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D23 = 0.307. Comparing this statistic with the tabled critical value 0.199 at level of

significance α = 0.10 leads to rejecting the null hypothesis. The same conclusion is

drawn as that in Example 8.16, where the Weibull distribution was chosen over the

exponential distribution for modeling the ball bearing lifetimes. There is additional

statistical evidence here indicating that the population of ball bearings is indeed wearing

out, and an exponential model is not appropriate.

A similar pattern continues for conducting the Kolmogorov–Smirnov test for other population

distributions when the parameters are estimated from the data. The previous discussion for com-

plete data sets does not easily generalize to the case of random right censoring because the distri-

bution of the test statistic becomes more complicated. Many researchers have devised approximate

methods for determining the critical values for the Kolmogorov–Smirnov test with random right

censoring and parameters estimated from data. Monte Carlo methods for determining p-values for

the Kolmogorov–Smirnov goodness-of-fit test, which applies to all types of censoring, has been

emphasized in this section.

11.4 A Test for Exponentiality

The exponential distribution plays a central role in reliability theory, and more generally, in stochas-

tic processes. So rather than use an omnibus test such as the Kolmogorov–Smirnov test to assess the

exponentiality of a data set, it is often advantageous to conduct a statistical hypothesis test that has

been specifically tailored for the exponential distribution. Dozens of tests for exponentiality have

been developed over the years; this section considers one such test.

Assume that a complete data set of n lifetimes has been collected, and the interest is in conduct-

ing the hypothesis test

H0 : F(t) = 1− e−λt

versus

H1 : F(t) 6= 1− e−λt

for all t ≥ 0, where F(t) is the population cumulative distribution function and λ is a positive rate

parameter. The test for exponentiality described here was developed by Russian mathematician

Boris Gnedenko, much of whose work was focused on reliability. This particular test was selected

because it is an exact test and there is an intuitive development of the test statistic. We desire to

conduct a goodness-of-fit test to determine whether a data set of lifetimes might have come from an

exponential population.

Let T1, T2, . . . , Tn be a random sample of lifetimes drawn from an exponential(λ) population.

Let T(1), T(2), . . . , T(n) be the associated order statistics. Define T(0) = 0. Recall from Property 4.8

of the exponential distribution that the gaps between these order statistics, namely Gi = T(i)−T(i−1)

for i = 1, 2, . . . , n, are independent random variables, and furthermore

Gi ∼ exponential
(

(n− i+1)λ
)

for i = 1, 2, . . . , n. A simple application of the transformation technique from probability theory

indicates that

Di = (n− i+1)Gi

for i = 1, 2, . . . , n, yields normalized gaps D1, D2, . . . , Dn that are independent and identically dis-

tributed exponential(λ) random variables. From Property 4.7 of the exponential distribution,

2λ
n

∑
i=1

Di ∼ χ2(2n).



Section 11.4. A Test for Exponentiality 429

Since this relationship is true for 2λ times the summation of all n normalized gaps, it is also true for

any subset of the normalized gaps. The random variables D1, D2, . . . , Dn can be divided into two

groups. For an integer m satisfying 1 ≤ m ≤ n−1, select the first m of these values for group 1 and

the remaining n−m values for group 2. The random variables

2λ
m

∑
i=1

Di ∼ χ2(2m) and 2λ
n

∑
i=m+1

Di ∼ χ2
(

2(n−m)
)

,

are independent under H0. Since the ratio of two independent chi-square random variables divided

by their associated degrees of freedom has the F distribution,

G =
2λ∑m

i=1 Di/(2m)

2λ∑n
i=m+1 Di/

(

2(n−m)
) =

∑m
i=1 Di/m

∑n
i=m+1 Di/(n−m)

∼ F
(

2m, 2(n−m)
)

.

So G is a pivotal quantity that is independent of λ. It will be used as the test statistic in conducting

Gnedenko’s test for exponentiality. The null hypothesis is rejected for small and large values of the

test statistic. Small values of the test statistic, along with a histogram having the appropriate shape,

would lead one to conclude that the hazard function is decreasing. Large values of the test statistic,

along with a histogram having the appropriate shape, would lead one to conclude that the hazard

function is increasing. In either case, the exponential model would not be appropriate.

The next example returns to the ball bearing failure times one last time to conduct Gnedenko’s

test for exponentiality.

Example 11.6 Use Gnedenko’s test to determine whether an exponential distribution

is an appropriate model for the ball bearing failure times from Example 8.1 or whether

the ball bearings are wearing out.

We have already accumulated four bits of evidence that the ball bearings are wearing

out, so we expect that Gnedenko’s test for exponentiality will reject H0.

• The histogram in Figure 8.2 is bell-shaped.

• The empirical and fitted survivor functions graphed in Figure 8.1 indicate that the

exponential distribution is a poor fit to the ball bearing failure times.

• The 95% confidence region for the ball bearing failure times being fit to the

Weibull(λ, κ) distribution in Figure 8.18 does not include the line κ = 1.

• The Kolmogorov–Smirnov test conducted in Example 11.5 rejects exponentiality.

The first two of these were visual assessments of the fit and the last two were statistical

assessments of the fit.

The manner in which the problem is stated indicates that this is a hypothesis test with

a one-tailed alternative in which large values of the test statistic correspond to rejecting

H0. Recall that the n = 23 sorted ball bearing failure times t(1), t(2), . . . , t(n) (in millions

of revolutions) are

17.88, 28.92, 33.00, 41.52, 42.12, . . . , 127.92, 128.04, 173.40.

The gaps between the sorted failure times g1, g2, . . . , gn are

17.88, 11.04, 4.08, 8.52, 0.60, . . . , 22.08, 0.12, 45.36.
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The normalized gaps d1, d2, . . . , dn are

411.24, 242.88, 85.68, 170.40, 11.40, . . . , 66.24, 0.24, 45.36.

No advice is given as to the choice of m in Gnedenko’s test for exponentiality. It is an

exact test (that is, the probability of rejecting H0 is α when H0 is true) for all values of

m, but values of m at the extremes (m = 1 and m = n− 1) are more subject to random

sampling variability, which results in a lack of power. So a Monte Carlo simulation

experiment was conducted to determine which value of m gave the most powerful test

under a Weibull alternative (more detail is given in an exercise at the end of the chapter),

and m = 7 was selected. Using m = 7, the test statistic is

g =
∑m

i=1 di/m

∑n
i=m+1 di/(n−m)

= 3.76.

Since large values of this test statistic lead to rejecting H0, the p-value for the test is

calculated with

p = P[F(14, 32)> 3.76] = 0.00094

where F(14, 32) is an F random variable with 14 and 32 degrees of freedom. This tiny

p-value indicates that the null hypothesis H0 should be rejected. There is overwhelming

evidence in this sample that the ball bearing failure times are not drawn from an expo-

nential population. Our earlier assessments are confirmed. There is statistical evidence

in the data set that the ball bearings are indeed wearing out.

Example 10.12 considered using a nonhomogeneous Poisson process to model the failure times

of copy machines over the first 10,000 actuations on k = 20 identical copiers. The estimated cu-

mulative intensity function illustrated in Figure 10.11 is nearly linear. Should the nonhomogeneous

Poisson process model be abandoned and a homogeneous Poisson process model be used instead?

This question is taken up in the next example.

Example 11.7 Use Gnedenko’s test to determine whether an exponential distribution

is an appropriate model for the time between copier failures for the superposition of the

failure times in the first 10,000 actuations from Example 10.12.

Recall that the n = 37 sorted failure times in the superposition of the k = 20 realizations

are

50, 102, 220, 415, 974, 1215, 1440, 1452, 1518, 1532, 2009, 2399, 2774,

2793, 2938, 3676, 3791, 3962, 4199, 5000, 5354, 6237, 6517, 6880, 6963,

6982, 7108, 7393, 7463, 7884, 8094, 8187, 8954, 9111, 9201, 9449, 9507.

The question being posed is whether the times between failures is well modeled by an

exponential distribution using Gnedenko’s test for exponentiality. Taking differences

and sorting yields the n = 37 times between failures t(1), t(2), . . . , t(n):

12, 14, 19, 19, 50, . . . , 767, 801, 883.

The gaps between these values g1, g2, . . . , gn are

12, 2, 5, 0, 31, . . . , 29, 34, 82.
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The normalized gaps d1, d2, . . . , dn are

444, 72, 175, 0, 1023, . . . , 87, 68, 82.

Using a Monte Carlo simulation to select m = 13 in order to maximize the power of the

test under a Weibull alternative as in the previous example, the test statistic is

g =
∑m

i=1 di/m

∑n
i=m+1 di/(n−m)

= 1.08.

The two-tailed test is appropriate here because we are uncertain as to whether a mono-

tone increasing or decreasing hazard function associated with the alternative hypothesis

is appropriate. So the p-value for the test is

p = 2 ·min{P [F(26, 48)> 1.08] ,P [F(26, 48)< 1.08]}= 0.81,

where F(26, 48) is an F random variable with 26 and 48 degrees of freedom. This large

p-value leads us to fail to reject the null hypothesis of exponentiality using Gnedenko’s

test. We conclude that fitting the exponential distribution to the time between failures is

a reasonable next step toward using a homogeneous Poisson process to model the time

between copier failures over the first 10,000 actuations. This conclusion is reinforced

by the empirical survivor function and the survivor function which corresponds to the

exponential distribution fitted to the times between copier failures in Figure 11.8.

Gnedenko’s test for exponentiality is one of dozens of such tests, and this section is only de-

signed to introduce the development of one such test. Two final observations conclude this brief

introduction of Gnedenko’s test for exponentiality.

• Gnedenko’s test for exponentiality is highly dependent on the choice of m because this choice

determines the partition of the normalized spacings. This is a weakness of the test. In both

of the examples given in this section, a partition about 1/3 of the way into the normalized

spacings seems to give the highest power.
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Figure 11.8: Empirical and exponential fitted survivor functions for the copier failure times.


