
Chapter 9

Parametric Estimation for Lifetime

Models with Covariates

Parameter estimation for the accelerated life and proportional hazards models, which were intro-

duced in Chapter 5, is considered in this chapter. Since there is now a vector of covariates in

addition to a failure or censoring time for each item on test, special notation must be established to

accommodate the covariates. The accelerated life and proportional hazards models are considered

in separate sections because they require different approaches for parameter estimation. The pro-

portional hazards model has the unique feature that the baseline distribution need not be defined in

order to estimate the regression coefficients associated with the covariates.

9.1 Model Formulation

The purpose of a lifetime model that incorporates a vector of covariates z = (z1, z2, . . . , zq)
′ is to

determine the impact of the covariates on survival. The reason for including this vector may be to

determine which covariates significantly affect the survival of an item, to determine the probability

distribution of the lifetime of an item for a particular setting of the covariates, or to fit a more

complicated distribution from a small data set, as opposed to fitting separate distributions for each

level of the covariates. As indicated in Section 5.3, one way to define the accelerated life model is

through the survivor function

S(t, z) = S0

(

tψ(z)
)

,

for t ≥ 0, where S0(·) is a baseline survivor function and ψ(z) is a link function satisfying ψ(0) = 1

and ψ(z)> 0 for all z. The covariate vector z has been added as an argument to the survivor function

because the probability of survival to time t is a function of both time and the covariate values. When

ψ(z)> 1, the covariates increase the rate at which the item moves through time. When ψ(z)< 1, the

covariates decrease the rate at which the item moves through time. For simplicity and mathematical

tractability, the link function is assumed to have the log linear form ψ(z) = eββ′z , throughout this

chapter, where ββ = (β1, β2, . . . , βq)
′ is a vector of regression coefficients. This assumption is not

necessary for some of the derivations, so many of the results apply to a wider range of link functions.

Recall that the proportional hazards model was defined in Section 5.4 by

h(t, z) = ψ(z)h0(t),
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for t ≥ 0, where h0(t) is a baseline hazard function. The covariates increase the hazard function

when ψ(z) > 1 or decrease the hazard function when ψ(z) < 1. For both the accelerated life and

proportional hazards models, the other lifetime distribution representations are given in Table 5.2.

The purpose of this chapter is to estimate the q× 1 vector of regression coefficients ββ from a data

set consisting of n items on test and r observed failure times.

The notation used to describe a data set in a lifetime model involving covariates will borrow some

notation from the previous two chapters but also establish some new notation. The failure time of

the ith item on test, ti, is either observed or right censored at time ci. As before, let xi = min{ti, ci}
and δi be a censoring indicator variable (1 for an observed failure and 0 for a right-censored value),

for i = 1, 2, . . . , n. In addition, a q× 1 vector of covariates zi = (zi1, zi2, . . . , ziq)
′ is collected for

each item on test, for i = 1, 2, . . . , n. Thus, zi j is the value of covariate j for item i, for i = 1, 2, . . . , n

and j = 1, 2, . . . , q. This formulation of the problem can be stated in matrix form as
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Each row in the Z matrix consists of the values of the q covariates collected on a particular item. The

matrix approach is useful because complicated systems of equations can be expressed compactly and

operations on data sets can be performed efficiently by a computer. For parameter estimation, the

survivor, density, hazard, and cumulative hazard functions now have the extra arguments z and ββ
associated with them:

S(t, z, θθ, ββ) f (t, z, θθ, ββ) h(t, z, θθ, ββ) H(t, z, θθ, ββ),

for t ≥ 0, where the vector θθ = (θ1, θ2, . . . , θp)
′ consists of the p unknown parameters associated

with the baseline distribution, which must be estimated along with the regression coefficients ββ. In

the case of random right censoring, the likelihood function can now be written in the usual form:

L(θθ, ββ) = ∏
i∈U

f (xi, zi, θθ, ββ)∏
i∈C

S(xi, zi, θθ, ββ),

where U is the set of indexes of uncensored observations and C is the set of indexes of right censored

lifetimes. The log likelihood function is

ln L(θθ, ββ) = ∑
i∈U

ln f (xi, zi, θθ, ββ)+ ∑
i∈C

ln S(xi, zi, θθ, ββ),

or, equivalently,

ln L(θθ, ββ) = ∑
i∈U

ln h(xi, zi, θθ, ββ)−
n

∑
i=1

H(xi, zi, θθ, ββ).

Two observations with respect to this model formulation are important. First, the maximum

likelihood estimates for θθ and ββ typically cannot be expressed in closed form (as was the case for

the exponential distribution in Section 8.2), so numerical methods typically need to be used to find

the values of the estimates. Second, the choice of whether to use a model that explicitly includes

covariates or to examine each population separately is dependent on the number of unique covariate

vectors z and the number of items on test, n. If n is large and there is only a single binary covariate

(that is, only two unique covariate vectors, z1 = 0 and z1 = 1), for example, it is probably wiser to

analyze each of the two populations separately by the techniques described in Chapter 8.


