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4.2 Exponential Distribution

Just as the normal distribution plays a pivotal role in classical statistics because of the central limit

theorem, the exponential distribution plays a pivotal role in reliability and lifetime modeling because

it is the only continuous distribution with a constant hazard function. The exponential distribution

has often been used to model the lifetimes of electronic components and is appropriate when a used

component that has not failed is statistically as good as a new component in terms of its remaining

time to failure. This is a rather restrictive assumption. Moreover, the exponential distribution is

presented first because of its simplicity. The exponential distribution has a single positive scale

parameter λ, often called the failure rate, measured in failures per unit time. The five lifetime

distribution representations are

S(t) = e−λt f (t) = λe−λt h(t) = λ H(t) = λt L(t) =
1

λ

for t ≥ 0, and are plotted in Figure 4.3 for λ = 1 and λ = 2. Two-parameter distributions, which are

more complex but can model a wider variety of situations, are presented in subsequent sections.

The centrality, tractability, and importance of the exponential distribution make it a key prob-

ability distribution to know well. In that light, this section surveys 15 probabilistic properties of

the exponential distribution that are useful in understanding how it is unique and when it should

be applied. In all the properties, it is assumed that the nonnegative lifetime T has the exponential

distribution with parameter λ, which denotes the number of failures per unit time, which could be

seconds, hours, or years (or even miles or cycles). The symbol ∼ means “is distributed as.” The

shorthand T ∼ exponential(λ) is read as “the random variable T is distributed as an exponential

random variable with parameter λ.” Some brief comments follow the statement of each of the prop-

erties; proofs of the properties are contained in Appendix A.

Property 4.1 (memoryless property) If T ∼ exponential(λ), then

P[T ≥ t] = P[T ≥ t + s |T ≥ s] t ≥ 0; s≥ 0.

As shown in Figure 4.4 for λ = 1 and s = 0.5, this result indicates that the conditional survivor

function for the lifetime of an item that has survived to time s is identical to the survivor function for

the lifetime of a brand new item. This used-as-good-as-new assumption is very strong. Consider, for

example, whether the exponential distribution should be used to model the lifetime of a candle with

an expected burning time of 5 hours. If several candles are sampled and burned, we could imagine a

bell-shaped histogram for candle lifetimes, centered around 5 hours. The exponential lifetime model

is certainly not appropriate in this case, because a candle that has burned for 4 hours does not have

the same remaining lifetime distribution as that of a brand new candle. The exponential distribution

would only be appropriate for candle lifetimes if the remaining lifetime of a used candle is identical

to the lifetime of a new candle. A consumer would certainly prefer a new candle to a used candle

in terms of its longevity. This same argument can be used to reason that the exponential lifetime

model should not be applied to mechanical components that undergo wear (for example, bearings)

or fatigue (structural supports), or electrical components that contain an element that burns away

(filaments) or degrades with time (batteries). An electrical component for which the exponential

lifetime assumption might be justified is a fuse. A fuse is designed to fail when there is a power

surge that causes the fuse to fail, resulting in a blown fuse which must be replaced. Assuming that

the fuse does not undergo any weakening or degradation over time and that power surges that cause

failure occur at a constant rate over time, the exponential lifetime assumption is appropriate, and a
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Figure 4.3: Lifetime distribution representations for the exponential distribution.

used fuse that has not failed is therefore as good as a new one in terms of longevity.

The exponential distribution should be judiciously applied because the memoryless property

restricts its applicability. It can easily be misapplied for the sake of simplicity because the statistical

techniques for the exponential distribution are particularly tractable, or because small sample sizes

do not support more than a one-parameter distribution.

Property 4.2 The exponential distribution is the only continuous distribution with the memoryless

property.

This result indicates that the exponential distribution is the only continuous lifetime distribution

for which the conditional lifetime distribution of a used item is identical to the original lifetime dis-

tribution. The only discrete distribution with the memoryless property is the geometric distribution.
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Figure 4.4: The memoryless property of the exponential distribution.

Property 4.3 If T ∼ exponential(λ), then λT ∼ exponential(1).

An exponential random variable with λ = 1 is often called a unit exponential random variable.

This particular exponential distribution is important for random variate generation, as indicated in

the next property.

Property 4.4 If T is a continuous nonnegative random variable with cumulative hazard function

H(t), then H(T ) ∼ exponential(1).

This property is mathematically equivalent to the probability integral transformation, which

states that F(T ) ∼ U(0, 1), resulting in the inverse-cdf technique for generating random variates

for Monte Carlo simulation: T ← F−1(U), where U ∼ U(0, 1). Using Property 4.4, random life-

time variates are generated by

T ← H−1
(

− ln(1−U)
)

because− ln(1−U) is a unit exponential random variate. Random lifetimes generated in this fashion

are generated by the cumulative hazard function technique.

Example 4.2 Assuming that the failure time of an item has the Weibull distribution

with survivor function

S(t) = e−(λt)κ
t ≥ 0

for positive scale parameter λ and positive shape parameter κ, find an equation to con-

vert U(0, 1) random numbers to Weibull random variates.

The cumulative hazard function for the Weibull distribution is

H(t) =− ln S(t) = (λt)κ t ≥ 0,

which has inverse

H−1(y) =
y1/κ

λ
y≥ 0.
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Weibull random variates can be generated by

T ←
1

λ
[− ln(1−U)]1/κ ,

where U is uniformly distributed between 0 and 1.

Figure 4.5 illustrates the geometry associated with generating a variate using the cumulative haz-

ard function technique. The value of − ln(1−U), the unit exponential random variate, is indicated

on the vertical axis, and the corresponding random variate T is indicated on the horizontal axis.
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Figure 4.5: Generating a random variate by the inverse cumulative hazard function technique.

The next result gives a general expression for the sth moment of an exponential random variable.

Property 4.5 If T ∼ exponential(λ), then

E [T s] =
Γ(s+1)

λs
s >−1,

where Γ(α) =
∫ ∞

0
xα−1e−x dx.

Additional information on the gamma function, Γ(α), and other related functions is given in

Appendix B. When s is a nonnegative integer, this expression reduces to E[T s] = s!/λs. By setting

s= 1,2,3, and 4, the mean, variance, coefficient of variation, skewness, and kurtosis can be obtained:

E[T ] =
1

λ
V [T ] =

1

λ2
γ = 1 γ3 = 2 γ4 = 9.

Since the coefficient of variation of an exponential random variable is 1, a quick check for expo-

nentiality for a data set is to see if the ratio of the sample standard deviation to the sample mean is

approximately 1. The histogram of the sample values should also have the appropriate shape, al-

though it will be subject to random sampling variability, which is more pronounced for small sample

sizes.
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Property 4.6 (self-reproducing) If T1, T2, . . . , Tn are independent, Ti ∼ exponential(λi), for

i = 1, 2, . . . , n, and T = min{T1, T2, . . . , Tn}, then

T ∼ exponential

(

n

∑
i=1

λi

)

.

This result indicates that the minimum of n independent exponential random lifetimes also has

the exponential distribution. This is important in two applications. First, if n components, each with

independent exponential times to failure, are arranged in series, the distribution of the system failure

time is also exponential with a failure rate equal to the sum of the component failure rates. When

the n components have the same failure rate λ, the system lifetime is exponential with failure rate nλ.

Second, when there are several independent, exponentially distributed causes of failure competing

for the lifetime of an item (for example, failing by open or short circuit for an electronic item or

death by various diseases for a human being), the lifetime can be modeled as the minimum of the

individual lifetimes from each cause of failure. This second application will be expanded upon in

Section 5.1.

Property 4.7 If T1, T2, . . . , Tn are independent and identically distributed exponential(λ) random

variables, then

2λ
n

∑
i=1

Ti ∼ χ2(2n),

where χ2(2n) denotes the chi-square distribution with 2n degrees of freedom.

This property is useful for determining a confidence interval for λ based on a data set of n

independent exponential lifetimes. With probability 1−α,

χ2
2n,1−α/2 < 2λ

n

∑
i=1

Ti < χ2
2n,α/2,

where the left- and right-hand sides of this inequality are the α/2 and 1−α/2 fractiles of the chi-

square distribution with 2n degrees of freedom. (This subscript convention differs from that pre-

sented in Section 3.3 for fractiles.) This notation is illustrated in Figure 4.6, with the three areas

under the probability density function of the chi-square random variable plotted on the graph. Re-

arranging this expression yields an exact two-sided 100(1−α)% two-sided confidence interval for

λ:
χ2

2n,1−α/2

2
n

∑
i=1

Ti

< λ <
χ2

2n,α/2

2
n

∑
i=1

Ti

.

Property 4.8 If T1, T2, . . . , Tn are independent and identically distributed exponential(λ) random

variables, T(1), T(2), . . . , T(n) are the corresponding order statistics (the observations sorted in as-

cending order), the ith gap is Gi = T(i)−T(i−1) for i = 1, 2, . . . , n, and if T(0) = 0, then

(a) P[Gi ≥ t] = e−(n−i+1)λt t ≥ 0; i = 1, 2, . . . , n

(b) G1, G2, . . . , Gn are independent.


