
Theorem The limiting distribution of a Poisson(λ) distribution as λ → ∞ is normal.

Proof Let Xn ∼ Poisson(n), for n = 1, 2, . . . . The probability mass function of Xn is
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for −∞ < t < ∞. Taking the limit gets us nowhere because
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So now consider a “standardized” Poisson random variable
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by using the moment generating function of a Poisson random variable and expanding the
exponential function as a series. This can be recognized as the moment generating function
of a standard normal random variable. This implies that the associated unstandardized
random variable Xn has a limiting distribution that is normal with mean n and variance n.
This result is the basis for the “normal approximation to the Poisson distribution.”
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