
Theorem IfX1 andX2 are independent standard normal random variables, then Y = X1/X2

has the standard Cauchy distribution.

Proof Let X1 and X2 be independent standard normal random variables. We can write
their probability density functions as
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Since X1 and X2 are independent, the joint probability density function of X1 and X2 is
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Consider the 2× 2 transformation

Y1 = g1(X1, X2) =
X1

X2

and Y2 = g2(X1, X2) = X2

which is a 1–1 transformation from X = {(x1, x2) | − ∞ < x1 < ∞,−∞ < x2 < ∞} to
Y = {(y1, y2) | −∞ < y1 < ∞,−∞ < y2 < ∞} with inverses
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Therefore, by the transformation technique, the joint probability density function of Y1 and
Y2 is
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The probability density function of Y1 is
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which is the probability density function of a standard Cauchy random variable.
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APPL verification: The APPL statements

X1 := NormalRV(0, 1);

X2 := NormalRV(0, 1);

g := [[x -> 1 / x, x -> 1 / x], [-infinity, 0, infinity]];

Y := Transform(X2, g);

Product(X1, Y);

produce the probability density function of a Cauchy random variable.
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