (a) and (b) of the special case of the Lemma. Forleack define
b* = {t € T : for somes € b, ,t <r s}. Eachb* is a branch of” with height> 5 andb* N 4 = . O

By anAronszajn linewe mean an uncountable linearly ordered set that does not contain a order isomorphi
copy ofw, or of w}, and does not contain an order isomorphic copy of any uncountable set of real numbers [9
Aronszajn lines also exist in ZFC; they can be obtained from lexicographic orderings of any Aronszajn tree.

Part (a) of the next proposition was used at the beginning of Section 4 and part (b) is an application of resu
from Section 5.
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Proposition 6.3 : Let 7" be any Aronszajn tree with any family of node orderings an3et <) be the associ-
ated branch space daf. Then:

a) with its open interval topology3r, <g) is not separable and the branch spaé-, <z,.) has no
countable order-dense subset;

b) with its open interval topology is Lindebf, first-countable, and hereditarily paracompact;
c) By is not metrizable;

d) if " does not contain any Souslin subtree, tifgnis not perfect (i.e.3; has a closed subset that
is not aGGs-subset);

e) (Br, <p) contains a copy of an uncountable set of real numbers and therefore is not an Aronszajn
line;

f) By contains a dense subspace that is order isomorphic to an Aronszajn line.

Proof: According to Lemma 6.1 we may assume that each eleménigither maximal or splits and that no
limit level of T' contains any maximal elements’Bf

To prove (a), supposP is any countable subset 6f-. Eachb € D has countable height, so that the ordinal
B = sup{ht(b) : b € D} hasfi < w;. We claim that some € T, has|[t|r| > 2. If than is not the case, then
there would be only a countable number of branches with height abavé, and therefore the overall height of
T would be less thaw; which is not the case. Choose= Tj;.; with |[t]r| > 3. Then when3, carries its open
interval topology, the convex s@i; has non-empty interior. But]: N D = () and that shows that the countable
setD cannot be topologically dense By. HenceB; is not separable. Because having a countable order-dense
subset is even more restrictive than having a countable topologically dense subset, we conclBdéésano
countable order-dense subset.

To prove (b) observe that each nodéloils countable so that Corollary 5.5 shows that when endowed with its
open interval topology, the spaék- is paracompact. In addition, it follows from Proposition 5.3 that the branch
spaceBy is first countable. In any linearly ordered topological space, that is enough to show that the space
hereditarily paracompact [6].

It is easy to see that a paracompact space is Lafdiehnd only if it does not contain an uncountable closed
discrete subset. For contradiction, suppose Byatontains a closed, discrete, uncountable subseBecause
any linearly ordered topological space is collectionwise normal [6], there is a collection of pairwise disjoint opel
subsetdU, : b € C'} with the property thak is the unique point of' N U, for eachh € C. For eachh € C choose
t, € bwith [t]r C U, and such that it € b ands <r t;, then[s]; € U,. Thenthe se!l = {t, : b € C'} is an
uncountable anti-chain ifi. Let S = {t € T': somea; € A hast <r a;}. ThenS is an Aronszajn tree.

According to Lemma 6.2 above, there is a brahtlf 7" with * C S andb* N A = (). Let G be any open
neighborhood ob* in Br. Then there is soma € b* with [t;]; C G. Because; € b* C S, there is some
a; € Awith ¢t; <7 a;. We claim there is som& € b* with t; <7 t, and such that, does not lie below,; in T'.
Otherwise, every element 6f lies belowa; so that maximality ob* forcesa; € A N bv* = (). Givent,, choose
as € A with t5 < ay. Necessarilyi, # a; and we have

(%) [aslr C [to]r C [t1i]r € G and [a1]r C [ti]r C G.
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Recall that each of the sdig]| contains a poink; € C. Because; anda, are distinct members of the anti-chain
A, by # by. But then (*) shows thatr contains at least two distinct members of the closed discreté showing
thatv* is a limit point of C' and that is impossible. Therefoi8; does not contain any uncountable closed discrete
subset, and therefoi®, is Lindeldf.

To prove (c), note that iBr were metrizable, then it would be Lindéland metrizable, whence separable,
and that contradicts (a), above.

To prove (d), suppose thdt does not contain any Souslin tree. THErontains anu-branching Aronszajn
subtreeS andS cannot be a Souslin tree. Hence there is an uncountable antif8haif. ThenB is an anti-chain
in 7" and for each € B, infinitely many branches df belong to the convex s@,. Thereforeints, ([t]7) # 0
for eacht € B.

Let U = U{ints,.([t]r) : t € B}. Because3; is perfect, there are closed subséis C By such that
U ={F.:n > 1}. Thenfor somey, > 1the setd = {t € B : intg,([t]r) N F,,} # 0 is uncountable. Choose
b, € intg,.([t]r) N F,, Then{b; : t € A} is an uncountable, closed discrete subsdfafBut, as established in
the proof of (b), the branch spa8s contains no such subsets. Thus (d) is proved.

To prove (e), we need to recall a lemma from [2] guaranteeing that any Aronszajn tree containd& obpy
the complete binary tree of height ThenByy is the usual Cantor set and is an uncountable set of real numbers.
For each brancl € By there is at least one branéty) € B with p C b(p). Then the correspondence that
sends to b(p) is an order isomorphism that embeds an uncountable set of real numbeBsg jraod hences is
not an Aronszajn tree.

To prove (f) we need to use a kind of linear ordering not yet seen in this paper, namely the lexicographi
ordering of the tred itself. We will use the same node orderings used to define the orderiig wf define the
lexicographic ordering of. According to [9], any Aronszajn tree with a lexicographic ordering is an Aronszajn
line.

We now define a functiorf from an uncountable subset C 7' into By that is strictly increasing and has the
property that for each € T, f(D) N [t]r # 0. That will be enough to show that the subsp#¢®) is dense is
Br and is an Aronszajn line.

We definef and D recursively. For each € Ty, let f(t) be any element dft|r and letD, = T,. Suppose
a < w; and that for eacl¥ < o we have defined set®; C (J{7, : v < 3} and a strictly increasing function
fs : Dg — Br in such a way that ify < 5 < « then f3 extendsf, and such that for eache T3, somet € Dg
hasfs(t) € [s]. Write E, = U{Ds : 6 < a}andletD, = E,U{t € T, : Vs € E,, f(s) & [t|r}. Define
fa(t) to be f5(t) if t is in someDg with 5 < « and definef;(¢) to be any member df|; otherwise. We let
D =|HDy:a<wl}tandf =J{f.: a <wi}. The only remaining question is whethBris uncountable. If
itis not, thenf (D) is a countable set of branches®Bfwith f(D) N [t]r # 0 for eacht € T', and that makes,
separable, contrary to (a)l

Remark 6.4 : Assertion (d) of Proposition 6.3 can be sharpened somewhat. The precise hypothesis needed in |
is that the subtre& = {t € T : intp,.([t]r) # 0} is not a Souslin tree. It would also be enough to know that the
subtreel/ = {t € T : |[t]r| > 2} is not a Souslin tree.
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7 Some Topological Properties of Branch Spaces

We can characterize certain other topological properties that the branch spaces of trees might or might not he
Recall that ar-basefor a topological spac& is a collection”? of non-empty open subsets a&f such that if

G # () is open then som& € P hasP C G. We will say that a tred is semi-specialf there is a sequence

{A, : n > 1} of anti-chains inl" such that for each € 7" there is some € | J{A,, : n > 1} havingt < a. Ifit
happens thai’ = | J{A,, : n > 1} for some sequence of anti-chains, then we sayZXhatspecial

Proposition 7.1 : Let T be any tree. If there is a family of node orderings such thahas ac-disjoint r-base,
then there is a subtreg of 7" that is semi-special and hads order isomorphic td3;.

Proof: If necessary, use Lemma 2.1 to repladey a subtree that satisfies 2.1. Therefore, we may assumé that
satisfies Lemma 2.1.

Let? = (J{P(n) : n > 1} be ar-base forBr where eachP(n) is a disjoint collection of non-empty open
sets. Fom > 1, let A, = {t € T : [t]r C some member oP(n) and ifs <7 ¢ then[s]r is not a subset of any
member ofP(n)}. Let Ay = {t € T : t is a maximal element ¢f'}. Then each,, is an anti-chain.

Fix anyt € T. If t or some successor ofis a maximal element df' then eithert € A, of some successor
of ¢ belongs toA,. Hence assume thatis not maximal and that no successortah 7" is maximal. Then
intg,([t]r) # 0, so there is some > 1 and someP € P(n) with P C [t];. Chooséh € P and then choose the
minimalt,, € bwith b € [t,]r C P. Thent,, € A,, and becausg,|r C P C [t|r we see that < ¢, as required.
0

Without some additional hypotheses, the converse of Proposition 7.1 is false: take any linearly @xdered
whose open interval topology does not havedisjointr-base. Lefl” = T, = X with T; being ordered as a copy
of (X, <). ClearlyT is a special tree and becauSe is exactly X, the branch space has naedisjoint 7-base.
However, one can prove

Proposition 7.2 : Supposé€ is a tree with a family of node orderings such that for eaehT’, intg,. ([t]r) # 0.
ThenB; has ac-disjoint r-base if and only ifl" is semi-special.

Proof: Half of the proposition follows from Proposition 7.1. For the other halfAf, : n > 1} is the sequence
of anti-chains in the definition of semi-special andifn) = {intg, ([t|r) : t € A,}, then|J{P(n) : n > 1} is
the requiredr-base.O

Recall that among first-countable regular spaces, the existenceraligoint r-base is equivalent to the
existence of a dense metrizable subspace [10]. In particular, this equivalence holds for any branch space
semi-special Aronszajn tree.

A property that is stronger than the existence otdisjoint 7-base is the existence obadisjoint base.

Proposition 7.3 : Suppos€l is a tree that, for some node orderiny has ac-disjoint base. Then there is a
subtreeS C T such that

a) S is special;
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b) for each brancth of T, b N S is cofinal ind;

c) ifnodes of5 are ordered consistently with the orderingl®f, then the branch space 6fis order isomorphic
to the branch space df;

d) if T"is an Aronszajn tree, then so.$s

Proof: If necessary, we repladéby a subtree that satisfies Lemma 2.1. This allows us to assum@' itssif
satisfies 2.1. LeB(n) be a disjoint collection of open sets such tBat | J{B(n) : n > 1} is a base fol3r. Let
A(n) ={t € T : [t} C some member oB(n) and no strict predecessoroiias this property. Then eacti(n)
is an anti-chain if". Let S = |J{A(n) : n > 1} and partially ordelS as a subtree df.

Let b be any branch of" and let{n;,n,,---} be the set of all integers such that some member #f(n)
containsh. For eachny, let B(n;) be the unigue member @f(n;) that containg. There is some;, € b that is
the first member ob with [t;]; C B(ng). Thent, € A(ng) C S. For contradiction, suppose;, : £ > 1} is not
cofinal inb. Then there is som& € b with ¢, < t* for eachk. Thenb € [t*|r C [tx]r € B(ny) so that[t*]
is a subset of every member of the base that contaikkence[t*|; = {b} so thatt* is a maximal member df
(because each memberDfis either maximal or splits ifi") andb = {t € T : t <t t*}. There are two cases to
consider. Ift* has an immediate predecesstrin T, thent,, <; t** for eachk. Hence[t**|r C [t;]r for eachk
so that[t**] is a subset of every member of the b#&bthat containg, showing thaft**] = {b} and that makes*
maximal inT", which is false. Thereforg; has no immediate predecessoflinand thereforév(t*) is a limit
ordinal. It follows from part (b) of Lemma 2.1 that the nod€lotontainingt* must also contain some element
u* # t*. Letc € [u*]. Thenc # b so we may choose an elemdsf € B with b € By andc ¢ B,. Because
b € By there is am,, with By € B(n;) and then we have € [t,] C B,. Because* andu* have exactly the same
set of predecessors, < u* showing that € [t;] C By, and that is false. Therefoten S is cofinal inb, so that
assertion (b) holds, and assertion (c) now follows directly.

To prove (d), suppose thdtis an Aronszajn tree. In the light of (b)§| = w;. Clearly S has no uncountable
branches, so that it will be enough to show that each leveél f countable. For contradiction, suppose there
are uncountable levels i and leta be the first ordinal such tha, is uncountable. Then the sdt = S,
is an uncountable anti-chain ifi. Consider the sel/ = {s € T : for somea € A, s <g a}. The subset
E =J{S, : v < a} of U is countable so that = sup{lvr(s) : s € E} is a countable ordinal. Apply Lemma
6.2 to find a branch of 7" with height> 3, b C U, andb N A = (). Choosé,, € b with lvr(ty) > 3 and then use
(b) to find somesy € S with ¢y <7 so. Thensy € E shows thatvg(sg) > «. Butsy € b C U so thatlvg(sg) < «
from which it follows thativs(sy) = . Butthensy € bN A = () and that is impossible. Therefore, every level of
S is countable, as claimed]

Remark 7.4 : The proof of assertion (d) in Proposition 7.3 shows that i a subtree of an Aronszajn trgé
and has the property thatn S is cofinal inb for everyb € By, thenS is also an Aronszajn tree.

Example 7.5 : Topological types of branch spaces of Aronszajn trees.

In this example, all Aronszajn trees satisfy Lemma 6.1. Starting with an Aronszajif tiea®e can obtain many
different topological types as branch space§oEach node of" is a countable set and if each node is ordered
to make it order-complete, the resulting branch space is compact byCewilds theorem. It is not separable in
the light of Proposition 6.3, and is not metrizable in the light of part (c) of the same propositiéhcdhtains

no Souslin subtrees, then the branch space is not perfect. An impressive use of a compact branch space
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Aronszajn tree appears in [8] where W.X. Shi constructs a compact linearly ordered topological space that is r
metrizable and yet every subspace of it hasrainimal base.

Put countably many pairwise disjoint copies of that compact branch space side by side, obtainingd Lindel
linearly ordered topological spadéthat is not compact. To obtairi as the branch space of an Aronszajn tree,
put countably many copies @f side by side, one above each integer.

In a model of ZFC that contains Souslin trees, if one starts with a Souslin tree (which is certainly an Aron
szajn tree), then for any choice of node orderings one obtains a branch space that is hereditariy huireheit
separable. This branch space would be a Souslin line and would satisfy the topological countable chain con
tion (= every pairwise disjoint collection of non-empty open sets is countable), a weaker relative of separability
However, if T is anw-branching Aronszajn tree that is not Souslin and we order each non-limit node so that it is
a copy ofZ, the resulting branch space is not hereditarily Litid@ind does not satisfy the topological countable
chain condition. Furthermore, if we start with a special Aronszajn tree thabranching and order each node at
non-limit levels to make it a copy &, the resulting branch space has-disjoint base, namely[t|r : t € T},
and some closed subset of the branch space is @gtset of the branch space.

8 Open Questions

a) For which subsetX C R is there a tred’ and node orderings that afé-non-degenerate and have the
property that3; is order isomorphic to{? (According to Proposition 4.8, the $@tis not representable in
this way, while bothR andP are.)

b) Which F,s-subsets oR are order isomorphic to the branch space of some countable tree?
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