Theorem The natural logarithm of a Pareto (λ, κ) random variable minus the natural logarithm of λ has the exponential distribution.

Proof Let the random variable X have the Pareto distribution with probability density function

$$f_X(x) = \frac{\kappa \lambda^{\kappa}}{x^{\kappa+1}}$$
 $x > \lambda$.

The transformation $Y = g(X) = \ln\left(\frac{X}{\lambda}\right)$ is a 1–1 transformation from $\mathcal{X} = \{x \mid x > \lambda\}$ to $\mathcal{Y} = \{y \mid y > 0\}$ with inverse $X = g^{-1}(Y) = \lambda e^Y$ and Jacobian

$$\frac{dX}{dY} = \lambda e^Y.$$

Therefore by the transformation technique, the probability density function of Y is

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{dx}{dy} \right|$$
$$= \frac{\kappa \lambda^{\kappa}}{(\lambda e^y)^{\kappa+1}} |\lambda e^y|$$
$$= \kappa e^{-y\kappa} \qquad y > 0.$$

Letting $\kappa = 1/\alpha$,

$$f_Y(y) = \frac{1}{\alpha} e^{-y/\alpha} \qquad y > 0,$$

which is the probability density function of the exponential distribution.