Theorem The limiting distribution of a Poisson(\) distribution as A — oo is normal.
Proof Let X,, ~ Poisson(n), for n = 1,2,.... The probability mass function of X, is
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The moment generating function of X, is
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for —oo < t < co. Taking the limit gets us nowhere because
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So now consider a “standardized” Poisson random variable
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which has limiting moment generating function
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by using the moment generating function of a Poisson random variable and expanding the
exponential function as a series. This can be recognized as the moment generating function
of a standard normal random variable. This implies that the associated unstandardized
random variable X, has a limiting distribution that is normal with mean n and variance n.
This result is the basis for the “normal approximation to the Poisson distribution.”



