
Theorem If X ∼ t(n) then Y = X2 ∼ F (1, n).

Proof The Student’s t distribution with n degrees of freedom has probability density function
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The transformation Y = g(X) = X2 is a 1–1 transformation from X = {x | −∞ < x < ∞}
to Y = {y | y > 0} with inverse X = g−1(Y ) =

√
Y and Jacobian

dX

dY
=

1

2
√
Y
.

Therefore, by the transformation technique, the probability density function of Y is
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which is the probability density function of an F (1, n) random variable.

APPL failure: The APPL statements

X := TRV(n);

g := [[x -> x ^ 2], [0, infinity]];

Y := Transform(X, g);

PDF(Y);

fail to produce the probability density function of an F (1, n) random variable.
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