Theorem The limiting distribution of \(n(1 - \max\{X_1, X_2, \ldots, X_n\}) \), where \(X_1, X_2, \ldots, X_n \) are mutually independent and identically distributed \(U(0, 1) \) random variables, is exponential with mean 1.

Proof Let \(X_{(n)} = \max\{X_1, X_2, \ldots, X_n\} \). We want to show that the limiting distribution of \(Y_n = n(1 - X_{(n)}) \) is exponential with mean 1. Using the order statistic result

\[
f_{X_{(k)}}(x) = \frac{n!}{(k-1)!(n-k)!}[F(x)]^{k-1}[1-F(x)]^{n-k}f(x) \quad a < x < b; \ k = 1, 2, \ldots, n,
\]

where \(f(\cdot) \) and \(F(\cdot) \) denote the population probability density function and cumulative distribution function, and \(a \) and \(b \) are the minimum and maximum of the population support.

For a population of \(U(0, 1) \) random variables, the probability density function of \(X_{(n)} \) is

\[
f_{X_{(n)}}(x) = nx^{n-1} \quad 0 < x < 1.
\]

The transformation \(Y_n = n(1 - X_{(n)}) \) is a 1–1 transformation from \(X = \{x_{(n)} | 0 < x_{(n)} < 1\} \) to \(Y = \{y_n | 0 < y_n < n\} \) with inverse \(X_{(n)} = 1 - Y_n/n \) and Jacobian

\[
\frac{dX_{(n)}}{dY_n} = -\frac{1}{n}
\]

So by the transformation technique, the probability density function of \(Y_n \) is

\[
f_{Y_n}(y_n) = n \left(1 - \frac{y_n}{n}\right)^{n-1} \left| -\frac{1}{n} \right| = \left(1 - \frac{y_n}{n}\right)^{n-1} \quad 0 < y_n < n.
\]

The associated cumulative distribution function is

\[
F_{Y_n}(y_n) = \int_0^{y_n} \left(1 - \frac{w}{n}\right)^{n-1} dw = \left[- \left(1 - \frac{w}{n}\right)^n\right]_0^{y_n} = 1 - \left(1 - \frac{y_n}{n}\right)^n \quad 0 < y_n < n.
\]

So the limiting distribution of \(Y_n \) is exponential with a mean of 1 because

\[
\lim_{n \to \infty} F_{Y_n}(y_n) = \begin{cases}
0 & y_n < 0 \\
1 - e^{-y_n} & y_n \geq 0.
\end{cases}
\]

APPL illustration: The APPL statements

\[
X := \text{UniformRV}(0, 1); \\
n := 10; \\
T := \text{OrderStat}(X, n, n); \\
g := [[x -> n \times (1 - x)], [0, 1]]; \\
Y := \text{Transform}(T, g); \\
\text{PlotDist}(Y);
\]

yield a probability density function that resembles an exponential probability density function with a mean of 1.