Theorem If X; and X, are independent standard normal random variables, then Y = X; /X,
has the standard Cauchy distribution.

Proof Let X; and X, be independent standard normal random variables. We can write
their probability density functions as
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Since X7 and X, are independent, the joint probability density function of X; and X5 is
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Therefore, by the transformation technique, the joint probability density function of Y; and
Y, is
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The probability density function of Y; is
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which is the probability density function of a standard Cauchy random variable.



APPL verification: The APPL statements

X1 := NormalRV(0, 1);

X2 := NormalRV(0, 1);

g :=[[x->1/x%, x->1/x], [-infinity, 0, infinity]];
Y := Transform(X2, g);

Product (X1, Y);

produce the probability density function of a Cauchy random variable.



