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• The confidence intervals are asymptotically exact for 0 < S(t)< 1.

• The confidence intervals do not degenerate to confidence intervals of width zero for n(t) = 0

or n(t) = n as was the case with the Wald confidence interval.

This concludes the discussion concerning finding point and interval estimators for S(t) from

a complete data set of lifetimes. We now introduce techniques for estimating S(t) from a right-

censored data set.

Survivor Function Estimation for Randomly Right-Censored Data Sets

The general case in which there are both ties and right-censored data values is now considered.

Some new notation must be established in order to derive the nonparametric estimator for S(t). As

before, assume that n items are on test. Let y1 < y2 < · · ·< yk denote the k distinct observed failure

times, and let d j denote the number of observed failures at time y j, for j = 1, 2, . . . , k. Let n j = n(y j)
denote the number of items on test just prior to time y j, for j = 1, 2, . . . , k, and it is customary to

include any values that are right censored at y j in this count.

The search for a survivor function estimator begins by assuming that the data arose from a

discrete distribution with mass values y1 < y2 < · · · < yk. For a discrete distribution, h(y j) is a

conditional probability with interpretation h(y j) = P[T = y j |T ≥ y j] for j = 1, 2, . . . , k. As shown

in Appendix F, the survivor function can be written in terms of the hazard function at the mass values

as

S(t) = ∏
j |y j≤ t

[

1−h(y j)
]

t ≥ 0.

Thus, a reasonable estimator for S(t) is ∏ j |y j< t

[

1− ĥ(y j)
]

, which reduces the problem of estimating

the survivor function to that of estimating the hazard function at each mass value. An appropriate

element in the likelihood function at mass value y j for a randomly right-censored data set is

h(y j)
d j
[

1−h(y j)
]n j−d j

for j = 1, 2, . . . , k. The above expression is correct because d j is the number of failures at y j, h(y j)
is the conditional probability of failure at y j, n j −d j is the number of items on test not failing at y j,

and 1−h(y j) is the probability of failing after time y j conditioned on survival to time y j. Thus, the

likelihood function for h(y1), h(y2), . . . , h(yk) is

L
(

h(y1), h(y2), . . . , h(yk)
)

=
k

∏
j=1

h(y j)
d j
[

1−h(y j)
]n j−d j

and the log likelihood function is

ln L
(

h(y1), h(y2), . . . , h(yk)
)

=
k

∑
j=1

{

d j ln h(y j)+(n j −d j) ln
[

1−h(y j)
]

}

.

The ith element of the score vector is

∂ ln L
(

h(y1), h(y2), . . . , h(yk)
)

∂h(yi)
=

di

h(yi)
−

ni −di

1−h(yi)

for i = 1, 2, . . . , k. Equating this element of the score vector to zero and solving for h(yi) yields the

maximum likelihood estimate

ĥ(yi) =
di

ni
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for i = 1, 2, . . . , k. This estimate for ĥ(yi) is sensible because di of the ni items on test at time yi fail,

so the ratio of di to ni is an appropriate estimate of the conditional probability of failure at time yi.

This derivation may strike a familiar chord because at each time yi, estimating h(yi) with di divided

by ni is equivalent to estimating the probability of success (that is, failing at time yi) for each of the

ni items on test. Thus, this derivation is equivalent to finding the maximum likelihood estimators for

the probability of success for k binomial random variables.

Using this particular estimate for the hazard function at yi, the survivor function estimate be-

comes

Ŝ(t) = ∏
j |y j≤ t

[

1− ĥ(y j)
]

= ∏
j |y j≤ t

[

1−
d j

n j

]

,

for t ≥ 0, commonly known as the Kaplan–Meier or product–limit estimate. When the largest data

value recorded corresponds to a failure, the Kaplan–Meier product–limit estimator drops to zero;

when the largest data value recorded corresponds to a right-censored observation, a common con-

vention is to cut off the Kaplan–Meier product–limit estimator at the current positive value of Ŝ(t).
The original journal article by American mathematician Edward Kaplan and American statistician

Paul Meier in 1958 that established the Kaplan–Meier product–limit estimator is one of the most

cited papers in the statistics literature. The following example illustrates the process of calculating

the Kaplan–Meier product–limit estimate.

Example 10.3 Use the Kaplan–Meier product–limit estimator to calculate a point esti-

mate of the probability that a remission time in the treatment group in the 6–MP clinical

trial described in Example 8.3 exceeds 14 weeks. In other words, estimate S(14) using

the Kaplan–Meier product–limit estimator.

The data set contains n= 21 patients on test, r = 9 observed failures (leukemia relapses),

and k = 7 distinct observed failure times. The data values, in weeks, are

6 6 6 6∗ 7 9∗ 10 10∗ 11∗ 13 16

17∗ 19∗ 20∗ 22 23 25∗ 32∗ 32∗ 34∗ 35∗.

Table 10.2 gives the values of y j, d j, n j, and 1− d j/n j for j = 1, 2, . . . , 7. Assuming

a random right-censoring scheme, the Kaplan–Meier product–limit survivor function

j y j d j n j 1−
d j

n j

1 6 3 21 1− 3
21

2 7 1 17 1− 1
17

3 10 1 15 1− 1
15

4 13 1 12 1− 1
12

5 16 1 11 1− 1
11

6 22 1 7 1− 1
7

7 23 1 6 1− 1
6

Table 10.2: Product–limit calculations for 6–MP treatment case.
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estimate at t = 14 weeks is

Ŝ(14) = ∏
j |y j≤14

[

1−
d j

n j

]

=

[

1−
3

21

][

1−
1

17

][

1−
1

15

][

1−
1

12

]

=
176

255

= 0.69.

The Kaplan–Meier product–limit survivor function estimate for all t values is plotted in

Figure 10.4. Downward steps occur at the k = 7 observed failure times. Some software

packages place a vertical hash mark on the survivor function estimate to highlight cen-

sored values that occur between observed failure times; these occur at times 9, 11, 17,

19, 20, 25, 32, and 34 in Figure 10.4. The effect of censored observations in the survivor

function estimate is a larger downward step at the next subsequent observed failure time.

If there is a tie between an observed failure time and censoring time (as there is at time

6 in this example) the standard convention of including the censored value(s) in the

risk set when computing the number of items at risk means that there will be a larger

downward step in the survivor function estimate following the tied value. Since the

last observed data value, 35*, corresponds to a right-censored observation, the survivor

function estimate is truncated at time 35 and is assumed to be undefined for t > 35.
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Figure 10.4: Product–limit survivor function estimate for the 6–MP treatment group.

There is a second and perhaps more intuitive way of deriving the Kaplan–Meier product–limit

estimator, often referred to as the “redistribute-to-the-right” algorithm. This technique begins by

defining an initial probability mass function that apportions equal probability to each of the n data

values. In subsequent passes through the data, this probability mass function estimate is modified as
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the probability is redistributed to the right, with special treatment given to right-censored observa-

tions. The algorithm is illustrated next on the 6–MP treatment group data set from Example 8.3.

Example 10.4 Implement the redistribute-to-the-right algorithm for calculating the

Kaplan–Meier product–limit estimate of the survivor function for the remission time

in the treatment group in the 6–MP clinical trial from Example 8.3.

For the n = 21 patients in the treatment group for the 6–MP experiment, each failure or

censoring time is initially assigned a mass value of 1/n as follows:

6 6 6 6∗ 7 9∗ 10 10∗ 11∗ 13 . . .
1

21
1

21
1

21
1

21
1
21

1
21

1
21

1
21

1
21

1
21

. . .

If there were no censored observations, the fractions would be the appropriate estima-

tors for the probability mass function values. This probability mass function corre-

sponds to the empirical survivor function described earlier in this section. Combining

the three tied observed failures at t = 6 yields

6 6∗ 7 9∗ 10 10∗ 11∗ 13 . . .
1
7

1
21

1
21

1
21

1
21

1
21

1
21

1
21

. . .

As indicated earlier, there are mass values in the Kaplan–Meier product–limit estimator

only at observed failure times. Since the random censoring model is assumed, the mass

associated with the individual whose remission time is right censored at 6 weeks can be

split evenly among each of the 17 subsequent failure/censoring times:

6 6∗ 7 9∗ 10 10∗ 11∗ 13 . . .
1
7

0 6
119

6
119

6
119

6
119

6
119

6
119

. . .

because 1
21

+ 1
17

· 1
21

= 6
119

. The probability mass function estimates at t = 6 and t = 7

have now been determined. The mass value 6
119

associated with the right-censored

observation at time 9 can be allocated among the 15 subsequent failure/censoring times

as
6 6∗ 7 9∗ 10 10∗ 11∗ 13 . . .
1
7

0 6
119

0 32
595

32
595

32
595

32
595

. . .

because 6
119

+ 1
15

· 6
119

= 96
1785

= 32
595

. After allocating the mass at 10∗ to the subsequent

13 data values and the mass at 11∗ to the subsequent 12 data values, the estimator

becomes
6 6∗ 7 9∗ 10 10∗ 11∗ 13 . . .
1
7

0 6
119

0 32
595

0 0 16
255

. . .

When this process is continued through all the data values, the resulting probability

mass function defined on the observed failure times corresponds to the Kaplan–Meier

product–limit estimator. To check this for one specific time value, the survivor function

estimate at time 14 is

Ŝ(14) = 1−
1

7
−

6

119
−

32

595
−

16

255
=

176

255
= 0.69,

which matches the result from the previous example.


