3.6 Exercises

3.1 An urn contains \(r \) red balls and \(w \) white balls, where \(r \) and \(w \) are positive integers and \(r \geq 3 \). Balls are drawn successively and without replacement. Let the random variable \(X \) be the draw number in which the third red ball is drawn. Find the probability mass function of \(X \).

3.2 Atlas and Bruce agree to engage in the following test of strength. They will have consecutive arm wrestling matches until one of them wins two matches in a row and is declared the winner. Atlas wins a given match with probability \(\frac{3}{5} \). Assuming that the matches are independent, give the probability mass function of the number of matches required to declare a winner.

3.3 Marian rolls five fair dice simultaneously. Find the probability that the total number of spots showing is less than or equal to 11.

3.4 A fair die is rolled \(n \) times. Let \(X_i \) denote the number of spots that are on the up face on roll \(i \), for \(i = 1, 2, \ldots, n \). Find the probability mass function of \(Y = \max\{X_1, X_2, \ldots, X_n\} \).

3.5 The R function \(\text{bubblesort} \) is given below.

```r
bubblesort = function(a) {
  n = length(a)
  for (i in 1:(n - 1)) {
    for (j in 1:(n - i)) {
      if (a[j + 1] < a[j]) {
        tmp = a[j]
        a[j] = a[j + 1]
        a[j + 1] = tmp
      }
    }
  }
  return(a)
}
```

A \textit{swap} occurs when the inside if statement is executed. If a vector containing a random permutation of three distinct integers is passed to \(\text{bubblesort} \), give the probability mass function of the number of swaps required by the code to sort the random permutation.

3.6 A fair green die and a fair red die are tossed together. Let \(X \) denote the number of spots showing on the green die and \(Y \) denote the number of spots showing on the red die. Find the probability mass function for:

(a) the sum of the spots showing on the two dice, \(X + Y \),
(b) the number of spots showing on the green die minus the number of spots showing on the red die, \(X - Y \),
(c) the difference between the spots showing on the two dice, \(|X - Y| \),
(d) the maximum number of spots showing on a single die, \(\max\{X, Y\} \),
(e) the minimum number of spots showing on a single die, \(\min\{X, Y\} \).